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1 Introduction
The adaptive Finite Impulse Response filter (FIR) is one of 
the most commonly implemented algorithms on DSPs. 
Adaptive FIR filters are used for a variety of applications in 
a variety of forms. Some of these applications have special 
requirements that increase the complexity of efficient FIR 
implementation. Minimum latency requirements, restricted 
data alignment, windowed filtering, and coefficient 
adaptation can increase code size and computational costs. 
These considerations are especially important on multiple 
arithmetic logic unit (ALU) processors that have 
implementation restrictions. This application note discusses 
these topics as they apply to the implementation of an 
adaptive FIR filter for echo cancellation (ECAN) with the 
StarCore™ SC140 architecture.
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2 Echo Cancellation and Adaptive Filtering
Network echo cancellation is used to cancel the reflected signal, or echo, generated in a telephony system 
by impedance mismatches of network elements. Echo energy distribution is unique for each connection 
and can be dynamic for a particular connection. The total energy of the echo and the delay of the echo can 
change over time, so they require special consideration when an echo canceller is implemented.

An echo canceller requires the use of a specialized adaptive filter. A common adaptive filtering algorithm 
used in echo cancellation is the Least Mean Square (LMS) algorithm, which offers relatively low 
computation complexity and good stability. Though several variants of the LMS exist, there are three basic 
operations: compute the output of the filter, calculate error, and update the filter coefficients. As the filter 
length increases, the cost of computing the filter outputs and filter coefficients update increases, primarily 
due to the number of multiply-and-accumulate (MAC) operations required. Typically, the computational 
cost for adaptive filtering may count for as much as 40 to 70 percent of the total cycles consumed by the 
echo cancellation component, therefore, it is critical to implement the adaptive filter efficiently.

Using the LMS algorithm, it can be demonstrated that, under certain assumptions, the error e can be 
practically minimized through adaptive changes, or iterations h(m). The algorithm can be written for kth 
iteration as follows:

The output of the FIR filter is given by:

Eqn. 1

The error signal:

 Eqn. 2

where d is the desired signal.

The adaptation formula:

Eqn. 3

where µ is frequently called the step size of the LMS algorithm and k is the sample number, also called the 
iteration number. Because the sample number coincides with the iteration number, the algorithm is said to 
perform per sample adaptation. 

y k( ) hi

i 0=

N 1–

∑= x k i–( )⋅

e k( ) d k( ) y k( )–=

hi k 1+( ) hi k( ) µ e k( ) xi k( ) for 0 i N 1–≤ ≤⋅ ⋅+=



Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 3
 

Adaptive Filtering on the SC140 Core

As the LMS algorithm governing equations indicate, three major computational steps are required to 
implement the algorithm:

• Computation of the output of the FIR filter

• Computation of error

• Computation of updated coefficients of the FIR filter

Cycle consumption for the adaptive FIR filter is dictated primarily by two operations: applying the filter 
and updating the filter coefficients. Using an example 256 tap filter, the FIR requires 256 MACs and 
2 × 256 data moves. The update requires 256 MACS and 3 × 256 data moves.

Generally, DSPs have one to four arithmetic logic units and can move data in parallel with the arithmetic 
operations. Read/write and register combinations may be restricted in some architectures, limiting the 
efficiency of filtering operations.

3 Adaptive Filtering on the SC140 Core
DSPs have addressing modes that perform modulo address pointer updates automatically, eliminating the 
need to check the modulo condition in software. Some DSPs can also execute multiple data moves and 
arithmetic operations in parallel. Freescale StarCore-based DSPs have both modulo addressing and 
parallel execution. The SC140 architecture has four arithmetic logic units (ALU) and two address 
arithmetic units (AAU) and executes up to six instructions, including four arithmetic operations and two 
moves of up to 64 bits each with pointer updates (see Figure 1). For details on StarCore architecture, see 
the SC140 DSP Core Reference Manual.
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Figure 1. StarCore SC140 Block Diagram

The typical filtering application is based on the following buffered filter equation:

Eqn. 4

In real-time DSP implementations, the input x and filter coefficients h are kept in buffers of length N. As 
Equation 4 shows, n is not used in the indices of the input or coefficient buffers. The equation assumes that 
data is properly positioned within the buffers. Although the data in the coefficient buffer does not change, 
new input samples must be shifted into the input buffer and the oldest shifted out. Shifting the data within 
the buffer requires N additional moves, consuming processor cycles and decreasing efficiency. An efficient 
alternative to data shifting is to use modulo data pointers. As inputs are updated in the input buffer, a 
pointer to the oldest data with offset f is updated modulo N to wrap around the circular buffer as shown in 
Figure 2.
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Figure 2. FIR Filter Buffers

