
Freescale Semiconductor
Application Note

AN2949
Rev. 1, 1/2006

Table of Contents

Introduction . 1
Processor Expert and Embedded Beans 1

2.1 Processor Expert Benefits 3
2.2 What is an Embedded Bean? 3
2.3 Bean Creation and Inheritance 4
MC9S08GB60 and the M68DEMO908GB60 4

3.1 M68DEMO908GB60 Features. 5
3.2 M68DEMO908GB60 Configuration 6
RTC (Real Time Clock). 6
Environment Setup . 7
Project Configuration . 8

6.1 Starting a Project with Processor Expert 9
6.2 Adding Embedded Beans to a Project. 10
6.3 Configuring Beans with the Bean Inspector

and Resolving Errors 13
6.4 Generate Processor Expert Code 18
6.5 Providing a Main Program 21
6.6 Programming the MCU Target. 25
Conclusion . 27

Using Processor Expert to Develop
a Software Real-Time Clock
By: Steven Torres

MCU System/Application Engineering
Austin, Texas
1 Introduction
This application note uses Processor Expert embedded
beans and an HCS08 microcontroller (MCU) to
demonstrate a software-based RTC (real-time clock).
Processor Expert is a tool that can help reduce
development time for embedded software creation and
get products to market faster. This document provides a
basic overview of Processor Expert and demonstrates its
ease of use. A discussion of the M68DEMO908GB60
development tool is also provided.

2 Processor Expert and
Embedded Beans

This section provides an overview of Processor Expert
and embedded bean basics.

Processor Expert is a optional software plug-in for
Freescale’s CodeWarrior development tools. Processor
Expert provides object-oriented programming for
embedded systems to facilitate rapid application
development. With Processor Expert, MCU peripherals
are configured through a graphical user interface (GUI)

1
2

3

4
5
6

7

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Processor Expert and Embedded Beans
within the CodeWarrior IDE, then Processor Expert automatically generates the initialization and other
user support code.

The figure below illustrates the CodeWarrior IDE workspace with the Processor Expert functionally
enabled showing the project manager, bean selector, error, bean inspector, and CPU Processor Expert
windows. Section 6.1, “Starting a Project with Processor Expert,” provides details about configuring a
CodeWarrior project to include Processor Expert.

Figure 1. CodeWarrior IDE with Processor Expert Workspace
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor2

Processor Expert and Embedded Beans
2.1 Processor Expert Benefits
Processor Expert uses an object-oriented application-building methodology using embedded beans. The
embedded beads abstract the MCU hardware and register details into an intuitive software application
programmer interface (API). Instead of developing software routines to initialize hardware via the MCU
register map, embedded beans provide a software API and graphical interface to initialize the MCU.

In addition, an expert knowledge system is working in the background. It checks that all the MCU settings
and configurations do not conflict with one another. ThProcessor Expert software API and the expert
knowledge system enable an application developed in Processor Expert to be extremely portable — not
only among MCU processors based on the same core platform, but also with platforms based on other
Freescale MCU processors (i.e., 8/16/32/DSC). Besides the reuse benefit of using Processor Expert, other
benefits are:

• Easy way to program and set-up CPU/MCU peripherals with limited knowledge about them
• Provides an interface to configure modules in real-world terms such as baud rates, instead of

juggling and calculating user rate using dividers and prescalers
• Provides ready-to-use hardware drivers for peripherals
• Provide some basic software solutions such as software RTC functionality
• Ability to create new user-defined embedded beans
• Design-time settings verified by the expert knowledge system
• Allows the use of external code, libraries, and modules

2.2 What is an Embedded Bean?
Embedded beans are ready-to-use and tested building blocks for application creation. Embedded beans
abstract embedded programming by providing a unified API across platforms and hiding the
implementation details. That way, if and when the hardware implementation changes, the API functions
are not changed. This hardware independence of the embedded beans make application portable.

