
Freescale Semiconductor
Application Note

AN3040
Rev. 0, 08/2006

Table of Contents

Introduction . 1
1.1 Overview . 1
1.2 Features. 2
1.3 References . 2
1.4 Acronyms and Abbreviations 2
EEPROM Emulation Scheme 3

2.1 System Architecture. 3
2.2 EEPROM Emulation Software Layout 3
2.3 EEPROM Emulation Memory Layout 6
2.4 EEPROM Emulation Operations 8
2.5 Limitation of COP Support 10
2.6 Notes and Limitations 10
Preparation and Running Environment. 11

3.1 Preparation . 11
3.2 Use EEPROM Emulation Driver 12
EEPROM Emulation Driver. 13

4.1 Function Introduction 13
4.2 Function Calling Relationship 14
4.3 Global Parameters and Macros 15
4.4 Function Return Code 17
4.5 High Level Functions (User Level Functions)18
4.6 Middle Level Functions 27
4.7 Low Level Functions 37

Appendix A: Performance Data
A.1 Code Size and Stack Usage 44

A.2 Read / Write Times 44

EEPROM Emulation Driver for
M68HC908 Microcontrollers
by: Chen He

Technology Solution Organization, Libraries & Memories
1 Introduction

1.1 Overview
Electrically erasable, programmable, read-only memory
(EEPROM), which can be byte- or word-programmed
and erased, is often used in automotive electronic
control units (ECUs). This flexibility for program and
erase operations makes it suitable for data storage of
application variables that must be maintained when
power is removed and need to be updated individually
during run-time. For the devices without EEPROM
memory, the page-erasable Flash memory can be used to
emulate the EEPROM through EEPROM emulation
software.

The EEPROM emulation driver for the M68HC908
implements the fixed-length data record scheme on
0.5um SGF Flash. The EEPROM functionalities to be
emulated include the following: organizing data records,
initializing and de-initializing EEPROM, reporting
EEPROM status, and reading, writing, and deleting data
records. The demo code shows how to use the EEPROM
emulation driver.

1

2

3

4

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Introduction
1.2 Features
The EEPROM emulation driver for the M68HC908 provides the following features:

• Implements the fixed-length record scheme with two Flash sector clusters.
• Hierarchical design supports standalone/synchronous applications.
• All driver functions can run directly from Flash, except that the low-level, high-voltage

(program/erase) functions have to run from RAM, to minimize RAM usage.
• Supports computer operating properly (COP) service every 240us @ a 8-MHz bus clock.
• Assembly source code release.
• C calling convention compliant.
• Ready-to-use demo illustrates the usage of the driver.

1.3 References
The following references were used to write this document:

1. AN2302r1: “EEPROM Emulation for the MC9S12C32”
2. AN2183: “Using FLASH as EEPROM on the MC68HC908GP32”
3. MPC5500EEWP: “EEPROM Emulation with MPC5500 Family Microcontrollers”
4. CPU08 Central Processor Unit Reference Manual
5. “MC68HC08JL3/H Technical Data,” Rev. 4
6. “MC68HC08GP32/H Technical Data,” Rev. 6, 08/2002
7. HC908 SGF NVM Standard Software Driver User’s Manual, V1.2

1.4 Acronyms and Abbreviations
The following references are used in this document:

• EE—EEPROM
• EED—EEPROM emulation driver
• SSD—Standard software driver
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor2

EEPROM Emulation Scheme
2 EEPROM Emulation Scheme

2.1 System Architecture

Figure 1 EEPROM Emulation Driver System Architecture

2.2 EEPROM Emulation Software Layout

2.2.1 EEPROM Emulation Configuration Data
The EEPROM emulation driver uses a set of global data. This global data is classified into the following
categories:

• User interface data
• Active cluster configuration

EEPROM
Emulation
Driver

High-level APIs

Middle-level APIs

Low-level SSD APIs

User ApplicationUser Data
EED
Configuration
Data

Software
Layout

EEPROM
Memory
Layout

Cluster Status

Erase Cycles

Blanked

Alternative Cluster Active Cluster

One
Data
Record

Cluster
Info.

Cluster Status

Erase Cycles

Data Record 1 Status

Data Record 1 ID

Data 1

…

Data Record n

Blanked
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 3

EEPROM Emulation Scheme
• Global data used for low-level SSD functions
• Internally used variables

Considering the code size constraint, all global data is located in the direct page of M68HC908 parts
(address from 0x00 to 0xFF), so that direct instructions can be used. The addresses of this global data can
be varied within the direct page at compile time, but they cannot be moved to other locations during the
run time (not position-independent data).

The total size of EEPROM configuration data is 31 bytes. Figure 2 depicts the memory layout of the
global parameters.

Figure 2 Memory Layout of EEPROM Emulation Configuration Data

Before a user’s application calls the high-level EEPROM emulation driver, the user interface global data
has to be provided by the user. The active cluster configuration data is used by the EED to record the
active cluster information. The EED driver calls low-level SSD functions to implement Flash operations.
The EED sets the SSD parameter data before calling SSD functions. The internal used variables are used
by the EED driver internally.

All of the above global parameters are defined in a parameter section named EMUParaSec in
EED_Para.asm. For a detailed description of each parameter, please refer to Section 4.3, “Global
Parameters and Macros.”

Category MSB LSB Size

User Interface
Global Data

recID 8 Bit

erasingCycles 16 Bit

failedAddress 16 Bit

source 16 Bit

Active Cluster
Configuration Data

activeIndex 8 Bit

emuStartAddr 16 Bit

emuEndAddr 16 Bit

emuBlank 16 Bit

SSD Parameter
Data

CLOCKSCALAR 16 Bit

STARTADDR 16 Bit

ENDADDR 16 Bit

BUFFER 16 Bit

FLASHCR 16 Bit

FLASHPR 16 Bit

Internal Used
Variables

hvType 8 Bit

hvPosition 16 Bit

nextRecID 8 Bit

emuBuffer 16 Bit
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor4

EEPROM Emulation Scheme
2.2.2 User’s Data Buffer
The RAM resource of M68HC908 parts is limited. Some parts only have 128 bytes of RAM. To satisfy
the part with the least RAM, the RAM memory layout should be arranged carefully. The RAM was used
mainly by the following items:

• Global parameters data
• Low-level, high-voltage functions, like FlashEraseCOP and FlashProgram
• Stack consumption in function and function calling chain

The user stack will grow from the higher address to the lower address, so the stack should be allocated at
as high an address as possible. Figure 3 depicts an example of the RAM memory layout for the 128-byte
MC68HC908JL3 part with a RAM range of 0x80~0xFF.

Figure 3 RAM Memory Layout Example for 128-byte Part

For 128-byte parts, 2 bytes of user buffer is reserved for the user, from 0x9F to 0xA0. Note that “Others”
in Figure 3 is for a user employing Metrowerks CodeWarrior to debug into the low-level SSD functions;
this 11-byte region will be occupied by CodeWarrior debugger. Otherwise, this region can be reserved as
user buffer as well. The user can also adopt other memory layouts—Figure 3 is just one example. For a
part with more RAM, the user can reserve more RAM for user data buffer.

Global Parameter Data
(31 Bytes)

User Data Buffer (2 bytes)

Stack for EED function and
function Calling

High Voltage SSD
(68 Bytes)

Stack for High Level
Function Calling

Others*

0x80

0x9F

0xBA

0xFF

0xFD

0xA1

0x9E

0xAC
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 5

EEPROM Emulation Scheme
2.2.3 EEPROM Emulation Driver
The EEPROM emulation driver has three levels of API: high, middle, and low:

• High level (user level) APIs provide the user’s interface and program flow controlling.
• Middle level APIs provide the relative independent task unit;.
• Low level APIs use the standard software driver to provides the fundamental Flash operations.

The high level (user level) APIs provide the following EEPROM operations:
• FSL_InitEeprom—Initializes the Flash memory used for EEPROM emulation
• FSL_ReadEeprom—Reads the specific data record from emulated EEPROM
• FSL_WriteEeprom—Writes a data record to emulated EEPROM
• FSL_DeleteRecord—Deletes a data record from emulated EEPRO
• FSL_ReportEepromStatus—Reports the status of the emulated EEPROM
• FSL_DeinitEeprom—De-initializes the Flash memory used for EEPROM emulation

2.3 EEPROM Emulation Memory Layout

2.3.1 EEPROM Cluster

Figure 4 EEPROM Cluster

The EEPROM emulation driver adopts the M68HC908 family’s Flash to emulate the EEPROM. Two
clusters are needed for EEPROM emulation: active and alternative. Each cluster contains one or more
contiguous erasable pages. These two clusters cannot overlap each other, but they do not need to be
contiguous. They should contain the same number of pages, and this number is user configurable.

Erasable Page n

Erasable Page n+1

…

Erasable Page n+k–1

Erasable Page m

…

Erasable Page m+k–1
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor6

EEPROM Emulation Scheme
2.3.2 EEPROM Data Organization

Figure 5 EEPROM Cluster Memory Layout

Each emulation cluster contains the following:
• Cluster status field

Stores the cluster status, whose values are selected properly, so that it can be programmed several
times

• Erasing cycles
Stores the cluster erasing cycles because the EEPROM emulation is set up; will be accumulated
after each erasure

• Data records field
One data record has three fields:
— Data record status field: the data record status
— Data record ID: the data record identifier
— Data: user’s raw data

• Blank field
Free space for storing new data records

There should only be one cluster marked as active, and the other should be marked as alternative. If two
clusters are marked as active, the cluster with more blank space will be the final active cluster.

Because the EEPROM emulation driver adopts the fixed length data record, each record will have the
same data length. The next data record location can be made by the current record start address and fixed
data length.