The new filter equation using modulo is shown in Equation 5:

Eqn. 5

A partial implementation of an FIR filter in StarCore assembly language is shown in Figure 3. The code 
illustrates the sequence of arithmetic operations and data reads to compute a single output of the filter.

xN-f xN-1 x0 x1 xN-1-f… …Input Buffer

h0 hN-1h1 …Filter Buffer

offset f

y n[ ] x k f+( )modN[ ]h N 1– k–[ ]
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Figure 3. Code Segment 1—FIR Filter Code for StarCore

In Code Segment 1, the basic looped four mac (multiply accumulate) plus two move.4f instruction set 
results in an efficient N/4 + 3 cycles for the output to be calculated. For our 256 tap filter example this 
works out to 67 cycles. Additional overhead is required for setting up address, modulo, and loop registers. 
The overhead may require five or more operations, but the operations can often be executed in parallel with 
non-related operations. FIR setup overhead typically adds no more than two or three cycles to the 
implementation. Code Segment 1 serves as the foundation for more complex filter implementations.

For parallel processing techniques, memory alignment of data is necessary. Multiple data moves, as in the 
example above, require the data access to be on an 8-byte boundary. The alignment simplifies access by 
allowing the use of the move.4f instruction for all input and coefficient data moves.

Filter coefficient update implementation is very similar to FIR filter implementation. The following code 
in Figure 4 gives an example of filter coefficient updates on the SC140 core.

 [ 
   clr     d0                  ; clear accumulators 
   clr     d1 
   clr     d2 
   clr     d3 
   move.4f (r1)+,d4:d5:d6:d7   ; read coefficients 
   move.4f (r2)-,d8:d9:d10:d11 ; read input data 
 ] 
 LOOPSTART3 
 [ 
   mac     d7,d8,d0            ; acc += x * h 
   mac     d6,d9,d1 
   mac     d5,d10,d2 
   mac     d4,d11,d3 
   move.4f (r1)+,d4:d5:d6:d7 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
 LOOPEND3 
 [ 
   mac     d7,d8,d0 
   mac     d6,d9,d1 
   mac     d5,d10,d2 
   mac     d4,d11,d3 
 ] 
 [ 
   add     d0,d1,d3            ; accumulate output y 
   add     d2,d3,d2 
 ] 
 [ 
   adr     d3,d2               ; output y in d2 
 ] 
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Figure 4. Code Segment 2—Update FIR Code for SC140

The SC140 core can perform four reads and four writes in a single cycle. Coefficient update requires one 
multiply accumulate, two reads, and one write per data. Updates require one additional memory access 
over the filter and, therefore, a greater number of cycles than the filter for the same filter size. The update 
is accomplished by performing eight multiply accumulate operations and twelve move operations per 
iteration of the loop. The total number of cycles for a filter of size N is 3N/8 + 1. For our 256 tap example 
filter, the update requires 97 cycles.

The read/write and register use combination is restricted in some architectures and may require a greater 
number of cycles than SC140 core. The ability to perform eight memory accesses, read or write, with four 
arithmetic operations and flexible register usage makes the SC140 core much more efficient at coefficient 
update than some other DSP architectures.

For best efficiency and code simplification, use the following guidelines when implementing an adaptive 
FIR filter:

• Buffer sizes should be equivalent.

• Buffer sizes should be a multiple of four.

• Align input and filter buffers on 8-byte boundaries.

• Access input buffer and filter buffer on 8-byte boundaries.

• Process four inputs and four outputs per filter iteration.

• Use the four mac and two move.4f instruction sequence for all filter computation.

• Use modulo addressing mode.

It is not always possible to follow all of these guidelines. Echo canceller requirements in particular make 
some of these requirements difficult.