The embedded beans encapsulate functionality into properties, methods, and events (this is an object
oriented programming approach). More detail about these is provided here:

• Properties — These embedded beans’ behavior attributes are defined during the application
design-time and then compiled. They include MCU initialization settings such as speed of serial
line, time period of the periodical interrupt, or number of channels of A/D converter. Some
property settings can not change during run-time, such as memory allocations or external crystal
speed.

• Methods — These embedded beans’ behavior attributes are those that can be modified during the
application runtime such as receiving serial characters, changing the SCI baud rate, or
driving/reading a pin value.

• Events — These embedded beans’ behavior attributes provide function calls when important
changes happen in the bean (i.e., interrupts, received character via serial line, analog value
measured, etc.)
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 3

MC9S08GB60 and the M68DEMO908GB60
2.3 Bean Creation and Inheritance
In general, an embedded bean can be classified as a hardware or software bean. Details about hardware
and software embedded beans are provided here:

• Hardware Beans — Those tightly coupled with expert knowledge system and influenced by it
• Software Beans — These beans do not require feedback from expert knowledge system

The collection of embedded beans provided with the CodeWarrior IDE is dependant on the level of
CodeWarrior IDE licensing. Some embedded beans require higher level of CodeWarrior IDE licensing.
The example provided in this application note can not be developed with the special edition license; for
the software RTC example, the Professional Edition of CodeWarrior is required. The Professional Edition
provides access to many advanced embedded beans including the TimeData bean. Advanced embedded
bean provide higher levels of functionality than beans found in the special edition license. The TimeData
bean, for instance, provides fuctionality of a software RTC. Bean creation using inheritance also requires
a professional license. If this project was opened using a special edition license, several licence errors
would be indicated via the CodeWarrior IDE.

Inheritance refers to the creation of a new bean from an existing bean. With inheritance the new bean not
only inherits existing bean functionality, but also adds additional functionality (methods, properties, or
events). An example of an embedded bean is the RTC embedded bean, TimeDate. The TimeDate bean
inherits functionality from the RTI-based hardware bean. This application demonstrates configuration and
usage of the TimeDate embedded bean in Section 6.2, “Adding Embedded Beans to a Project.”

3 MC9S08GB60 and the M68DEMO908GB60
The target system for use in this application is a M68DEMO908GB60 demonstration board. This figure
below shows a photo of the M68DEMO908GB60. This section lists the M68DEMO908GB60 features and
provide details regarding the configuration of the M68DEMO908GB60 jumpers used for the software
RTC application.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor4

MC9S08GB60 and the M68DEMO908GB60
Figure 2. M68DEMO908GB60

Although an MC9S08GB60 development platform is used for this application, with only minor
software/Processor Expert modifications, any HCS08 MCU could be substituted to demonstrate the
software RTC.

3.1 M68DEMO908GB60 Features
The M68DEMO908GB60 can be powered using two AA batteries or an optional external power supply.
It also provide the following development features:

• MC9S08GB60 MCU with 60K Flash
• 32.768 kHz external crystal
• Dual DB9 RS-232 serial ports
• Switches
• LEDs, MCU
• Pin-breakout header
• Small prototype area
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 5

RTC (Real Time Clock)
3.2 M68DEMO908GB60 Configuration
The table below provides detailed jumper and switch configuration information need for proper operation
of the software RTC demonstration.

4 RTC (Real Time Clock)
An RTC (or sometimes referred to as time of day) implementation can be either a hardware or software
implementation. A hardware RTC implementation refers to one that uses an external RTC hardware
module (these are sometime connected via an IIC). On the other hand, some hardware RTC
implementations are provided by an on-chip peripheral in an MCU.

The primary function of an RTC implementation is to provide the time, day of the week, month, and year.
The advantage of a hardware RTC is accuracy of time. Although not sought after for their accuracy,
software RTCs can be a viable solution for some applications. The accuracy of the software RTC is
affected by the frequency tolerance of the microcontroller clock source. If the clock source is a external
crystal (for instance), a high ppm frequency tolerance would be preferred.