Cluster Status

Erase Cycles

Status
ID 0
Data 0

Status1

NOTES:
1 The old value of data record 1

ID 1
Data 1

Status
ID 2
Data 2

Status2

2 The new value of data record 1

ID 1
Data 1 (updated)

…

Blank
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 7

EEPROM Emulation Scheme
The data record cannot be updated directly on the same location. Instead, a new record with the new
value will be written to the EEPROM, and the read routine will check the latest valid one as the final
value of specific data.

2.4 EEPROM Emulation Operations

2.4.1 Initialize EEPROM
Before using EEPROM, it needs to be initialized. The initialization deals with two kinds of states:

• Using EEPROM for the first time
The EED formats the two clusters, then assigns one as active and the other as alternative.

• Continuing to use EEPROM
The EED determines which cluster is active and initializes the alternative one.
When there are two clusters marked as active (power down during swapping), the initialization
routine will scan through the two clusters and determine the free space size of each cluster. The one
with more free space becomes the final active cluster.

2.4.2 Write EEPROM Data
Because the SGF Flash memory cell cannot be erased individually, the EED must write a new data record
with the same data ID and updated value from the EEPROM blank area when the data needs updating.

After updating several times, the active cluster may not have enough free space to write a new data
record. It has to copy all the latest data records to the alternative cluster to clean up the EEPROM. This
procedure is called ‘swapping’. Afterwards, the alternative cluster will become the new active cluster,
and the old active cluster will become the new alternative cluster.

During cluster swapping, there are several cluster statuses and swapping stages to recover from an
accident:

Cluster statuses:
• CLUSTER_STATUS_ERASED = $FFFF

The cluster is fully erased and not initialized as the alternative cluster.
• CLUSTER_STATUS_BLANKED = $0FFF

The cluster is initialized as the alternative cluster and ready for swapping.
• CLUSTER_STATUS_STARTED = $00FF

The latest data records are copied from the active cluster to this cluster, but the data record cannot
be accessed through this cluster.

• CLUSTER_STATUS_ACTIVE = $000F
All the latest data records are copied completely, and the data accessing can target this cluster.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor8

EEPROM Emulation Scheme
Swapping stages: (assuming cluster A is the active cluster and cluster B is the alternative cluster)
• Cluster A is CLUSTER_STATUS_ACTIVE and cluster B is CLUSTER_STATUS_BLANKED.

This is the initial state of cluster swapping.
• Cluster A is CLUSTER_STATUS_ACTIVE and cluster B is CLUSTER_STATUS_STARTED.

The data record copying is in progress. If swapping fails in this stage, all the data record accesses
can also direct to the original active cluster, cluster A. Cluster B should be re-initialized as the
alternative one (CLUSTER_STATUS_BLANKED state) and perform the swapping again.

• Cluster A is CLUSTER_STATUS_ACTIVE and cluster B is also CLUSTER_STATUS_ACTIVE.
All the latest data records are copied completely and the data accessing can target cluster B. If
swapping fails in this stage, the user only needs to initialize cluster A as the alternative cluster
(CLUSTER_STATUS_BLANKED state).

• Cluster A is CLUSTER_STATUS_ERASED and cluster B is CLUSTER_STATUS_ACTIVE.
Cluster A is fully erased but not ready for emulation. It is needed to continue initializing cluster A
as the alternative cluster (CLUSTER_STATUS_BLANKED state).

• Cluster A is CLUSTER_STATUS_BLANKED and cluster B is CLUSTER_STATUS_ACTIVE.
This is the final state of cluster swapping.

2.4.3 Read EEPROM Data
There will be several data records in EEPROM with same data ID (because of data updating), so the
reading routine should identify the latest copy of the data record by scanning the entire active cluster
from the first data record to the blank region.

Each data record will have a status field to identify the state of this record:
• RECORD_STATUS_ERASED = $FF; no data record
• RECORD_STATUS_STARTED = $CF; data record is invalid and record ID and record data may

be partially programmed.
• RECORD_STATUS_COMPLETED = $0F; data record is valid.
• RECORD_STATUS_DELETED = $0C; data record has been deleted

If the data record state is RECORD_STATUS_DELETED, the data record is not physically removed in
Flash. This record is invalid now, so skip this record by its fixed length.

If the data record state is RECORD_STATUS_STARTED or another value that cannot be recognized, this
record is partially programmed or corrupted. Skip the fixed length data record to get the next data record
start address.

2.4.4 Delete EEPROM Data
If the data is not needed, it can be deleted from the emulated EEPROM. The EED does not physically
remove this record at the time a user wants to delete it. Instead, the EED will only change the record’s
state to RECORD_STATUS_DELETED so that it is regarded as unnecessary data and will be removed
from emulated EEPROM in cluster swapping. This method can shorten the deleting time.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 9

EEPROM Emulation Scheme
However, the deleted data record can be re-written into the EEPROM. The read routine will determine
the latest data record.

2.4.5 Report EEPROM Status
The cluster erasing cycles will be fetched from the cluster and it reflects the erasure times since the
EEPROM has been setup. It is only an approximated number and will be set to 0 when first time using
EEPROM.

2.4.6 De-initialize EEPROM
If the emulated EEPROM is not required, the Flash memory for EEPROM emulation should be released.
The de-initialization routine will erase all the Flash memory used for emulation.

2.5 Limitation of COP Support
As mentioned before, the EEPROM emulation driver for the M68HC908 can service COP during the
execution of driver. However the EEPROM emulation driver can only use software logic, instead of the
hardware timer, to control the frequency of servicing COP. The time scale of this software logic depends
on the bus clock frequency. On the other hand, COP runs at the oscillator clock (OSC) directly. So there
might be some combinations of OSC clock and bus clock for which the COP service logic would time
out. In order to avoid COP timing out, the user should ensure setting the OSC and bus clocks according to
the following formula:

OSC Clock <= 4 * Bus Clock Eqn. 1

2.6 Notes and Limitations
When using the EED, note the following items:

• It is not suggested to use the middle level APIs of the EED directly.
• The Flash module protections are not changed by EED functions, even if it is required to perform

an erase or program operation. It is up to the user to unprotect the Flash region to allow these
functions to work.

• All the input parameters for the EED are defined as global variables, which should reside in the
direct page of RAM (Z_PAGE, address from 0x00 to 0xFF).

• The EED service COP every 240us @ a 8-MHz bus clock.
• Report EEPROM status routine will return the erasing cycles of the cluster. However, this number

might not be accurate since it will be reset to 0 when the cluster status is invalid due to any
unexpected failure.

• EEPROM emulation driver cannot be called in any interrupt service routine.
• Interrupt vectors and service routines cannot reside in Flash because Flash is not accessible during

EERPOM emulation operations.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor10

Preparation and Running Environment
• It is strongly recommended not to program or erase the same Flash location while using the EED
to operate it.

• The EED is in assembly source code release, so the compiling optimization options do not impact
the correctness of the EED.

3 Preparation and Running Environment

3.1 Preparation

3.1.1 EEPROM Emulation Driver Configuration
The EEPROM emulation driver needs the user to provide following information:

• Flash erase page size
• User raw data length in a data record
• Start addresses of the two Flash pages clusters used for emulation
• The number of Flash pages used for each page cluster
• Bus clock
• Addresses of the Flash control and Flash block protection registers

3.1.2 Macros
Before using the EEPROM emulation driver, the following macros should be set properly to meet a
specific need:

• EED_ERASE_PAGE_SIZE
The Flash modules embedded in the M68HC908 series have two sizes of Flash page for erasing:
28 and 64 bytes. Before using the EED Flash driver on a M68HC908 part, it is very important to
set the correct size of Flash erase page. The macro EED_ERASE_PAGE_SIZE is used to control
the size of Flash page:
The default setting is:
EED_ERASE_PAGE_SIZE: EQU $80

• USER_DATA_LENGTH
The user data length in a fixed length record. The user data length is configurable via this macro
before compilation. Its valid value range is [1, 0xFD]. Otherwise, a compilation error message
“User data length is out of range [1, 0xFD]!” will be reported.
The default setting is:
USER_DATA_LENGTH: EQU $2

• CLUSTER_0_START and CLUSTER_1_START
The starting address for two clusters. These two values should be page alignment.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 11

Preparation and Running Environment
The default settings are:
CLUSTER_0_START: EQU $C000
CLUSTER_1_START: EQU $C100

• PAGES_PER_CLUSTER
The number of pages in each cluster. This value should not be 0. The two cluster ranges decided
by macros of CLUSTER_0_START, CLUSTER_1_START, and PAGES_PER_CLUSTER should
not be overlapped. Otherwise, a compilation error message “Cluster configuration is incorrect!”
will be reported.
The default settings are:

• PAGES_PER_CLUSTER: EQU $2
Two macros for cluster ending address CLUSTER_0_END and CLUSTER_1_END were derived
based on CLUSTER_0_START, CLUSTER_1_START and PAGES_PER_CLUSTER.

• BUS_CLOCK
The bus clock in Hz, BUS_CLOCK, was defined in “SSD_Flash.inc”. User should configure this
macro with appropriate value accordingly before using EEPROM emulation driver. The default
value is 2.4576 MHz:
BUS_CLOCK: EQU 2457600
This macro was used to set the global variable of CLOCKSCALAR. Please refer to Section 4.3.3,
“SSD Global Parameters” for more details.

• FLCR and FLBPR
The macros for the addresses of the Flash control and Flash block protection registers were defined
in EED_Flash.inc. The two default values for FLCR and FLBPR were $FE08 and $FE09
individually.
FLCR EQU $FE08
FLBPR EQU $FE09
These two macros were used to set the SSD global variables FLASHCR and FLASHPR
respectively before calling SSD functions. Please refer to Section 4.3.3, “SSD Global Parameters
for more details.