  [ 
   move.4f (r1)+,d0:d1:d2:d3    ; load fir[0] -> fir[3] 
   move.4f (r2)-,d4:d5:d6:d7    ; load data[ptr] ->data[ptr+3] 
 ] 
 FALIGN 
 LOOPSTART1 
 [ 
   macr    d15,d4,d3 
   macr    d15,d5,d2 
   macr    d15,d6,d1 
   macr    d15,d7,d0 
   move.4f (r2)-,d4:d5:d6:d7    ; load data 
   move.4f (r1)+,d8:d9:d10:d11  ; load coefficients 
 ] 
 [ 
   macr    d15,d4,d11 
   macr    d15,d5,d10 
   macr    d15,d6,d9 
   macr    d15,d7,d8   
   move.4f (r2)-,d4:d5:d6:d7    ; load data 
   moves.4f d0:d1:d2:d3,(r3)+   ; write coefficients 
 ] 
 [ 
   moves.4f d8:d9:d10:d11,(r3)+ ; write coefficients 
   move.4f (r1)+,d0:d1:d2:d3    ; load coefficients 
 ] 
 LOOPEND1 
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3.1 Filtering Requirements for ECAN
High performance programmable DSP-based echo cancellers using the LMS algorithm have special 
filtering requirements not found in standard filtering applications. The signal reflections handled by echo 
cancellers have energy within a limited time span (echo span). However, the reflection energy may be 
delayed anywhere from zero milliseconds to an interval several times greater than the echo span itself. The 
echo canceller must search the full potential delay range (echo tail span) and find the region of the 
reflection energy. As a result, only a portion of the filter coefficients may have significant energy. The 
energy is usually concentrated in a particular delay range allowing a windowed filter approach to be used. 
With more complex networks, the energy may exist in several delay ranges, so multiple windows must be 
used. Windowing provides sufficient coverage to cancel echo while eliminating the inefficiency of 
filtering in the negligible energy range. Echo cancellers are also required to limit response time to one 
millisecond per ITU G.168 standards [2]. To meet this requirement, an echo canceller must be able to filter 
a single input and single output.

3.1.1 Pointers and Modulo Addressing
An example high performance echo canceller can use an echo tail span of N samples and an echo span of 
M samples where N > M. The M sample echo span represents a windowed segment of a full N sample filter 
where only the windowed portion has significant energy. As the window moves to coincide with the bulk 
delay time of the echo, the location of the access into the coefficient buffer changes. Figure 4 shows an 
input buffer and a filter coefficient buffer. The input buffer contains the N newest input samples. The 
coefficient buffer contains N coefficients, but only M coefficients have significant energy. The region of 
significant energy is shifted by a delay of d.

Figure 5. Input and Filter Coefficient Buffers
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The coefficient definition for windowed filtering is:

Eqn. 6

Region of significant energy:

Eqn. 7

An input data buffer for the full N sample echo tail is kept in memory, but for memory conservation a buffer 
of only M samples is kept for coefficients. To facilitate a shortened coefficient buffer, changes in the access 
point to the filter coefficients must be translated into changes in the access point to the input buffer, as 
demonstrated in Equation 8. In the example, d represents echo bulk delay.

The windowed filter equation is as shown in Equation 8:

Eqn. 8

Table 1 details an example of windowed filtering and lists the characteristics of the input and filter 
coefficients.

Table 1. Windowed FIR Filter Example

Buffer Size N = 16

Window Size M = 4

Input Offset f = 4

Bulk Delay d = 5

h i[ ] 0 for 0 i d
and
h i[ ] 0 for d M i N
where 0 d N M–≤ ≤

≤ ≤+,≅

≤ ≤,≅

h i[ ] for d i d M+<≤,

y n[ ] x k f d– N M–+ +( )mod N[ ]h d M 1– k–+[ ]

where 0 f N

and 0 d N M–≤ ≤
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k 0=
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The connecting lines represent multiplication and all products are summed to form y[n]. The shaded 
regions of the filter coefficient buffer are outside of the window and are not used in the output computation.

Figure 6. Windowed FIR Filter Buffers

Equation 9 is a simplified equation for use with buffer h of size M with a built in delay shift d:

Eqn. 9

Using Equation 9, the filter coefficient buffer can be reduced from a size of N to the size M. The proper 
window location based on delay must be kept and is used when updating the coefficients.

3.1.2 Data Alignment
Efficient filtering implementations on StarCore DSPs use four multiply accumulate instructions in parallel. 
To use these four arithmetic instructions, new data may need to be moved into as many as eight data 
registers. The StarCore architecture can move up to eight 16-bit groupings of data in two parallel move 
instructions if each set of four 16-bit data are aligned on 8-byte boundaries. However, because the echo 
canceller must process inputs and outputs one at a time, the pointer into the input datas move one 16-bit 
input at a time and, therefore, is not always 8-byte aligned.