Software RTC can be implemented with a timer or counter that gives an interrupt based on a specified time
interval. The number of time intervals are counted and then converted to time. A one second time interval
is a convenient configuration for a software RTC.

Because the software RTC function is not a part of the hardware, legacy systems can implement software
RTC functionality with a firmware update. Because the RTC is implemented in software, software RTCs
can have a lower system cost, require fewer external components, or require less power.

Table 1. M68DEMO908GB60 Configuration

M68DEMO908GB60 Jumper/Switch Settings

COM_EN all jumpered

ON_OFF SWITCH ON position

PWR_SEL 2-3 shorted when using
external power

LED_EN all jumpered

JP1 1-2 shorted
3-4 shorted

VRH_SEL don’t care
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor6

Environment Setup
5 Environment Setup
This application was developed and tested using CodeWarrior and Processor Expert running on an
Windows XP PC. Version information for these tools is provided in Figure 3.

Figure 3. CodeWarrior IDE Version
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 7

Project Configuration
Other development components include a terminal program to display SCI data via the serial port and a
USB BDM pod to program the MCU. Figure 4 illustrates the connections required to program the MCU
using the Code Warrior IDE and the BDM programmer.

Figure 4. Development Environment Debugger/Programmer Connections

6 Project Configuration
Because the completed software is provided with this application note, the section will not detail every
step of the application development. The discussion will focus on the major steps of the application
development including:

• Starting a project with Processor Expert
• Add embedded beans to the project
• Resolving bean errors identified by the Processor Expert knowledge system and configuring the

embedded bean properties, methods, and events
• Providing a main program
• Programming the MCU
• Demonstration of the application
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor8

Project Configuration
6.1 Starting a Project with Processor Expert
Begin the project by opening CodeWarrior version 3.1 or later. Start a new project using the HCS08 project
wizard. When the wizard asks about adding Processor Expert wizard to the project, ensure that Yes is
selected as shown in Figure 5.

Figure 5. Project Wizard Processor Expert Option in CodeWarrior 3.1
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 9

Project Configuration
6.2 Adding Embedded Beans to a Project
After the wizard completes, the Code Warrior IDE with the processor workspace will be opened as shown
in Figure 1.

To add embedded beans, the bean selector is used. If the bean selector is not open in the IDE workspace,
it can be opened via the Processor Expert menu bar. The beans selector is shown in Figure 6 with the
TimeDate embedded bean selected. Right-click the mouse for a menu to add the TimeDate bean to the
project.

Figure 6. Bean Selector
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor10

Project Configuration
The bean selector organizes the embedded beans in several views. Figure 6 shows the embedded bean in
a categories view. The TimeDate bean is found in the CPU internal peripheral, timer category.

6.2.1 Project Embedded Bean Summary
Several other embedded beans are used in this application note. These embedded beans are listed in
Table 2, along with the TimeDate embedded bean. The table list the function each bean will support, along
with what MCU resource is allocated for the bean. Each one of these beans needs to be added to the project
by the method described above.

Table 2. <<<Need Title>>>

Bean Category Function
MCU

resource

TimeDate1 CPU Internal Peripheral, Timer Software RTC RTI

AsynchroMaster1 CPU Internal Peripheral,
Communication

SCI communication used to display the time
and date information to a PC terminal
application

SCI0

BitIO1 CPU Internal Peripheral, Port I/O SW1, Display Current Date information to SCI
port

PTA4

BitIO2 CPU Internal Peripheral, Port I/O SW2, Display Current Time information to SCI
port

PTA5

BitIO3 CPU Internal Peripheral, Port I/O SW3, Provide command to inverse LED1-5
display

PTA6

BitIO4 CPU Internal Peripheral, Port I/O SW4, Provide command to blink all LEDs PTA7

BitIO5 CPU Internal Peripheral, Port I/O LED1 on/off control PTF0

BitIO6 CPU Internal Peripheral, Port I/O LED2 on/off control PTF1

BitIO7 CPU Internal Peripheral, Port I/O LED3 on/off control PTF2

BitIO8 CPU Internal Peripheral, Port I/O LED4 on/off control PTF3

BitIO9 CPU Internal Peripheral, Port I/O LED5 on/off control PTD0
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 11

Project Configuration
6.2.2 CPU Bean and Project Manager Window
Another bean that is a part of the project is the CPU bean. The bean does not need to be added because it
is configured with the HCS08 project wizard when the initial project is built. Figure 7 illustrates the project
manager window with the Processor Expert tab selected. This shows all the embedded beans added to the
project.