3.2 Use EEPROM Emulation Driver
The EEPROM emulation driver is designed to support standalone applications only.

This type of applications calls the EEPROM emulation driver routines and waits until the EEPROM
operation complete.

The EEPROM emulation driver should be run in a synchronous environment. It cannot be interrupted
until it finishes execution. Please refer to the demo for details.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor12

EEPROM Emulation Driver
4 EEPROM Emulation Driver

4.1 Function Introduction
The EED provides three hierarchies of application programming interfaces (APIs): high level, middle
level, and low level.

Normally the user's application will simply call the high-level APIs directly. If finer scheduling
granularity is required, middle-level or low-level APIs can be called in the application.

An example of how to use the APIs can be found in the demos in the release package of EEPROM
emulation driver for HC908.

• High level APIs (user level APIs):
These APIs provide direct operations on emulated EEPROM such as initializing EEPROM,
reading record, writing record, deleting data record, reporting EEPROM status, and
de-initializing EEPROM.

— FSL_InitEeprom—Initializes the Flash memory used for EEPROM emulation
— FSL_ReadEeprom—Reads the specific data record from emulated EEPROM
— FSL_WriteEeprom—Writes a data record to emulated EEPROM
— FSL_DeleteRecord—Deletes a data record from emulated EEPROM
— FSL_ReportEepromStatus—Reports the status of the emulated EEPROM
— FSL_DeinitEeprom—De-initializes the Flash memory used for EEPROM emulation

• Middle level APIs:
These APIs provide some individual functionality to support the high level APIs on operating,
emulated EEPROM.

— FSL_Erase—Erases the continuous Flash pages
— FSL_Program—Programs the data into Flash memory
— FSL_CopyRecord—Copies one data record to the Flash memory
— FSL_InitCluster—Initializes one cluster, includes erasing this cluster, blank check, and

updating its status to CLUSTER_STATUS_BLANKED
— FSL_SwapCluster—Copies the latest data records from the active cluster to the alternative

cluster while the active cluster is full
— FSL_SearchRecord—Searches the required data record ID in the cluster

• Low level APIs:
These APIs are basic Flash operations and composed of a subset of the standard software driver
for the M68HC908.

— FlashEraseCOP—Erases a single Flash logical page with COP service
— BlankCheck—Checks if a specific Flash range is erased (0xFFs)
— FlashProgram—Programs data into data Flash
— ProgramVerify—Verifies that the programmed data is same as the source data
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 13

EEPROM Emulation Driver
4.2 Function Calling Relationship
Table 4-1 shows the calling relationship among the three hierarchies of APIs.

Table 1. EEPROM Emulation Driver Calling Relationship

API
Hierarchies

Function name Caller functions Functions to be called

High Level
APIs

FSL_InitEeprom User’s applications FSL_InitCluster (middle)
FSL_Program (middle)
FSL_SearchRecord (middle)

FSL_ReadEeprom User’s applications FSL_SearchRecord (middle)

FSL_WriteEeprom User’s applications FSL_SwapCluster (middle)
FSL_CopyRecord (middle)

FSL_DeleteRecord User’s applications FSL_SearchRecord (middle)
FSL_Program (middle)

FSL_ReportEepromStatus User’s applications FSL_SearchRecord (middle)

FSL_DeinitEeprom User’s applications FSL_Erase (middle)

Middle Level
APIs

FSL_Erase FSL_DeinitEeprom (high)
FSL_InitCluster (middle)

FlashEraseCOP (low)
BlankCheck (low)

FSL_Program FSL_InitEeprom (high)
FSL_DeleteRecord (high)
FSL_SwapCluster (middle)
FSL_CopyRecord (middle)
FSL_InitCluster (middle)

FlashProgram (low)
ProgramVerify (low)

FSL_CopyRecord FSL_WriteEeprom (high)
FSL_SwapCluster (middle)

FSL_Program (middle)

FSL_InitCluster FSL_InitEeprom (high)
FSL_SwapCluster (middle)

FSL_Erase (middle)
FSL_Program (middle)

FSL_SwapCluster FSL_WriteEeprom (high) FSL_Program (middle)
FSL_SearchRecord (middle)
FSL_CopyRecord (middle)
FSL_InitCluster (middle)

FSL_SearchRecord FSL_InitEeprom (high)
FSL_ReadEeprom (high)
FSL_DeleteRecord (high)
FSL_ReportEepromStatus
(high)
FSL_SwapCluster (middle)

-

Low Level
APIs

FlashEraseCOP FSL_Erase (middle) -

BlankCheck FSL_Erase (middle) -

FlashProgram FSL_Program (middle) -

ProgramVerify FSL_Program (middle) -
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor14

EEPROM Emulation Driver
4.3 Global Parameters and Macros

4.3.1 EEPROM Emulation Interface Global Parameters
The EEPROM emulation interface global parameters are input or output arguments for some high level
EED functions.

4.3.2 Active Cluster Global Parameters
The cluster global parameters provide the following:

• Index of the active cluster
• Starting address of the active cluster
• End address of the active cluster
• Start address of the free Flash memory available for new records in the active cluster

Table 2. EEPROM Emulation Interface Global Parameters Definitions

Name Size I/O Type Function Used Description

recID 1 byte Input FSL_ReadEeprom
FSL_WriteEeprom
FSL_DeleteRecord

The identifier of the data record to be
operated.

erasingCycles 2 bytes Output FSL_ReportEepromStatus The erasing cycles of the active
cluster.

failedAddress 2 bytes Output FSL_ReportEepromStatus The starting address of the first
invalid record.

source 2 bytes Input FSL_WriteEeprom The starting address of the data for
write or read.

Output FSL_ReadEeprom

Table 3. Active Cluster Global Parameters Definitions

Name Size Description

activeIndex 1 byte Indicating which cluster is active.

emuStartAddr 2 bytes Start address of the cluster, included.

emuEndAddr 2 bytes End address of the cluster, included.

emuBlank 2 bytes Start address of the free Flash memory available for new
records in active cluster.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 15

EEPROM Emulation Driver
4.3.3 SSD Global Parameters
The SSD global parameters are for the SGF SSD Flash driver. They should be set properly before calling
SSD functions.

For details about the SSD global parameters, please refer to the SGF NVM SSD for HC908 User’s
Manual.

4.3.4 Internal Used Global Parameters
These parameters are internal used by the EEPROM emulation driver. To save the code size, they are also
defined as global variables located in the direct page.

Table 4. SSD Configuration Definitions

Name Size Description

CLOCKSCALAR 1 byte The scaling factor based on the bus clock used for Flash
operations.1

NOTES:
1 CLOCKSCALAR is used to manually control the delay timings for Flash operation via software
instructions. It equals 8 times the value of the bus clock in MHz and then rounded down to the
nearest integer. The formula is shown as following:
CLOCKSCALAR = INT [Bus Clock (MHz) * 8]
For example, if the bus clock is 2.45 MHz, 8 times of the bus clock in MHz is 19.6, so that
CLOCKSCALAR should be set to 19.
BUS_CLOCK, the bus clock in Hz was defined in “SSD_Flash.inc”. Then the macro of
NVM_CLOCK_SCALAR, also defined in “SSD_Flash.inc”, can be used to set the global variable
of CLOCKSCALAR.
NVM_CLOCK_SCALAR: EQU ((BUS_CLOCK * 8) / 1000000)
The following assembly instruction shows how to use the above macro to set the value of
CLOCKSCALAR.
MOV #NVM_CLOCK_SCALAR, CLOCKSCALAR

STARTADDR 2 bytes The start address of the Flash area to be operated.

ENDADDR 2 bytes The end address of the Flash area to be operated.

BUFFER 2 bytes The start address of the source data buffer used for
programming and verification.

FLASHCR 2 bytes Address of the Flash control register.2

2 The two SSD global parameters, FLASHCR and FLASHPR, should be set correctly before
calling SSD functions. Two macros, FLCR and FLBPR, were defined in EED_Flash.inc. The
following assembly instructions show how to use the above macros to set the value of FLASHCR
and FLASHPR.
LDHX #FLCR
STHX FLASHCR ; set Flash control register address
LDHX #FLBPR
STHX FLASHPR ; set Flash block protection register address

FLASHPR 2 bytes Address of the Flash protection register. 2
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor16

EEPROM Emulation Driver
4.3.5 Macros

4.3.5.1 Record Length Configuration
The macro USER_DATA_LENGTH defines the user data length of a fixed length record in byte. It is
defined in head file EED_Flash.inc.

The default macro value is set to 2. The user may modify it according to their special needs, provided that
the value doesn’t exceed the range [1, 0xFD]. Otherwise, an invalid value will lead to the compilation
error message, “User data length is out of range [1, 0xFD]!”.

Some other macros derived from USER_DATA_LENGTH are listed below.

4.4 Function Return Code

Table 5. Internal Used Global Parameters Definitions

Name Size Description

hvType 1 byte The type of High Voltage operation in stack. 0x5A: FlashProgram,
0xA5: FlashEraseCOP.

hvPosition 2 bytes The RAM location of High Voltage operation locates.

nextRecID 1 byte To save the valid record ID for the next parsing of the cluster. During
cluster swapping, this parameter can skip the non-existing record IDs.

emuBuffer 2 bytes 2-byte internal buffer, used to hold the data for programming or save
the location of latest record.

Table 6. Macros Derived From USER_DATA_LENGTH

Name Description

MIN_DATA_LENGTH The minimum length of user data in a record.

MAX_DATA_LENGTH The maximum length of user data in a record.