A simple solution is to create four sets of code for the four possibe data alignments. At each call to the 
filter, the offset is measured and the appropriate code is executed. The alignment can be determined by 
analyzing the offset to be added to the base address of the input pointer. Each code segment initially 
accesses zero, one, two, or three inputs individually to align the input pointer. When the input pointer is 
aligned, the code can begin accessing data in 8-byte blocks. An alternative to accessing data individually 
is to create a pointer on an 8-byte boundary that points to the boundary just before the relevant data. The 
pointer is then used to access blocks of eight bytes and the irrelevant data is simply ignored. Examples are 
shown in the next section.

x12 x13 x0x15x14 x1 x5x4x3x2 x6 x7 x10x9x8 x11

h0 h1 h4h3h2 h5 h9h8h7h6 h10 h11 h14h13h12 h15

Input Buffer

Filter Coefficient Buffer

f = 4

d = 5

y n[ ] x f d– N 1– k–+( )mod N[ ]h k[ ]
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3.2 Example of Windowed FIR Application and Update
In the example presented in this section, an FIR is first applied and then updated.

3.2.1 Apply FIR
It is helpful to create a model for the filter in C code before the assembly code version is implemented. In 
Code Segment 3, the windowed filter uses two buffers of size N and M where N > M. The buffer of length 
M is treated as a sliding window. Modulo pointer updates for input buffer x are required only when 
f - d > M - 1.

Figure 7. Code Segment 3–C Code for Windowed FIR

The code is split into two sections depending on where the window is placed within the buffer. In one case, 
the window is completely within the bounds of the buffer and no modulo is necessary. In the other case, 
the window wraps around the buffer and split computation is needed to handle the modulo addressing. The 
split computation is not necessary if hardware modulo addressing is used. Hardware-based modulo 
addressing is most easily implemented in assembly code.

Code Segment 1 is the base code for FIR filters, but some modifications are needed to handle data that is 
not 8-byte aligned. In Code Segment 3, a modified portion of the assembly code implementation is shown. 
This example is from one of the four sets of code described in Section 3.1.2, “Data Alignment”. The data 
is off alignment by four bytes. Only two of the first four data read are relevant (registers d8 and d9). The 
data in registers d10 and d11 is ignored. To use the move.4f instruction, the pointer must point four bytes 
before the start of the valid data.

 acc = 0; 
temp = delay-offset;            // -N < (delay-offset) < N-M 
 
if (temp < 0) { 
  temp += N;                    // 0 < temp < N-1 
} 
 
if (temp <= (N-M)) { 
  for (k=0; k<M; k++) { 
    acc += x[offset-delay+N-1-k] * h[k]; 
  } 
} 
 
else {                          // temp is > (N-M) 
  i = offset-delay+N-1; 
  for (k=0; i>=0; k++, i--) {   // from x[offset-delay+N-1] down to x[0] 
    acc += x[i] * h[k]; 
  } 
  i = N-1; 
  for (; k<M; k++,i--) {        // from x[N-1] down to x[offset-delay+N-M] 
    acc += x[i] * h[k]; 
  } 
} 
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Figure 8. Code Segment 4–Assembly Code Alignment Off by Four Bytes

Code Segment 5 is similar, but alignment is off by two bytes so only one 16-bit input is ignored.

Figure 9. Code Segment 5–Assembly Code Alignment Off by Two Bytes

Similar code must be included after the loop to complete the execution for the remaining non-aligned data. 
Excess data is read again and discarded. Though extra data moves are performed, there is no increase in 
cycle consumption because the move.4f instruction requires only one cycle just as other data moves. 
Section 6, “Appendix A”, features more detailed code examples.

  [ 
   clr     d0 
   clr     d1 
   clr     d2 
   clr     d3 
   move.4f (r1)+,d4:d5:d6:d7 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
 [ 
   mac     d5,d8,d1 
   mac     d4,d9,d0 
   move.4f (r1)+,d12:d13:d14:d15 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
 LOOPSTART3 
 [ 
   mac     d13,d8,d1 
   mac     d12,d9,d0 
   mac     d7,d10,d3 
   mac     d6,d11,d2 
   move.4f (r1)+,d4:d5:d6:d7 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 

  [ 
   clr     d0 
   clr     d1 
   clr     d2 
   clr     d3 
   move.4f (r1)+,d4:d5:d6:d7 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
 [ 
   mac     d6,d8,d2 
   mac     d5,d9,d1 
   mac     d4,d10,d0 
   move.4f (r1)+,d12:d13:d14:d15 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
 LOOPSTART3 
 [ 
   mac     d14,d8,d2 
   mac     d13,d9,d1 
   mac     d12,d10,d0 
   mac     d7,d11,d3 
   move.4f (r1)+,d4:d5:d6:d7 
   move.4f (r2)-,d8:d9:d10:d11 
 ] 
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3.2.2 Update FIR
In an echo cancellation application, the LMS algorithm updates the coefficients of the FIR filter to adapt 
to the echo. The implementation of the FIR update is very similar to the FIR itself, with two major 
differences. First, where the single FIR output is the sum of products of multiply accumulate instructions, 
the update has an output for every multiply accumulate instruction. Thus, there is a write for each data item 
as opposed to a single write for each call. Second, the FIR update outputs the sum of the coefficient plus 
the input multiplied by a constant value. The FIR output is the sum of the product of the input and 
coefficients. Code Segment 6 details the update FIR implementation in C code.