Figure 7. Project Manager Window Processor Expert View

The CPU embedded bean becomes important when porting the project to another platform. Changing the
CPU bean is the first step to porting the application to another processor.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor12

Project Configuration
6.3 Configuring Beans with the Bean Inspector and
Resolving Errors

After the embedded beans are added to the project and even before they are configured using the bean
inspector, the Processor Expert knowledge system will identify system errors/conflicts and record them in
the Processor Expert error window. Errors must be corrected before the Processor Expert code generation.

Figure 8. Processor Expert Error Window

Error identified by the Processor Expert knowledge system can include:
• Incorrect memory allocations
• Reuse of port/modules already allocated by processor expert
• Incompatible SCI baud setting based on clock configurations
• Incompatible CPU clock source / bus clock settings

6.3.1 Bean Inspector
To resolve errors and configure the embedded beans, the Processor Expert bean inspector is used. The bean
inspector is a graphical user interface (GUI) provided by Processor Expert within the CodeWarrior IDE to
configure the embedded bean properties, methods, and events. With the configurations made to the bean
inspector, Processor Expert automatically generates the initialization and other user support code.

A figure of the TimeDate bean inspector is provided in Figure 9. For the TimeDate bean, several embedded
bean property configurations are required, including:

• Indicate the software RTC timer source (Note: the RTIfree bean is used, but other timer
alternatives are possible)

• Indicate the time frequency resolution is 1000 ms
• Indicate initialization values
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 13

Project Configuration
Figure 9. Bean Inspector for the TimeDate Bean

The bean inspector also provides an interface to configure the embedded bean methods and events (see
Figure 9 dialog box tab options). Figure 10 shows the Processor Expert view of the project manger
window, which lists both method and event functions. The methods are designated with an M icon and the
events are designated with an E icon. In Figure 10, those method and event functions with a mark will
have user code generated, while thos with an mark will not. Accessing the methods and events tab view
of the bean inspector, the user can select which method and event functions are enabled for code
generation.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor14

Project Configuration
Figure 10. Project Manger Window Showing Methods and Events

6.3.2 Embedded Bean Help
Every embedded bean property, method, and event is documented. A help html page can be opened from
the Processor Expert view of the CodeWarrior project manager window. To open the help for a particular
embedded bean, right-click the embedded bean and select Help in the menu as shown in Figure 11. The
embedded bean help window also shows example code for each embedded bean.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 15

Project Configuration
Figure 11. TimeDate Embedded Bean Help HTML Page
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor16

Project Configuration
6.3.3 Summary of Embedded Bean Configuration for
Software RTC

Table 3 itemizes the minimum Processor Expert settings the user must configure for each embedded bean
for the software RTC application. Embedded beans properties, methods, and events are configured using
the bean inspector, as detailed in the discussion above.

Table 3. Embedded Bean Configuration Settings

Bean Function
MCU

resource
Bean Property Configuration Settings

CPU1 CPU CPU • Indicate the 32.768 kHz external clock
 • Indicate a bus clock frequency
 • Indicate any PRM file build options

TimeDate1 Software RTC RTI • Indicate the software RTC timer source (Note: the
RTIfree bean is used, but other timer alternatives
are possible)

 • Indicate the time frequency resolution (1000 ms)
 • Indicate initialization values for time and date

AsynchroMaster1 SCI communication SCI1 • Indicate which SCI channel is used for
communication

 • Indicate a baud rate (115,200 bps)