RECORD_LENGTH The total record length. It is composed of user data, record status and record
ID, i.e., USER_DATA_LENGTH + 2.

RECORD_ID_MAX The maximum value of record identifier. It’s reserved for EED internal usage.

Table 7. Function Return Code

Name Value Description

EE_OK 0x00 The requested operation was successful.

EE_ERROR_NOT_BLANK 0x30 The Flash memories are not blank.

EE_ERROR_VERIFY 0x40 Corresponding source data and content of destination location
mismatch.

EE_ERROR_NOMEM 0x50 No enough EEPROM memory.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 17

EEPROM Emulation Driver
4.5 High Level Functions (User Level Functions)

4.5.1 FSL_InitEeprom

4.5.1.1 Description
FSL_InitEeprom determines the active cluster based on the user’s EEPROM configuration macros.

4.5.1.2 Procedure
1. Allocate some space for high voltage function on stack;
2. Check the cluster status field to find the active cluster;
3. If no active cluster is found, erase, blank check the first cluster, change its status to

CLUSTER_STATUS_ACTIVE, and set active cluster index to 0 in global parameters;
4. If the active cluster is found, save its index;
5. Erase, blank check, and then change the alternative cluster status to

CLUSTER_STATUS_BLANKED;
6. De-allocate the stack for high voltage function;
7. Return.

4.5.1.3 Definition
unsigned char FSL_InitEeprom (void);

EE_ERROR_NOFND 0x60 Record not found in cluster.

EE_ERROR_CSTAT 0x70 Cluster status error.

EE_ERROR_RSTAT 0x80 Record status error.

EE_ERROR_IDRNG 0x90 Record identifier exceeds the valid range.

Table 7. Function Return Code (continued)
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor18

EEPROM Emulation Driver
4.5.1.4 Global Variables Refereed

4.5.1.5 Return Values

4.5.1.6 Calling Relationship
FSL_InitEeprom:

• FSL_SearchRecord
• FSL_InitCluster

— FSL_Erase
— FSL_Program

• FSL_Program

4.5.1.7 Tips
The starting address of both clusters should be configured as page alignment. The two clusters have the
same number of Flash pages, and the two ranges of clusters should not be overlapped.

If it is the first time using EEPROM emulation, FSL_InitEeprom will initialize both clusters and select
the first one as the active cluster. If continuing to use the emulation, FSL_InitEeprom will determine
which cluster is the active one and initialize the alternative cluster.

Once there are two cluster marked as active, FSL_InitEeprom will scan two clusters and choose the one
has more free space than the final active cluster, then initialize the other one as alternative cluster.

If any record in the active cluster has an invalid record status, FSL_InitEeprom will set “emuBlank” to
“emuEndAddr”, which will result in a cluster swapping in the following record writing.

Table 8. Global Variables for FSL_InitEeprom

Argument Size Description Remark

activeIndex 1 byte Indicate which cluster is
active.

Based on the status of two
clusters, the active one should
be selected. Used as an output
argument.

emuStartAddr 2 bytes The starting address of the
active cluster

Used as an output argument.

emuEndAddr 2 bytes The end address of the active
cluster

Used as an output argument.

emuBlank 2 bytes The blank location of the
active cluster.

Used as an output argument.

Table 9. Return Values for FSL_InitEeprom

Type Description Possible Values

unsigned
char

Successful completion or error
value.

EE_OK
EE_ERROR_NOT_BLANK
EE_ERROR_VERIFY
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 19

EEPROM Emulation Driver
Interface global parameters “recID”, “source”, and “failedAddress” are reused in this function.

4.5.1.8 Troubleshooting

4.5.2 FSL_ReadEeprom

4.5.2.1 Description
This function reads the specific data record. The starting address of the record data will be returned.

4.5.2.2 Procedure
1. Check that data ID is within the valid ID range;
2. Check the data in the active cluster;
3. If data ID is not found in the active block, return error code;
4. Get the starting address of the record data;
5. Return.

4.5.2.3 Definition
unsigned char FSL_ReadEeprom (void);

4.5.2.4 Global Parameters Referred

Table 10. Troubleshooting for FSL_InitEeprom

Returned Error Description Solution

EE_ERROR_NOT_BLANK The Flash memories are not blank. Check the Flash memory if it can be
erased correctly.

EE_ERROR_VERIFY Corresponding source data and content
of destination location mismatch.

Check the Flash memory if it can be
programmed correctly.

Table 11. Global Parameters for FSL_ReadEeprom

Argument Size Description Remark

recID 1 byte The required data ID. Can be any value from 0 ~
(RECORD_ID_MAX – 1).

source 2 bytes The address of record data. Used as an output argument.

emuStartAddr 2 bytes The starting address of the active cluster.

emuEndAddr 2 bytes The end address of the active cluster.

emuBlank 2 bytes The blank location of the active cluster.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor20

EEPROM Emulation Driver
4.5.2.5 Return Values

4.5.2.6 Calling Relationship
FSL_ReadEeprom

• FSL_SearchRecord

4.5.2.7 Tips
This function does not read out the data into the user’s buffer. Instead, it returns the starting address of the
user data in the data record and saves this address into “source” variable.

Interface global parameter “failedAddress” is reused in this function.

4.5.2.8 Troubleshooting

4.5.3 FSL_WriteEeprom

4.5.3.1 Description
This function writes a data record to the EEPROM emulation. While there is not enough free space in the
active cluster, this routine will perform cluster swapping to clean up the EEPROM.

4.5.3.2 Procedure
1. Allocate some space for high voltage function on stack;
2. Check the validity of user provided record ID;
3. Check if there is enough free space for the data to be written in the active cluster;
4. If not enough free space, perform cluster swapping. After swapping, if still not enough free space

in the active cluster, return error code;
5. Write the data record to the active cluster;

Table 12. Return Values for FSL_ReadEeprom

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_NOFND
EE_ERROR_IDRNG

Table 13. Troubleshooting for FSL_ReadEeprom

Returned Error Description Solution

EE_ERROR_NOFND Record not found in cluster. Write the data record to the
EEPROM first.

EE_ERROR_IDRNG Record identifier exceeds the valid range. Check the data ID, which should be
within the valid ID range.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 21

EEPROM Emulation Driver
6. De-allocate the stack for high voltage function;
7. Return.

4.5.3.3 Definition
unsigned char FSL_WriteEeprom (void);

4.5.3.4 Global Parameters Referred
\

4.5.3.5 Return Values

4.5.3.6 Calling Relationship
FSL_WriteEeprom

• FSL_SwapCluster
— FSL_Program
— FSL_SearchRecord

Table 14. Global Parameters for FSL_WriteEeprom

Argument Size Description Remark

activeIndex 1 byte Indicate which cluster is active. If swapping occurred,
activeIndex should be
updated.

recID 1 byte The required data ID. Can be any value from 0 ~
(RECORD_ID_MAX – 1).

source 2 bytes Address of the record data for writing. Can be any accessible
address. No alignment
limitation. This parameter
should be set just before
calling FSL_WriteEeprom.

emuStartAddr 2 bytes The starting address of the active cluster. Used as an input and output
argument.

emuEndAddr 2 bytes The end address of the active cluster. Used as an input and output
argument.

emuBlank 2 bytes The blank location of the active cluster. Used as an input and output
argument.

Table 15. Return Values for FSL_WriteEeprom

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_IDRNG
EE_ERROR_NOMEM
EE_ERROR_CSTAT
EE_ERROR_NOT_BLANK
EE_ERROR_VERIFY
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor22

EEPROM Emulation Driver
— FSL_CopyRecord
– FSL_Program

— FSL_InitCluster
– FSL_Erase
– FSL_Program

• FSL_CopyRecord
— FSL_Program

4.5.3.7 Tips
The record data length is limited within the values of MIN_DATA_LENGTH and
MAX_DATA_LENGTH, which are configured in EED_Flash.inc. Please refer to Section 4.3.5,
“Macros” for details. The record data length cannot be set to 0, which will result in a compiling error.

If there is not enough free space for writing a new data record, FSL_WriteEeprom will trigger a cluster
swapping to copy all the latest valid data copies to the alternative cluster and remove the old and invalid
data records. This procedure may take a little longer (depending on the number of valid data records) to
complete the write operation.

Interface global parameters “erasingCycles” and “failedAddress” are reused in this function.

4.5.3.8 Troubleshooting
Table 4-16

4.5.4 FSL_DeleteRecord

4.5.4.1 Description
This function deletes a data record in EEPROM. It does not physically remove the data record from the
EEPROM. Instead, it only changes the record status to a special value (RECORD_STATUS_DELETED).
This deleted record will be discarded during the next cluster swapping.

Table 16. Troubleshooting for FSL_WriteEeprom

Returned Error Description Solution

EE_ERROR_IDRNG Record identifier exceeds the valid
range.

Check the data ID, which should be
within the valid ID range.

EE_ERROR_NOMEM No enough EEPROM memory. Use more Flash pages to enlarge the
emulated EEPROM size.

EE_ERROR_CSTAT Cluster status error. Call FSL_InitEeprom to re-initialize
the EEPROM.

EE_ERROR_NOT_BLANK The Flash memories are not blank. Check the Flash memory if it can be
erased correctly.

EE_ERROR_VERIFY Corresponding source data and
content of destination location
mismatch.

Check the Flash memory if it can be
programmed correctly.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 23

EEPROM Emulation Driver
4.5.4.2 Procedure
1. Allocate some space for high voltage function on stack;
2. Check the validity of the record ID;
3. Search the record in the active cluster;
4. If it is found, update the record status to RECORD_STATUS_DELETED;
5. If it is not found, return error code;
6. De-allocate the stack for high voltage function;
7. Return.