Figure 10. Code Segment 6–C Code for Update Windowed FIR

The assembly code for the FIR update is also very similar to the FIR code. There are a few changes:

• The macr (multiply accumulate with round) instruction is used in place of mac because each macr 
result is an output.

• The moves.4f instruction is used in every iteration of the loop to write the updated filter 
coefficients.

• Each macr instruction has register d15, a constant value, as one of the operands.

Code Segment 7 shows an example of assembly code for an update FIR where data is not 8-byte aligned.

 // y is passed to the function 
acc = 0; 
temp = delay-offset;            // -N < (delay-offset) < N-M 
 
if (temp < 0) { 
  temp += N;                    // 0 < temp < N-1 
} 
 
if (temp <= (N-M)) { 
  for (k=0; k<M; k++) { 
    h[k] += y * x[offset-delay+N-1-k] 
  } 
} 
 
else {                          // temp is > (N-M) 
  i = offset-delay+N-1; 
  for (k=0; i>=0; k++, i--) {   // from x[offset-delay+N-1] down to x[0] 
    h[k] += y * x[i] 
  } 
  i = N-1; 
  for (; k<M; k++,i--) {        // from x[N-1] down to x[offset-delay+N-M] 
    h[k] += y * x[i] 
  } 
} 
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Figure 11. Code Segment 7–Assembly Code Update FIR Not Aligned

4 Conclusion
Although an echo canceller requires special filtering, a cycle efficient filter can be implemented with 
relatively little added complexity. Careful implementation allows the full use of StarCore modulo 
addressing, parallel read and write, and parallel arithmetic operations. Cycle consumption is comparable 
to a standard filter of the same size and code size is increased to approximately four times that of the 
standard filter if the method described in this application note is used. 

  [ 
   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3] 
   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3]  
 ] 
 [ 
   tfr     d15,d4 
   macr    d15,d4,d1 
   macr    d15,d5,d0 
   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 
   dosetup1 IL_update_off_by_one    
 ] 
 [ 
   tfr     d4,d15 
   macr    d4,d14,d3 
   macr    d4,d15,d2 
   move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3] 
   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3]  
] 
  
 FALIGN 
 LOOPSTART1 
update_off_by_one: 
 [ 
   macr    d15,d6,d11 
   macr    d15,d7,d10 
   macr    d15,d12,d9 
   macr    d15,d13,d8 
   moves.4f d0:d1:d2:d3,(r3)+ 
   move.4f (r1)+,d0:d1:d2:d3 
 ] 
 [ 
   tfr     d15,d4 
   macr    d15,d4,d1 
   macr    d15,d5,d0 
   moves.4f d8:d9:d10:d11,(r3)+ 
   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 
 ] 
 [ 
   tfr     d4,d15 
   macr    d4,d14,d3 
   macr    d4,d15,d2 
   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3]  
   move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3] 
 ] 
 LOOPEND1 
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6 Appendix A

6.1 Apply FIR
;============================ START_INLINE ====================================

;*                             apply_fir                                      * 

;*                      apply_fir (data *ec)                                  *

;==============================================================================

 [

   adda    #taps,r6,r1         ; for apply_fir

   adda    #bulk_delay,r6,r3   ; r3 points to bulk_delay

 ]

 [

   move.w  (r1),d6             ; (taps)

   adda    #first_ref,r6,r5    ; r5 poits to first_ref   

 ]

 [

   asl     d6,d11              ; d11 = # of bytes for taps

   asrr    #>3,d6              ; d6 = taps/8

 ]

 [

   adda    #data,r6,r1         ; fir_ptr = data

   adda    #ref_base,r6,r0

 ]

 [

   tfra    r1,r2

   move.w  (r0),d3

 ]

 [

   move.l  d3,r0

   deceq   d6                  ; d6 = taps/8 -1

   adda    #echospan,r6,r8

 ]