BitIO1 SW1 PTA4 • Allocate a pin for the I/O
 • Indicate a pin direction — Input
 • Indicate a pull resistor — Pullup

BitIO2 SW2 PTA5 • Allocate a pin for the I/O
 • Indicate a pin direction — Input
 • Indicate a pull resistor — Pullup

BitIO3 SW3 PTA6 • Allocate a pin for the I/O
 • Indicate a pin direction — Input
 • Indicate a pull resistor — Pullup

BitIO4 SW4 PTA7 • Allocate a pin for the I/O
 • Indicate a pin direction — Input
 • Indicate a pull resistor — Pullup

BitIO5 LED1 PTF0 • Allocate a pin for the I/O
 • Indicate a pin direction — Output

BitIO6 LED2 PTF1 • Allocate a pin for the I/O
 • Indicate a pin direction — Output

BitIO7 LED3 PTF2 • Allocate a pin for the I/O
 • Indicate a pin direction — Output

BitIO8 LED4 PTF3 • Allocate a pin for the I/O
 • Indicate a pin direction — Output

BitIO9 LED5 PTD0 • Allocate a pin for the I/O
 • Indicate a pin direction — Output
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 17

Project Configuration
6.4 Generate Processor Expert Code
After all the Processor Expert errors have been resolved and the embedded bean are configured correctly
using the bean inspector, the Processor Expert generate code command can be executed. No additional
code in main is required to generate the Processor Expert generated code. The generate code command is
accessible via the IDE manu bar as shown in Figure 12.

Figure 12. Processor Expert Generate Code Command

Figure 13 shows the project manager with the files tab selected. The files view shows both the Processor
Expert generated code group and the user modules code group. The files in the Processor Expert generated
code group should never be edited by the user. These are strictly maintained by Processor Expert and the
Processor Expert knowledge system.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor18

Project Configuration
Figure 13. Project Manager Window Showing Processor EXpert Generated Code

6.4.1 TmDt1_Interrupt()
The code below is an example of the code that was generate by Processor Expert. This code is called by
the periodic interrupts of the real time interrupt (RTI) module which was configured by the bean inspector
to interrupt every second. The vector table is found in vector.c in the generated code code group. The
TmDt1_Interrupt() function is found in the TmDt1.c file.
/*
** ===
** Method : TmDt1_Interrupt (bean TimeDate)
**
** Description :
** This method is internal. It is used by Processor Expert
** only.
** ===
*/
__interrupt void TmDt1_Interrupt(void)
{

Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 19

Project Configuration
 const byte * ptr; /* Pointer to ULY/LY table */

 SRTISC_RTIACK = 1; /* Reset real-time interrupt request flag */
 TotalHthH += 100; /* Software timer counter increment by timer period (10 ms) */
 if (TotalHthH >= 8640000) { /* Does the counter reach 24 hours? */
 TotalHthH -= 8640000; /* If yes then reset it by subtracting exactly 24 hours */
 AlarmFlg = FALSE; /* Reset alarm flag - alarm has not occured during these 24 hours yet */
 CntDOW++; /* Increment Sun - Sat counter */
 if (CntDOW >= 7) /* Sun - Sat counter overflow? */
 CntDOW = 0; /* Set Sun - Sat counter on Mon */
 CntDay++; /* Increment day counter */
 if (CntYear & 3) /* Is this year un-leap-one? */
 ptr = ULY; /* Set pointer to un-leap-year day table */
 else /* Is this year leap-one? */
 ptr = LY; /* Set pointer to leap-year day table */
 ptr--; /* Decrement the pointer */
 if (CntDay > ptr[CntMonth]) { /* Day counter overflow? */
 CntDay = 1; /* Set day counter on 1 */
 CntMonth++; /* Increment month counter */
 if (CntMonth > 12) { /* Month counter overflow? */
 CntMonth = 1; /* Set month counter on 1 */
 CntYear++; /* Increment year counter */
 }
 }
 }
 if (!AlarmFlg) { /* Has the alarm already been on? */
 if (TotalHthH >= AlarmHth) { /* Is the condition for alarm invocation satisfied? */
 AlarmFlg = TRUE; /* Set alarm flag - alarm has been invocated */
 TmDt1_OnAlarm(); /* Invoke user event */
 }
 }
}