4.5.4.3 Definition
unsigned char FSL_DeleteRecord (void);

4.5.4.4 Global Parameters Referred

4.5.4.5 Return Values

4.5.4.6 Calling Relationship
FSL_DeleteRecord

• FSL_SearchRecord
• FSL_Program

4.5.4.7 Tips
The deleted data record can be re-written to EEPROM when needed.

Interface global parameter “failedAddress” is reused in this function.

Table 17. Global Parameters for FSL_DeleteRecord

Argument Size Description Remark

recID 1 byte The required data ID. Can be any value from 0 ~
(RECORD_ID_MAX – 1).

emuStartAddr 2 bytes The starting address of the active cluster.

emuEndAddr 2 bytes The end address of the active cluster.

emuBlank 2 bytes The blank location of the active cluster.

Table 18. Return Values for FSL_DeleteRecord

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_NOFND
EE_ERROR_IDRNG
EE_ERROR_VERIFY
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor24

EEPROM Emulation Driver
4.5.4.8 Troubleshooting

4.5.5 FSL_DeinitEeprom

4.5.5.1 Description
This function releases all the Flash used to EEPROM emulation. After de-initialized, the Flash pages for
emulation are fully erased.

4.5.5.2 Procedure
1. Allocate some space for high voltage function on stack;
2. Erase the Flash pages used for EEPROM emulation;
3. De-allocate the stack for high voltage function;
4. Return.

4.5.5.3 Definition
unsigned char FSL_DeinitEeprom (void);

4.5.5.4 Global Parameters Referred
None.

4.5.5.5 Return Values

4.5.5.6 Calling Relationship
FSL_DeinitEeprom

• FSL_Erase

Table 19. Troubleshooting for FSL_DeleteRecord

Returned Error Description Solution

EE_ERROR_NOFND Record not found in cluster Check the data record to be
deleted.

EE_ERROR_IDRNG Record identifier exceeds the valid
range.

Check the data ID, which should
be within the valid ID range.

EE_ERROR_VERIFY Corresponding source data and
content of destination location
mismatch.

Check the Flash memory if it can
be programmed correctly.

Table 20. Return Values for FSL_DeinitEeprom

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_NOT_BLANK
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 25

EEPROM Emulation Driver
4.5.5.7 Tips
Only the Flash pages used for EEPROM emulation will be erased.

4.5.5.8 Troubleshooting

4.5.6 FSL_ReportEepromStatus
Reports cluster erasure cycles and checks the cluster and data record statuses.

4.5.6.1 Procedure
1. Check both cluster statuses, if any invalid value existing, return error code;
2. Fetch the erasing cycles from active cluster erasing cycle field;
3. Go through entire active cluster to check the data record status with record ID of

RECORD_ID_MAX. If the status of any data record is not correct, fill its address to
“failedAddress” and set the error return code;

4. Return.

4.5.6.2 Definition
unsigned char FSL_ReportEepromStatus (void);

4.5.6.3 Global Parameters Referred

Table 21. Troubleshooting for FSL_DeinitEeprom

Returned Error Description Solution

EE_ERROR_NOT_BLANK The Flash memories are not blank Check the Flash memory if it
can be erased correctly.

Table 22. Global Parameters for FSL_ReportEepromStatus

Argument Size Description Remark

activeIndex 1 byte Indicate which cluster is active.

erasingCycles 2 bytes Used to save the erasing cycles
read from the Flash block array.

It is similar value of erasing cycles.
And it is only valid when the block
status is valid.

failedAddress 2 bytes Used to save the failed data record
address.

It is only valid while function returns
EE_ERROR_RSTAT

emuStartAddr 2 bytes The starting address of the active
cluster.

emuEndAddr 2 bytes The end address of the active
cluster.

emuBlank 2 bytes The blank location of the active
cluster.

If invalid record existing in the active
cluster, emuBlank will be set to the
end of the cluster.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor26

EEPROM Emulation Driver
4.5.6.4 Return Values

4.5.6.5 Calling Relationship
FSL_ReportEepromStatus

• FSL_SearchRecord

4.5.6.6 Tips
The erasure cycles of the cluster is counted from the time EEPROM is set up and will be accumulated
after each erasure. Once the EEPROM is de-initialized, the erasure cycles will be reset to 0.

This function can only check the cluster and data record status. It cannot report error when the user’s data
are incorrect.

If any of the records have invalid record status, FSL_ReportEepromStatus will set “emuBlank” to
“emuEndAddr”, which will result in a cluster swapping in the following record writing.

The value of failedAddress is valid only when the return code is EE_ERROR_RSTAT. And the value of
erasingCycles is valid only when the return code is not EE_ERROR_CSTAT.

4.5.6.7 Troubleshooting

4.6 Middle Level Functions

4.6.1 FSL_Erase

4.6.1.1 Description
FSL_Erase will erase a range of contiguous Flash pages and verify them. It encapsulates two low-level
SSD functions: FlashEraseCOP and BlankCheck. Input parameters are used directly without any check.

Table 23. Return Values for FSL_ReportEepromStatus

Type Description Possible Values

unsigned
char

Successful completion or error
value.

EE_OK
EE_ERROR_CSTAT
EE_ERROR_RSTAT

Table 24. Troubleshooting for FSL_ReportEepromStatus

Returned Error Description Solution

EE_ERROR_CSTAT Cluster status error. Call FSL_InitEeprom to re-initialize the
EEPROM.

EE_ERROR_RSTAT Record status error. Re-write the record into EEPROM.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 27

EEPROM Emulation Driver
4.6.1.2 Procedure
1. Check if FlashEraseCOP function is already in stack. If not, copy it into stack;
2. Call SSD FlashEraseCOP to erase a single Flash page;
3. Call SSD BlankCheck to verify the Flash page;
4. Repeat steps 3 and 4 until all Flash pages are erased and verified;
5. Return.

4.6.1.3 Definition
unsigned char FSL_Erase (void);

4.6.1.4 Global Parameters Referred

4.6.1.5 Return Values

4.6.1.6 Calling Relationship
FSL_Erase

• FlashEraseCOP (SSD)
• BlankCheck (SSD)

4.6.1.7 Tips
At the entry of this function, it checks if the required high voltage function is on stack or not by
evaluating the value of hvType. If not, copy the required high voltage function onto stack specified by
hvPostion.

This function requires that the STARTADDR should be on Flash page alignment.

FlashEraseCOP can erase only one Flash page per call. The ENDADDR is required to be pushed onto
stack before calling FlashEraseCOP. FSL_Erase will erase Flash pages one by one.

Table 25. Global Parameters for FSL_Erase

Argument Size Description Remark

STARTADDR 2 bytes The starting address of the first Flash
pages to be erased.

It should be page alignment.

ENDADDR 2 bytes The end address of the last Flash
pages to be erased.

Table 26. Return Values for FSL_Erase

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_NOT_BLANK
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor28

EEPROM Emulation Driver
4.6.1.8 Troubleshooting

4.6.2 FSL_Program

4.6.2.1 Description
FSL_Program will program specified data to destination address in Flash and verify the data. It
encapsulates two low-level SSD functions: FlashProgram and ProgramVerify. Input parameters are used
directly without any check. At the most, 2 bytes can be programmed in a single call.

4.6.2.2 Procedure
1. Check if the FlashProgram function is already in stack. If not, copy it into stack;
2. Program the data contained in emuBuffer to Flash;
3. Verify the data programmed in Flash;
4. Return.

4.6.2.3 Definition
unsigned char FSL_Program (void);

4.6.2.4 Global Parameters Referred

Table 27. Troubleshooting for FSL_Erase

Returned Error Description Solution

EE_ERROR_NOT_BLANK The Flash memories
are not blank

Check the Flash memory if it can be erased
correctly.

Table 28. Global Parameters for FSL_Program

Argument Size Description Remark

STARTADDR 2 bytes The starting address in Flash to be
written to.

Used as an input and output
argument.

ENDADDR 2 bytes The end address in Flash to be written
to.

The range determined by
STARTADDR and ENDADDR
should be within a same Flash
row.

emuBuffer 2 bytes Source data to be programmed. At most 2 bytes can be
programmed per call.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 29

EEPROM Emulation Driver
4.6.2.5 Return Values

4.6.2.6 Calling Relationship
FSL_Program

• FlashProgram (SSD)
• ProgramVerify (SSD)

4.6.2.7 Tips
At the entry of this function, it checks if the required high voltage function is on stack or not by
evaluating the value of hvType. If not, copy the required high voltage function onto stack specified by
hvPostion.

FlashProgram will update the value of STARTADDR. To verify the Flash result after programming,
STARTADDR should be pushed onto stack before calling FlashProgram.

Since the Flash requires row programming (i.e., only up to one row can be programmed per call), the
programming range specified by STARTADDR and ENDADDR should be within the same row.

4.6.2.8 Troubleshooting

4.6.3 FSL_CopyRecord

4.6.3.1 Description
FSL_CopyRecord writes user data into Flash in a record format.

4.6.3.2 Procedure
1. Program and verify the record status and record status is changed to

RECORD_STATUS_STARTED;
2. Program and verify the record ID;
3. Program and verify the record data byte by byte;

Table 29. Return Values for FSL_Program

Type Description Possible Values

unsigned
char

Successful completion or
error value.

EE_OK
EE_ERROR_VERIFY

Table 30. Troubleshooting for FSL_Program

Returned Error Description Solution

EE_ERROR_VERIFY Corresponding source data and
content of destination location
mismatch.

Check the Flash memory if it can be
programmed correctly.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor30

EEPROM Emulation Driver
4. Change the record status to RECORD_STATUS_COMPLETED;
5. Return.