 [
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   move.w  (r5),d1             ; d1 = first_ref

   move.w  (r3),d2             ; d2 = bulk_delay

 ]  

 [

   addl1a  r0,r2               ; ref_ptr = data + ref_base + ...

   move.w  (r8),d3             ; echospan

 ]

 [

   asl     d3,d3               ; (echospan)*2 size in bytes for buffer

   sub     d2,d1,d5            ; new_ref = new_ref - bulk_delay

   push    mctl

   move.l  #$0800,mctl         ; m0 used w/ r2, 

 ]

 [

   and     #2,d5,d1

   move.l  d5,r4

   move.l  d3,m0               ; (echospan)*2 size in bytes for buffer           

 ]

 [

   tstgt   d1

   and     #1,d5,d1

   doensh3 d6

 ]

 [

   tstgt   d1

   tfra    r2,r10 

   btd     IL_fir_offby23

 ]

 [

   addl1a  r4,r2               ; ref_ptr = data + ref_base + new_ref

   move.l  #IL_fir_end_add1,r0

 ]

 [

 ift suba  #2,r2

 ift jmp   IL_fir_offset1

 ]

IL_fir_offset0

 [

   clr     d0

   clr     d1

   clr     d2

   clr     d3
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   move.4f (r1)+,d4:d5:d6:d7    

   move.4f (r2)-,d8:d9:d10:d11 ; only use d8  [X|-|-|-]

 ]

 [

   mac     d4,d8,d0

   move.4f (r1)+,d12:d13:d14:d15   

   move.4f (r2)-,d8:d9:d10:d11    

 ]

 LOOPSTART3

 [

   mac     d12,d8,d0

   mac     d7,d9,d3

   mac     d6,d10,d2

   mac     d5,d11,d1

   move.4f (r1)+,d4:d5:d6:d7    

   move.4f (r2)-,d8:d9:d10:d11    

 ]

 [

   mac     d4,d8,d0

   mac     d15,d9,d3

   mac     d14,d10,d2

   mac     d13,d11,d1

   move.4f (r1)+,d12:d13:d14:d15  

   move.4f (r2)-,d8:d9:d10:d11    

 ]

 LOOPEND3

 [

   mac     d12,d8,d0

   mac     d7,d9,d3

   mac     d6,d10,d2

   mac     d5,d11,d1

   move.4f (r2)-,d8:d9:d10:d11    

   jmpd    r0

 ]

 [

   mac     d15,d9,d3

   mac     d14,d10,d2

   mac     d13,d11,d1

 ]

IL_fir_offset1

 [

   clr     d0
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   clr     d1

   clr     d2

   clr     d3

   move.4f (r1)+,d4:d5:d6:d7   ; load fir[0] -> fir[3]

   move.4f (r2)-,d8:d9:d10:d11 ; only use d8 & d9  [Y|X|-|-]

 ]

 [

   mac     d5,d8,d1

   mac     d4,d9,d0

   move.4f (r1)+,d12:d13:d14:d15

   move.4f (r2)-,d8:d9:d10:d11

 ]

 LOOPSTART3

 [

   mac     d13,d8,d1

   mac     d12,d9,d0

   mac     d7,d10,d3

   mac     d6,d11,d2

   move.4f (r1)+,d4:d5:d6:d7

   move.4f (r2)-,d8:d9:d10:d11

 ]

 [

   mac     d5,d8,d1

   mac     d4,d9,d0

   mac     d15,d10,d3

   mac     d14,d11,d2

   move.4f (r1)+,d12:d13:d14:d15

   move.4f (r2)-,d8:d9:d10:d11

 ]

 LOOPEND3

 [

   mac     d13,d8,d1

   mac     d12,d9,d0

   mac     d7,d10,d3

   mac     d6,d11,d2

   move.4f (r2)-,d8:d9:d10:d11

   jmpd    r0

 ]

 [

   mac     d15,d10,d3

   mac     d14,d11,d2

 ]
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IL_fir_offby23

 [

   bt      IL_fir_offset3

   suba    #4,r2

 ]

IL_fir_offset2

 [

   clr     d0

   clr     d1

   clr     d2

   clr     d3

   move.4f (r1)+,d4:d5:d6:d7   ; load fir[0] -> fir[3]

   move.4f (r2)-,d8:d9:d10:d11 ; only use d8,d9 & d10  [Z|Y|X|-]

 ]

 [

   mac     d6,d8,d2

   mac     d5,d9,d1

   mac     d4,d10,d0

   move.4f (r1)+,d12:d13:d14:d15

   move.4f (r2)-,d8:d9:d10:d11

 ]