/* END TmDt1. */

6.4.2 TmDt1_SetDate()
The TimeDate embedded bean also manages and generates all code needed to set and get the date and time.
The user does not have to develop code that converts a count of the RTI interrupts into more conventional
date and time variables in the format of MM/DD/YYYY and HH:MM:SS, respectively. The TimerDate
bean current implementation ensures correct representation of time and date in the range from the January
1st, 1998, until December 31st, 2099. The source code below is provided for the
TmDt1_SetDate()TimeDate function. This code is automatically generated by Processor Expert and must
not be edited.

/*
** ===
** Method : TmDt1_SetDate (bean TimeDate)
**
** Description :
** Set a new actual date.
** Parameters :
** NAME - DESCRIPTION
** Year - Years (16-bit unsigned integer)
** Month - Months (8-bit unsigned integer)
** Day - Days (8-bit unsigned integer)
** Returns :
** --- - Error code, possible codes:
** ERR_OK - OK
** ERR_SPEED - This device does not work in
** the active speed mode
** ERR_RANGE - Parameter out of range
** ===
*/
byte TmDt1_SetDate(word Year,byte Month,byte Day)
{

Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor20

Project Configuration
 word tY = 1998; /* Year counter, starting with 1998 */
 byte tM = 1; /* Month counter, starting with January */
 byte tD = 1; /* Day counter, starting with 1 */
 byte tW = 4; /* Sun - Sat counter, starting with Thu */
 const byte * ptr; /* Pointer to ULY/LY table */

 if ((Year < 1998) || (Year > 2099) || (Month > 12) || (Month == 0) || (Day > 31) || (Day == 0)) /* Test correctness of
given parameters */
 return ERR_RANGE; /* If not correct then error */
 if (tY & 3) /* Is given year un-leap-one? */
 ptr = ULY; /* Set pointer to un-leap-year day table */
 else /* Is given year leap-one? */
 ptr = LY; /* Set pointer to leap-year day table */
 ptr--; /* Decrement pointer */
 for (;;) {
 if ((Year == tY) && (Month == tM)) { /* Is year and month equal with given parameters? */
 if (ptr[tM] < Day) /* Does the obtained number of days exceed number of days in the appropriate month
& year? */
 return ERR_RANGE; /* If yes (incorrect date inserted) then error */
 if (tD == Day) /* Does the day match the given one? */
 break; /* If yes then date inserted correctly */
 }
 tW++; /* Increment Sun - Sat counter */
 if (tW >= 7) /* Sun - Sat counter overflow? */
 tW = 0; /* Set Sun - Sat counter on Mon */
 tD++; /* Increment day counter */
 if (tD > ptr[tM]) { /* Day counter overflow? */
 tD = 1; /* Set day counter on 1 */
 tM++; /* Increment month counter */
 if (tM > 12) { /* Month counter overflow? */
 tM = 1; /* Set month counter on 1 */
 tY++; /* Increment year counter */
 if (tY & 3) /* Is this year un-leap-one? */
 ptr = ULY; /* Set pointer to un-leap-year day table */
 else /* Is this year leap-one? */
 ptr = LY; /* Set pointer to leap-year day table */
 ptr--; /* Decrement pointer */
 }
 }
 }
 EnterCritical(); /* Save the PS register */
 CntDOW = tW; /* Set Sun - Sat counter to calculated value of day in a week */
 CntDay = tD; /* Set day counter to the given value */
 CntMonth = tM; /* Set month counter to the given value */
 CntYear = tY; /* Set year counter to the given value */
 ExitCritical(); /* Restore the PS register */
 return ERR_OK; /* OK */
}