4.6.3.3 Definition
unsigned char FSL_CopyRecord (void);

4.6.3.4 Global Parameters Referred

4.6.3.5 Return Values

4.6.3.6 Calling Relationship
FSL_CopyRecord

• FSL_Program

4.6.3.7 Tips
To reduce the RAM usage, global variable “failedAddress” is reused here to save the buffer address of the
record data.

4.6.3.8 Troubleshooting

Table 31. Global Parameters for FSL_CopyRecord

Argument Size Description Remark

recID 1 byte ID of the record to be copied. Any value from 0 to
RECORD_ID_MAX - 1

emuBlank 2 byte The destination address in Flash
memory to be written to.

Used as an input parameter.

failedAddress 2 byte Buffer address of record data. failedAddress is reused to
save the buffer address of the
record data.

Table 32. Return Values for FSL_CopyRecord

Returned Value Description

EE_OK Operation finished successfully.

EE_ERROR_VERIFY Corresponding source data and content of destination
location mismatch.

Table 33. Troubleshooting for FSL_CopyRecord

Returned Error Description Solution

EE_ERROR_VERIFY Corresponding source data
and content of destination
location mismatch.

Check the Flash memory if it can be
programmed correctly.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 31

EEPROM Emulation Driver
4.6.4 FSL_InitCluster

4.6.4.1 Description
FSL_InitCluster initializes one cluster to make it ready for EEPROM emulation.

4.6.4.2 Procedure
1. Check cluster status field;
2. If the cluster status is CLUSTER_STATUS_BLANKED, return directly;
3. If the cluster status is CLUSTER_STATUS_STARTED or CLUSTER_STATUS_ACTIVE, its

erasing cycles will be add 1;
4. Otherwise, its erasing cycles will be 1;
5. Erase and verify the cluster;
6. Write the new erasing cycles;
7. Change the cluster status to CLUSTER_STATUS_BLANKED;
8. Return.

4.6.4.3 Definition
unsigned char FSL_InitCluster (void);

4.6.4.4 Global Parameters Referred

4.6.4.5 Return Values

4.6.4.6 Calling Relationship
FSL_InitCluster

• FSL_Erase
• FSL_Program

Table 34. Global Parameters for FSL_InitCluster

Argument Size Description

emuStartAddr 2 bytes The starting address of the cluster.

emuEndAddr 2 bytes The end address of the cluster.

Table 35. Return Values for FSL_InitCluster

Type Description Possible Values

unsigned char Successful completion or
error value.

EE_OK
EE_ERROR_NOT_BLANK
EE_ERROR_VERIFY
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor32

EEPROM Emulation Driver
4.6.4.7 Tips
The cluster after initialization contains only the cluster status field and erasure cycle field.

If the cluster status to be initialized is CLUSTER_STATUS_BLANKED, its erasing cycles will be kept
the same. If the cluster status is CLUSTER_STATUS_STARTED or CLUSTER_STATUS_ACTIVE, its
erasing cycles will be add 1 based on its current erasing cycles. For all other cases, its erasing cycles will
be reset to 1.

4.6.4.8 Troubleshooting

4.6.5 FSL_SwapCluster

4.6.5.1 Description
FSL_SwapCluster copies the latest valid records from the active cluster to the alternative cluster.

4.6.5.2 Procedure
1. If the status of alternative cluster is not CLUSTER_STATUS_BLANKED, return cluster status

error code;
2. Change the alternative cluster status to CLUSTER_STATUS_STARTED;
3. Push the recID onto stack;
4. Fetch the latest data record of a specific ID from the active cluster;
5. Copy this record to the alternative cluster;
6. Update the alternative cluster blank space pointer and next record ID;
7. Repeat steps 4–6 until all latest data records are copied to alternative cluster;
8. Change the alternative cluster status to CLUSTER_STATUS_ACTIVE;
9. Initialize the old active cluster;
10. Pull recID from stack;
11. Update the active cluster index in the EEPROM configuration;
12. Return.

4.6.5.3 Definition
unsigned char FSL_SwapCluster (void);

Table 36. Troubleshooting for FSL_InitCluster

Returned Error Description Solution

EE_ERROR_NOT_BLANK The Flash memories are
not blank.

Check the Flash memory if it can be erased
correctly.

EE_ERROR_VERIFY Corresponding source
data and content of
destination location
mismatch.

Check the Flash memory if it can be
programmed correctly.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 33

EEPROM Emulation Driver
4.6.5.4 Global Parameters Referred

4.6.5.5 Return Values

4.6.5.6 Calling Relationship
FSL_SwapCluster

• FSL_Program
• FSL_SearchRecord
• FSL_CopyRecord

— FSL_Program
• FSL_InitCluster

— FSL_Erase
— FSL_Program

4.6.5.7 Tips
In this function, all the latest valid records should be copied from the active cluster to the alternative
cluster. The global variable recID is reused. To save its original value, recID is pushed onto the stack
before it is reused and restored from the stack before exiting.

Table 37. Global Parameters for FSL_SwapCluster

Argument Size Description Remark

activeIndex 1 byte Indicating which cluster is active. After swapping finished
successfully, it should be updated.

emuStartAddr 2 bytes The starting address of the active
cluster.

It will be updated after swapping.
Used as an input and output
argument.

emuEndAddr 2 bytes The end address of the active
cluster.

It will be updated after swapping.
Used as an input and output
argument.

emuBlank 2 bytes The blank location of the active
cluster.

It will be updated after swapping.
Used as an input and output
argument.

Table 38. Return Values for FSL_SwapCluster

Type Description Possible Values

unsigned char Successful completion or
error value.

EE_OK
EE_ERROR_CSTAT
EE_ERROR_NOT_BLANK
EE_ERROR_VERIFY
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor34

EEPROM Emulation Driver
4.6.5.8 Troubleshooting

4.6.6 FSL_SearchRecord

4.6.6.1 Description
FSL_SearchRecord searches the record with a specific record ID in a cluster. This function will parse the
whole cluster to determine the latest copy of data record.

4.6.6.2 Procedure
1. Clear the emuBuffer with 0xFFFF;
2. Initialize nextRecID to RECORD_ID_MAX;
3. Fetch one record from the cluster;
4. If the recID is RECORD_ID_MAX, go to step 5, otherwise, go to step 9;
5. Check the record status;
6. If it is RECORD_STATUS_COMPLETED, RECORD_STATUS_STARTED or

RECORD_STATUS_DELETED, skip this data record;
7. If it is RECORD_STATUS_ERASED, it is the end of the valid data record region;
8. Otherwise, it’s an invalid record, set return code to EE_ERROR_RSTAT and go to step 16;
9. If the record ID of the current record is not the one being searching for, skip this data record;
10. Otherwise, check the record status;
11. If it is RECORD_STATUS_COMPLETED, save the record address to emuBuffer;
12. If it is RECORD_STATUS_STARTED, skip this wrong data record;
13. Otherwise, clear emuBuffer and skip this wrong data record;
14. For the steps 9–13, if the ID of current record is greater than recID and less than nextRecID,

update nextRecID as the current record ID;
15. Repeat steps 3 and 14 until you reach the end of the cluster or encounter the blank location;
16. Return (The location of error record or the starting address of cluster free space is saved in

failedAddress.).

Table 39. Troubleshooting for FSL_SwapCluster

Returned Error Description Solution

EE_ERROR_CSTAT Cluster status error. Re-initialize the EEPROM.

EE_ERROR_NOT_BLANK The Flash memories are
not blank.

Check the Flash memory if it can be erased
correctly.

EE_ERROR_VERIFY Corresponding source
data and content of
destination location
mismatch.

Check the Flash memory if it can be
programmed correctly.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 35

EEPROM Emulation Driver
4.6.6.3 Definition
unsigned char FSL_SearchRecord (void);

4.6.6.4 Global Parameters Referred

4.6.6.5 Return Values

4.6.6.6 Calling Relationship
N/A.

4.6.6.7 Tips
None.

Table 40. Global Parameters for FSL_SearchRecord

Argument Size Description Remark

recID 1 byte Record ID to search
for

It should be within record ID range from 0 to
RECORD_ID_MAX. RECORD_ID_MAX is used
specially for parse the cluster to the start of free
space or checking the record status in active
cluster.

nextRecID 1 byte To save the record ID
for the next parsing of
the cluster

For each parse of the cluster, the next valid
record ID can be returned via this parameter.
This parameter is only used for speeding up the
cluster swapping procedure.

emuBuffer 2 bytes To save the searching
result.

2-byte global variable used as an output
parameter.

failedAddress 2 bytes To save the location
of error record or the
first free location in
cluster.

This parameter provides a way to return the
location of the corrupt record or to return the first
free location of the cluster when the parameter
recID is of value RECORD_ID_MAX.

emuStartAddr 2 bytes The starting address
of the active cluster.

emuEndAddr 2 bytes The end address of
the active cluster.

Table 41. Return Values for FSL_SearchRecord

Type Description Possible Values

unsigned
char

Successful completion or error
value.

EE_OK
EE_ERROR_RSTAT
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor36

EEPROM Emulation Driver
4.6.6.8 Troubleshooting

4.7 Low Level Functions

4.7.1 FlashEraseCOP

4.7.1.1 Description
This function supports page erase with COP service enabled. Furthermore, this function only provides the
4ms-page erase timing. The page erase size depends on the hardware and can either be 64 or 128 bytes.

This function supports COP service period of minimum 240 us at a 8-MHz bus clock by splitting a long
erase pulse into pieces of shorter pulses. COP service period is scaled with bus clock if the user selects a
different bus clock. For instance, if a 4-MHz bus clock is used, minimum COP period to be supported is
then 480 us.