 LOOPSTART3

 [

   mac     d14,d8,d2

   mac     d13,d9,d1

   mac     d12,d10,d0

   mac     d7,d11,d3

   move.4f (r1)+,d4:d5:d6:d7

   move.4f (r2)-,d8:d9:d10:d11

 ]

 [

   mac     d6,d8,d2

   mac     d5,d9,d1

   mac     d4,d10,d0

   mac     d15,d11,d3

   move.4f (r1)+,d12:d13:d14:d15

   move.4f (r2)-,d8:d9:d10:d11

 ]

 LOOPEND3

 [

   mac     d14,d8,d2

   mac     d13,d9,d1
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   mac     d12,d10,d0

   mac     d7,d11,d3

   move.4f (r2)-,d8:d9:d10:d11

   jmpd    r0

 ]

   mac     d15,d11,d3

IL_fir_offset3

   suba    #2,r2               ; sub #6

 [

   clr     d0

   clr     d1

   clr     d2

   clr     d3

   move.4f (r1)+,d4:d5:d6:d7   ; load fir[0] -> fir[3]

   move.4f (r2)-,d8:d9:d10:d11 ; use d8,d9,d10,d11  [A|Z|Y|X]

 ]

 [

   mac     d7,d8,d0

   mac     d6,d9,d1

   mac     d5,d10,d2

   mac     d4,d11,d3

   move.4f (r2)-,d8:d9:d10:d11

   move.4f (r1)+,d4:d5:d6:d7       

 ]

 LOOPSTART3

 [

   mac     d7,d8,d3

   mac     d6,d9,d2

   mac     d5,d10,d1

   mac     d4,d11,d0

   move.4f (r1)+,d4:d5:d6:d7

   move.4f (r2)-,d8:d9:d10:d11

 ]

 [

   mac     d7,d8,d3

   mac     d6,d9,d2

   mac     d5,d10,d1

   mac     d4,d11,d0

   move.4f (r1)+,d4:d5:d6:d7

   move.4f (r2)-,d8:d9:d10:d11

 ]

 LOOPEND3
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 [

   mac     d7,d8,d3

   mac     d6,d9,d2

   mac     d5,d10,d1

   mac     d4,d11,d0

 ]

IL_fir_end_add1

 [

   add     d0,d1,d0

   add     d2,d3,d2

 ]

IL_fir_end_add2

 [

   add     d0,d2,d0

   pop     mctl 

 ]

   nop                         ; MCTL Stall

 [

   rnd     d0,d2

 ]

;==============================================================================

;*                          end apply_fir                                     * 

;==============================================================================

6.2 Update FIR
;==============================================================================

;*                             update_fir                                     * 

;*             update_fir (data *ec, const Word16 y)                          *

;==============================================================================

 [

   adda    #taps,r6,r5         ; r5 points to # of taps

   adda    #bulk_delay,r6,r3   ; r3 points to bulk_delay

 ]

 [

   move.w  (r3),d2             ; d2 = bulk_delay

   move.w  (r5),d0             ; d0 = taps

 ]

   adda    #first_ref,r6,r5    ; r2 points to first_ref

 [

   move.w  (r5),d1             ; d1 = first_ref

   add     #2,d3

   adda    #ref_base,r6,r0
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 ]

 [

   adda    #data,r6,r1         ; fir_ptr = data

   move.w  (r0),d4

 ]

 [

   move.l  d4,r0

   adda    #echospan,r6,r8

 ]

 [

   tfra    r1,r2

   sub     d2,d1,d5            ; d5 = first_ref - (bulk_delay)

   move.w  (r8),d4             ; echospan

 ]

 [

   push    mctl

   asl     d5,d6               ; d5 = new_ref in bytes

   and     d5,d3

   addl1a  r0,r2               ; ref_ptr = data + ref_base + ...

   asl     d4,d4               ; (echospan)*2 size in bytes for buffer

 ]

 [

   move.l  d4,m0               ; (echospan)*2 size in bytes for buffer      

   move.l  #$0800,mctl         ; m0 used with r2

 ]

   nop                         ; MCTL Stall

 [

   move.l  d6,r4

   tfra    r2,r10 

   tstgt   d3

   and     #01,d5,d1

 ]

 [

   btd     IL_update_offset2or3

   tstgt   d1

   doen1   d0

 ]

 [

   adda    r4,r2

   tfra    r1,r3               ; transfer r1 to r3, for storing updated FIR 

 ]

 [
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 ift jmp   IL_update_offset1

 ift suba  #2,r2

 ]