6.5 Providing a Main Program
For any application, the user must add code to main() and using Processor Expert does not change this
requirement. What does change is that the user can start writing the application code because the MCU
initialization and peripheral driver codes have been generated by Processor Expert. The MCU initialization
code generated by Processor Expert is called by the PE_low_level_init() function. The function is found
in the Cpu.c file in the generated code code group. Figure 14 provides a partial listing of main() for the
software RTC application.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 21

Project Configuration
Figure 14. Partial Listing of main() for the Software RTC Application

The complete source code for main() and the complete project is provided as an attachment to this
application note for reference, so only an overview of the application code is provided here. The overview
will include a summary of the software RTC application functionality and a listing of the Processor Expert
functions used.

6.5.1 Software RTC Application Details
The application primarily demonstrates a software RTC, but there is also additional functionality to
provide serial communication, button/switch functions, and LED operation.

The time and date calculations are completely managed by the TimeDate embedded bean’s properties,
methods, and events. For the application to get or configure the date or time, it must call the functions of
the TimeDate API. In the application, the time and date results are transmitted via the SCI so that they can
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor22

Project Configuration
be displayed via a terminal program in Windows. The MCU uses an SCI baud rate of 115,200 bps that was
specified in the AsynchroMaster bean inspector.

The terminal program is used also to capture user input so the time and date can be changed. The user input
is received by the MCU SCI peripheral and a command processor is used to determine and execute user
time and date changes. Main() loops forever, collecting characters from the SCI into a command buffer
and does not process the user command until a carriage return character is received.

The application also uses the LED1-5 and SW1-4 on the GB60 DEMO board. SW1 and SW2 force the
current time and date to the SCI. SW3 and SW4 provide control of LEDs 1 through 5. Figure 15 shows a
simplified flow chart for main().

Figure 15. Main Flowchart

Parse SCI
string bugger

INIT All

Is SCI
input “\r”

?

YES

NO

Is command
valid

?

YES

NO

Execute
command

Display
current date

Has SW1
been pressed

?

YES

NO

Display
current time

Has SW2
been pressed

?

YES

NO

LED
demo 1

Has SW3
been pressed

?

YES

NO

LED
demo 2

Has SW4
been pressed

?

YES

NO

Collect SCI data
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 23

Project Configuration
6.5.2 Processor Expert Functions Used
The table below itemizes the Processor Expert functions used in this software RTC application. The table
also provides an overview of each function.

Table 4. Overview of Selected Processor Expert Functions

Embedded Bean
Generate
Code File

Functions Description for Bean Help

Cpu1 Cpu.c PE_low_level_Init Configures the peripheral base on input to the bean
inspector. Calls init function of other embedded beans

TimeDate1 TmDt1.c TmDt1_SetDate Sets a new date

TmDt1_SetTime Sets a new time

TmDt1_SetAlarm SetAlarm — Sets a new time of alarm. (only time, not date —
alarm event OnAlarm is called every 24 hours). Setting time
of alarm out of 24 hour interval disables its function.

TmDt1_GetDate Gets the current date

TmDt1_GetTime Gets the current time

AsynchroMaster1 AS1.c AS1_SendChar SendChar — Send one character to the channel. If the bean
is temporarily disabled (Disable method) SendChar method
stores data only into output buffer. In case of zero output
buffer size, only one character can be stored. Enabling the
bean (Enable method) starts transmission of stored data.
This method is available only if the transmitter property is
enabled.

AS1_RecvChar RecvChar — If any data received, this method returns one
character, otherwise it returns error code (it does not wait for
data). This method is enabled only if the receiver property is
enabled.

BitIO1to4 BitN.c BitN_GetVal GetVal — Returns the value of the Input/Output bean. If the
direction is input, then the input value of the pin is read and
returned. If the direction is output, then the last written value
is returned.

BitIO5to9 BitN.c BitN_GetVal GetVal — Returns the value of the Input/Output bean. If the
direction is input, then the input value of the pin is read and
returned. If the direction is output, then the last written value
is returned.