To minimize code size, this function does not perform any range checking on parameters. So the user
must ensure the relevant global parameters are correctly initialized.

This function does not have return code. Please use BlankCheck to confirm the target region is erased.

4.7.1.2 Procedure
1. Set the erase loop counter based on required timing.
2. Set ERASE bit in the Flash control register;
3. Read the Flash protection register;
4. Bump COP;
5. Write to any Flash address within the erase region with any data;
6. Wait for time Tnvs (>=10 us);
7. Set HVEN bit in the Flash control register;
8. Delay for Tcop;
9. Clear ERASE bit in the Flash control register;
10. For page erase, wait for Tnvh (>=5 us);
11. Clear HVEN bit in the Flash control register;
12. Bump COP;
13. Decrease the erase loop counter. If it is not 0, go to step2, else go to next step;
14. Return.

Table 42. Troubleshooting for FSL_SearchRecord

Returned Error Description Solution

EE_ERROR_RSTAT Cluster status error. Re-write the record into EEPROM.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 37

EEPROM Emulation Driver
4.7.1.3 Definition
void FlashEraseCOP (void);

4.7.1.4 Global Parameters Referred

4.7.1.5 Return Values
None.

4.7.1.6 Tips
Set the Flash protection bits correctly before calling erase function.

Writing to the COP control register when erase voltage is turned on will interfere with erase operation,
because the COP register is located in the Flash array. Thus writing to COP can only occur between erase
pulses.

The function uses the STARTADDR as the erase interlock write address. Because there is no error
checking on parameters, the user must ensure the STARTADDR is within the Flash region to be erased.

This function cannot erase the Flash array in which it resides.

It is highly recommended that interrupts be disabled during program/erase operations.

4.7.1.7 Troubleshooting
This section is intentionally blank.

Table 43. Global Parameters for FlashEraseCOP

Argument Size Description Remark

FLASHCR 2 bytes Address of the Flash
control register.

Please consult hardware spec for actual
address. Typical value is 0xFE08.

FLASHPR 2 bytes Address of the Flash
protection register.

Please consult hardware spec for actual
address. Typical value is 0xFF7E.

CLOCKSCALAR 1 byte The scaling factor
based on the bus clock.

8 times of bus clock scaled in MHz and rounded
down to the nearest integer.

STARTADDR 2 bytes The start address of
Flash area to be
erased.

Should be within valid Flash region.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor38

EEPROM Emulation Driver
4.7.1.8 Affected Register

4.7.2 BlankCheck

4.7.2.1 Description
This function reads the memory and compares against 0xFF (logic state of erased bit cells).

If the blank check fails, the error code of SGF_ERROR_NOT_BLANK (0x30) will be returned in
register A. The first non-blank address can be derived from the global variable of STARTADDR.

To minimize code size, this function does not perform any range checking on parameters. The user must
ensure the relevant global parameters are correctly initialized.

There is no COP service in this function.

4.7.2.2 Procedure
1. Compare STARTADDR with ENDADDR; if greater then go to step 4;
2. Compare the data at STARTADDR against 0xFF and update STARTADDR at the same time;
3. If not equal, then load error code SGF_ERROR_NOT_BLANK to A and go to step 5; otherwise

go to step 1;
4. Load SGF_OK to A;
5. Return.

4.7.2.3 Definition
unsigned char BlankCheck(void);

4.7.2.4 Global Parameters Referred

Table 44. Register Affected in FlashEraseCOP

Name Bit Description

Flash Control Register HVEN, MASS, ERASE and PGM Read, Write

Flash Block Protection Register BPR[7:0] Read

COP BIT[7:0] Write

Table 45. Global Parameters for BlankCheck

Argument Size Description Remark

STARTADDR 2 bytes The start address of area to be
checked.

Can be any readable location.

ENDADDR 2 bytes The end address of area to be
checked.

Should equal to or greater than the start
address. Otherwise, no checking will be
performed.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 39

EEPROM Emulation Driver
4.7.2.5 Return Values

4.7.2.6 Tips
If ENDADDR is less than STARTADDR, the function returns SGF_OK without any checking.

If SGF_ERROR_NOT_BLANK is returned in A, the first non-blank address is equal to the value of
STARTADDR minus 1.

4.7.2.7 Troubleshooting

4.7.2.8 Affected Register
None.

4.7.3 FlashProgram

4.7.3.1 Description
This function is used to program source data to the specified Flash area. It only supports row
programming. That is, only up to one row (32 bytes or 64 bytes depending on hardware) can be
programmed per call. Users should ensure all the addresses to be programmed are within one row;
otherwise, programming may fail. Please refer to the User’s Manual of M68HC908 parts for more
information.

To minimize code size, this function does not perform any range checking on parameters. The user must
ensure the relevant global parameters are correctly initialized.

COP is not serviced inside this function.

This function does not have return code. Please use ProgramVerify to confirm the target region is
programmed correctly.

4.7.3.2 Procedure
1. Set PGM bit in the Flash control register and clear other bits;
2. Read the Flash protection register;

Table 46. Return Values for BlankCheck

Type Description Possible Values

unsigned char Successful completion or
error value.

SGF_OK
SGF_ERROR_NOT_BLANK

Table 47. Troubleshooting for BlankCheck

Return Value Description Solution

SGF_ERROR_NOT_BLANK There is a non-blank byte (i.e. not
0xFF) within the region.

Erase the region again.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor40

EEPROM Emulation Driver
3. Write to any Flash address within the programming row with any data;
4. Wait for time Tnvs (>=10 us);
5. Set HVEN bit in the Flash control register;
6. Wait for time Tpgs (>=5 us);
7. Write source data byte to the Flash destination address to be programmed;
8. Wait for time Tprog (30 us to 40 us);
9. Increment the source address and destination address; go to step 7 until the destination address

exceeds the end address;
10. Clear PGM bit in the Flash control register;
11. Wait for time Tnvh (>=5 us);
12. Clear HVEN bit in the Flash control register;
13. Return.

4.7.3.3 Definition
void FlashProgram (void);

4.7.3.4 Global Parameters Referred

4.7.3.5 Return Values
None.

4.7.3.6 Tips
Set the Flash protection bits correctly before calling program function.

Because the function does not perform any checking on parameters, the user must ensure that
ENDADDR is not less than STARTADDR and the program region is within valid Flash range.

Table 48. Global Parameters for FlashProgram

Argument Size Description Remark

FLASHCR 2 bytes Address of the Flash control
register.

Please consult hardware spec for actual address.
Typical value is 0xFE08.

FLASHPR 2 bytes Address of the Flash
protection register.

Please consult hardware spec for actual address.
Typical value is 0xFF7E.

CLOCKSCALAR 1 bytes The scaling factor based on
the bus clock.

8 times of bus clock scaled in MHz and rounded
down to the nearest integer.

STARTADDR 2 bytes The start address of Flash
area to be programmed.

Should be within valid Flash region.

ENDADDR 2 bytes The end address of Flash area
to be programmed.

Should be within valid Flash region. And must be
equal to or greater than STARTADDR.

BUFFER 2 bytes The start address of the
source data buffer used for
programming.

Should be within readable memory.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 41

EEPROM Emulation Driver
The time required to program an entire row may be longer than the COP timeout period (the smallest
possible COP timeout period is about 240 microseconds). Based on the programming performance data
shown in the appendix, users decide how many bytes to be programmed per call in order to avoid COP
timeout.

It is highly recommended that interrupts be disabled during program/erase operations.

4.7.3.7 Troubleshooting
This section is intentionally blank.

4.7.3.8 Affected Register

4.7.4 ProgramVerify

4.7.4.1 Description
This function is used to verify that the data programmed into the Flash or EEPROM matches the source
data.

If the verification fails, the error code of SGF_ERROR_VERIFY (0x40) will be returned in the register
A. The first failed address can be derived from the global variable of STARTADDR.

To minimize code size, this function does not perform any range checking on parameters. The user must
ensure the relevant global parameters are correctly initialized.

There is no COP service in this function.

4.7.4.2 Procedure
1. Set SGF_OK to A;
2. Compare STARTADDR with ENDADDR; if greater then go to 9;
3. Get the data at STARTADDR and increment STARTADDR at the same time;
4. Compare the data with the content of the source buffer;
5. If not equal, go to step 8;
6. Update the source data buffer address;
7. Go to step 1;
8. Load error code SGF_ERROR_VERIFY to A;
9. Return.

Table 49. Register Affected in FlashProgram

Name Bit Description

Flash Control Register HVEN, MASS, ERASE and PGM Read, Write

Flash Block Protection Register BPR[7:0] Read
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor42

EEPROM Emulation Driver
4.7.4.3 Definition
unsigned char ProgramVerify (void);

4.7.4.4 Global Parameters Referred

4.7.4.5 Return Values

4.7.4.6 Tips
If ENDADDR is less than STARTADDR, the function returns SGF_OK without any checking.

If SGF_ERROR_VERIFY is returned in A, the first failed address is equal to the value of STARTADDR
minus 1.

4.7.4.7 Troubleshooting

4.7.4.8 Affected Register
None.

Table 50. Global Parameters for ProgramVerify

Argument Size Description Remark

STARTADDR 2 bytes The start address of area to
be verified.

Can be any readable location.

ENDADDR 2 bytes The end address of area to
be verified.

Should equal to or greater than the start
address. Otherwise, no checking will be
performed.

BUFFER 2 bytes The start address of the
source data buffer used for
verification.

Should be within readable memory.

Table 51. Return Values for ProgramVerify

Type Description Possible Values

unsigned char Successful completion or
error value.