IL_update_offset0or1

 [

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d0

   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 

   dosetup1 IL_update_off_by_zero   

 ]

 [

   tfr     d4,d15

   macr    d4,d13,d3

   macr    d4,d14,d2

   macr    d4,d15,d1

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

   move.4f (r1)+,d8:d9:d10:d11

 ] 

 FALIGN

 LOOPSTART1

IL_update_off_by_zero:

 [

   macr    d15,d5,d11

   macr    d15,d6,d10

   macr    d15,d7,d9

   macr    d15,d12,d8

   moves.4f d0:d1:d2:d3,(r3)+

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d0

   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 

   moves.4f d8:d9:d10:d11,(r3)+

 ]

 [

   tfr     d4,d15

   macr    d4,d13,d3
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   macr    d4,d14,d2

   macr    d4,d15,d1  

   move.4f (r1)+,d8:d9:d10:d11

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

 ]

 LOOPEND1

 [  

   jmp     IL_end_update_fir

 ]

IL_update_offset1

 [

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d1

   macr    d15,d5,d0

   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 

   dosetup1 IL_update_off_by_one   

 ]

 [

   tfr     d4,d15

   macr    d4,d14,d3

   macr    d4,d15,d2

   move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

 ]

 FALIGN

 LOOPSTART1

IL_update_off_by_one:

 [

   macr    d15,d6,d11

   macr    d15,d7,d10

   macr    d15,d12,d9

   macr    d15,d13,d8

   moves.4f d0:d1:d2:d3,(r3)+

   move.4f (r1)+,d0:d1:d2:d3

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d1
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   macr    d15,d5,d0

   moves.4f d8:d9:d10:d11,(r3)+

   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 

 ]

 [

   tfr     d4,d15

   macr    d4,d14,d3

   macr    d4,d15,d2

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

   move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

 ]

 LOOPEND1

 [  

   jmp     IL_end_update_fir

 ]

IL_update_offset2or3

 [

   bt      IL_update_offset3

   suba    #4,r2

 ]

IL_update_offset2

 [

   dosetup1 IL_update_off_by_two   

 ]

 [

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d2

   macr    d15,d5,d1

   macr    d15,d6,d0

   move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3] 

 ]

 [

   tfr     d4,d15

   macr    d4,d15,d3

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

   move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

 ]

 FALIGN



Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

26 Freescale Semiconductor
 

Appendix A

 LOOPSTART1

IL_update_off_by_two:

 [

   macr     d15,d7,d11

   macr     d15,d12,d10

   macr     d15,d13,d9

   macr     d15,d14,d8

   moves.4f d0:d1:d2:d3,(r3)+

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

 ]

 [

   tfr     d15,d4

   macr    d15,d4,d2

   macr    d15,d5,d1

   macr    d15,d6,d0

   move.4f (r2)-,d12:d13:d14:d15

   moves.4f d8:d9:d10:d11,(r3)+

 ]

 [

   macr    d4,d15,d3

   tfr     d4,d15

   move.4f (r1)+,d8:d9:d10:d11

   move.4f (r2)-,d4:d5:d6:d7

 ]

 LOOPEND1

 [  

   jmp     IL_end_update_fir

 ]

 

IL_update_offset3

 [

   dosetup1 IL_update_off_by_three   

   suba    #2,r2

 ]

 [

   move.4f (r1)+,d0:d1:d2:d3   ; load fir[0] -> fir[3]

   move.4f (r2)-,d4:d5:d6:d7   ; load data[ptr] ->data[ptr+3] 

   clr     d8

   clr     d9

   clr     d10

   clr     d11

 ]
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 FALIGN

 LOOPSTART1

IL_update_off_by_three:

 [

   macr    d15,d4,d3

   macr    d15,d5,d2

   macr    d15,d6,d1

   macr    d15,d7,d0

   move.4f (r2)-,d4:d5:d6:d7

   move.4f (r1)+,d8:d9:d10:d11

 ]

 [

   macr    d15,d4,d11

   macr    d15,d5,d10

   macr    d15,d6,d9

   macr    d15,d7,d8  

   move.4f (r2)-,d4:d5:d6:d7

   moves.4f d0:d1:d2:d3,(r3)+

 ]

 [

   moves.4f d8:d9:d10:d11,(r3)+

   move.4f (r1)+,d0:d1:d2:d3

 ]

 LOOPEND1

IL_end_update_fir

 [

   pop     mctl 

 ]

;==============================================================================

;*                          end update_fir                                    * 

;==============================================================================
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