BitN_PutVal PutVal — Specified value is passed to the Input/Output bean.
If the direction is input, saves the value to a memory or a
register, this value will be written to the pin after switching to
the output mode (using SetDir(TRUE)). If the direction is
output, it writes the value to the pin. (Method is available only
if the direction = output or input/output).
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor24

Project Configuration
6.6 Programming the MCU Target
After the main code is added, the project code can be downloaded into the target MCU Flash memory. In
this project, the USB multilink pod was specified as the programmer/debugger target (e.g., P&E ICD).
Figure 16 shows pressing the debug icon will initiate the programming of the target MCU Flash memory.

Figure 16. Code Warrior IDE Debug Icon
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 25

Project Configuration
Figure 17 illustrates the HiWave programmer/debugger program that opens for Flash programming. The
RUN icon executes the software RTC application code.

Figure 17. CodeWarrior Programmer/Debugger Interface
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor26

Conclusion
6.6.1 Demonstrating the Software RTC Application
As discussed above, a terminal program is used to capture the MCU’s SCI output at baud rate of
115,200 bps. The firmware main() program updates the time display automatically every minute, yet it will
provide an automatic display only of the current date when the day field changes. The date and time can
be forced to the display by pressing SW1 and SW2 buttons (SW3 and SW4 buttons control LED 1
through 5). Figure 18 shows the software RTC date and time output to a terminal program.

Figure 18. Time Display via the Serial Port

The terminal program is also used to update the time, date, and alarm information using the firmware
supported commands listed below. The syntax for these commands is also provided.

• settime (syntax: settime HH:MM:SS)
• setdate (syntax: setdate DD:MM:YYYY)
• setalarm (syntax: setalarm HH:MM:SS)

7 Conclusion
Using Processor Expert and embedded beans can facilitate faster application development. There may be,
however, trade-offs.
Using Processor Expert to Develop a Software Real-Time Clock, Rev. 1

Freescale Semiconductor 27

• Instead of register fields, the developer must learn and understand the embedded bean API
(properties, methods, and event functions)

• The embedded bean API may not meet the application requirements, but, using embedded bean
creation and inheritance, one can possibly mitigate this issue

• The user loses direct register control/interaction
• The Processor Expert generated code may be completing tasks in a pre-defined sequence and may

reduce flexibility
• Generated code is controlled by the IDE and must not be modified.
• Using Processor Expert may require additional licensing to gain access to all embedded beans and

the embedded bean creation functionality

Using Processor Expert shortens development effort and time. With the Processor Expert generated code,
less time was required to develop initialization and peripheral driver code. In fact, to configure the
peripheral, we did not even need to know what MCU registers were involved or how to set them up.
AN2949
Rev. 1, 1/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

	1 Introduction
	2 Processor Expert and Embedded Beans
	2.1 Processor Expert Benefits
	2.2 What is an Embedded Bean?
	2.3 Bean Creation and Inheritance

	3 MC9S08GB60 and the M68DEMO908GB60
	3.1 M68DEMO908GB60 Features
	3.2 M68DEMO908GB60 Configuration

	4 RTC (Real Time Clock)
	5 Environment Setup
	6 Project Configuration
	6.1 Starting a Project with Processor Expert
	6.2 Adding Embedded Beans to a Project
	6.2.1 Project Embedded Bean Summary
	6.2.2 CPU Bean and Project Manager Window

	6.3 Configuring Beans with the Bean Inspector and Resolving Errors
	6.3.1 Bean Inspector
	6.3.2 Embedded Bean Help
	6.3.3 Summary of Embedded Bean Configuration for Software RTC

	6.4 Generate Processor Expert Code
	6.4.1 TmDt1_Interrupt()
	6.4.2 TmDt1_SetDate()

	6.5 Providing a Main Program
	6.5.1 Software RTC Application Details
	6.5.2 Processor Expert Functions Used

	6.6 Programming the MCU Target
	6.6.1 Demonstrating the Software RTC Application

	7 Conclusion
	Using Processor Expert to Develop a Software Real-Time Clock