SGF_OK
SGF_ERROR_VERIFY

Table 52. Troubleshooting for ProgramVerify

Return Value Description Solution

SGF_ERROR_VERIFY There is a mismatch between the source
data and programmed Flash region.

Erase the region and re-program the
source data.
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 43

EEPROM Emulation Driver
Appendix A: Performance Data
The performance data in Appendix A was collected using the CodeWarrior for HCS08, V3.0.

A.1 Code Size and Stack Usage

A.2 Read / Write Times
The common conditions for collecting read/write time performance data are listed below:

• The data are collected on MC68HC908JL3 parts;
• 9.8304-MHz oscillator clock;
• 2.4576-MHz bus clock;
• Two 64-byte Flash pages configured for each cluster;
• All records adopt 2 bytes fixed user data length.

Table 53. Code Size

Hierarchies Code Size (byte)

High-Level Driver 524

Middle-Level Driver 608

Low-Level Driver 173

Total Code Size 1305

Table 54. Stack Usage

Function Name Stack (byte)1

NOTES:
1 The stack usage contains the stack allocated

for high-voltage SSD functions.

FSL_InitEeprom 79

FSL_WriteEeprom 82

FSL_ReadEeprom 2

FSL_DeleteRecord 76

FSL_ReportEepromStatus 2

FSL_DeinitEeprom 77

MAX Stack Usage 82
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor44

EEPROM Emulation Driver
NOTE
The data above was collected based on the MC68HC908JL3 parts. For other
M68HC908 parts, similar performance data is expected.

The “No swap” writing time for FSL_WriteEeprom is collected when the
write will not trigger cluster swapping.

The “Swap” writing time for FSL_WriteEeprom is collected when the write
will trigger cluster swapping (The cluster is full of records, only two of them
have a same record ID. All other records have different record ID).

The minimal time for FSL_ReadEeprom is collected when the active cluster
contains only 1 record, while the maximum read time is collected when the
active cluster is full of records.

The timings for FSL_DeleteRecord and FSL_ReportEepromStatus are
collected when the active cluster is full of records.

Table 55. Read / Write Times

Function Name Typical Time (us)

FSL_WriteEeprom No swap 1985.67

Swap 74257.62

FSL_ReadEeprom Min time 81.38

Max time 914.71

FSL_DeleteRecord 2010.09

FSL_ReportEepromStatus 693.36
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor 45

EEPROM Emulation Driver
EEPROM Emulation Driver for M68HC908 Microcontrollers, Rev. 0

Freescale Semiconductor46

AN3040
Rev. 0, 08/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

	1 Introduction
	1.1 Overview
	1.2 Features
	1.3 References
	1.4 Acronyms and Abbreviations

	2 EEPROM Emulation Scheme
	2.1 System Architecture
	2.2 EEPROM Emulation Software Layout
	2.2.1 EEPROM Emulation Configuration Data
	2.2.2 User’s Data Buffer
	2.2.3 EEPROM Emulation Driver

	2.3 EEPROM Emulation Memory Layout
	2.3.1 EEPROM Cluster
	2.3.2 EEPROM Data Organization

	2.4 EEPROM Emulation Operations
	2.4.1 Initialize EEPROM
	2.4.2 Write EEPROM Data
	2.4.3 Read EEPROM Data
	2.4.4 Delete EEPROM Data
	2.4.5 Report EEPROM Status
	2.4.6 De-initialize EEPROM

	2.5 Limitation of COP Support
	2.6 Notes and Limitations

	3 Preparation and Running Environment
	3.1 Preparation
	3.1.1 EEPROM Emulation Driver Configuration
	3.1.2 Macros

	3.2 Use EEPROM Emulation Driver

	4 EEPROM Emulation Driver
	4.1 Function Introduction
	4.2 Function Calling Relationship
	4.3 Global Parameters and Macros
	4.3.1 EEPROM Emulation Interface Global Parameters
	4.3.2 Active Cluster Global Parameters
	4.3.3 SSD Global Parameters
	4.3.4 Internal Used Global Parameters
	4.3.5 Macros
	4.3.5.1 Record Length Configuration

	4.4 Function Return Code
	4.5 High Level Functions (User Level Functions)
	4.5.1 FSL_InitEeprom
	4.5.1.1 Description
	4.5.1.2 Procedure
	4.5.1.3 Definition
	4.5.1.4 Global Variables Refereed
	4.5.1.5 Return Values
	4.5.1.6 Calling Relationship
	4.5.1.7 Tips
	4.5.1.8 Troubleshooting

	4.5.2 FSL_ReadEeprom
	4.5.2.1 Description
	4.5.2.2 Procedure
	4.5.2.3 Definition
	4.5.2.4 Global Parameters Referred
	4.5.2.5 Return Values
	4.5.2.6 Calling Relationship
	4.5.2.7 Tips
	4.5.2.8 Troubleshooting

	4.5.3 FSL_WriteEeprom
	4.5.3.1 Description
	4.5.3.2 Procedure
	4.5.3.3 Definition
	4.5.3.4 Global Parameters Referred
	4.5.3.5 Return Values
	4.5.3.6 Calling Relationship
	4.5.3.7 Tips
	4.5.3.8 Troubleshooting

	4.5.4 FSL_DeleteRecord
	4.5.4.1 Description
	4.5.4.2 Procedure
	4.5.4.3 Definition
	4.5.4.4 Global Parameters Referred
	4.5.4.5 Return Values
	4.5.4.6 Calling Relationship
	4.5.4.7 Tips
	4.5.4.8 Troubleshooting

	4.5.5 FSL_DeinitEeprom
	4.5.5.1 Description
	4.5.5.2 Procedure
	4.5.5.3 Definition
	4.5.5.4 Global Parameters Referred
	4.5.5.5 Return Values
	4.5.5.6 Calling Relationship
	4.5.5.7 Tips
	4.5.5.8 Troubleshooting

	4.5.6 FSL_ReportEepromStatus
	4.5.6.1 Procedure
	4.5.6.2 Definition
	4.5.6.3 Global Parameters Referred
	4.5.6.4 Return Values
	4.5.6.5 Calling Relationship
	4.5.6.6 Tips
	4.5.6.7 Troubleshooting

	4.6 Middle Level Functions
	4.6.1 FSL_Erase
	4.6.1.1 Description
	4.6.1.2 Procedure
	4.6.1.3 Definition
	4.6.1.4 Global Parameters Referred
	4.6.1.5 Return Values
	4.6.1.6 Calling Relationship
	4.6.1.7 Tips
	4.6.1.8 Troubleshooting

	4.6.2 FSL_Program
	4.6.2.1 Description
	4.6.2.2 Procedure
	4.6.2.3 Definition
	4.6.2.4 Global Parameters Referred
	4.6.2.5 Return Values
	4.6.2.6 Calling Relationship
	4.6.2.7 Tips
	4.6.2.8 Troubleshooting

	4.6.3 FSL_CopyRecord
	4.6.3.1 Description
	4.6.3.2 Procedure
	4.6.3.3 Definition
	4.6.3.4 Global Parameters Referred
	4.6.3.5 Return Values
	4.6.3.6 Calling Relationship
	4.6.3.7 Tips
	4.6.3.8 Troubleshooting

	4.6.4 FSL_InitCluster
	4.6.4.1 Description
	4.6.4.2 Procedure
	4.6.4.3 Definition
	4.6.4.4 Global Parameters Referred
	4.6.4.5 Return Values
	4.6.4.6 Calling Relationship
	4.6.4.7 Tips
	4.6.4.8 Troubleshooting

	4.6.5 FSL_SwapCluster
	4.6.5.1 Description
	4.6.5.2 Procedure
	4.6.5.3 Definition
	4.6.5.4 Global Parameters Referred
	4.6.5.5 Return Values
	4.6.5.6 Calling Relationship
	4.6.5.7 Tips
	4.6.5.8 Troubleshooting

	4.6.6 FSL_SearchRecord
	4.6.6.1 Description
	4.6.6.2 Procedure
	4.6.6.3 Definition
	4.6.6.4 Global Parameters Referred
	4.6.6.5 Return Values
	4.6.6.6 Calling Relationship
	4.6.6.7 Tips
	4.6.6.8 Troubleshooting

	4.7 Low Level Functions
	4.7.1 FlashEraseCOP
	4.7.1.1 Description
	4.7.1.2 Procedure
	4.7.1.3 Definition
	4.7.1.4 Global Parameters Referred
	4.7.1.5 Return Values
	4.7.1.6 Tips
	4.7.1.7 Troubleshooting
	4.7.1.8 Affected Register

	4.7.2 BlankCheck
	4.7.2.1 Description
	4.7.2.2 Procedure
	4.7.2.3 Definition
	4.7.2.4 Global Parameters Referred
	4.7.2.5 Return Values
	4.7.2.6 Tips
	4.7.2.7 Troubleshooting
	4.7.2.8 Affected Register

	4.7.3 FlashProgram
	4.7.3.1 Description
	4.7.3.2 Procedure
	4.7.3.3 Definition
	4.7.3.4 Global Parameters Referred
	4.7.3.5 Return Values
	4.7.3.6 Tips
	4.7.3.7 Troubleshooting
	4.7.3.8 Affected Register

	4.7.4 ProgramVerify
	4.7.4.1 Description
	4.7.4.2 Procedure
	4.7.4.3 Definition
	4.7.4.4 Global Parameters Referred
	4.7.4.5 Return Values
	4.7.4.6 Tips
	4.7.4.7 Troubleshooting
	4.7.4.8 Affected Register

	Appendix A : Performance Data
	A.1 Code Size and Stack Usage
	A.2 Read / Write Times

	EEPROM Emulation Driver for M68HC908 Microcontrollers

