
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.

1 Introduction
The adaptive Finite Impulse Response filter (FIR) is one of
the most commonly implemented algorithms on DSPs.
Adaptive FIR filters are used for a variety of applications in
a variety of forms. Some of these applications have special
requirements that increase the complexity of efficient FIR
implementation. Minimum latency requirements, restricted
data alignment, windowed filtering, and coefficient
adaptation can increase code size and computational costs.
These considerations are especially important on multiple
arithmetic logic unit (ALU) processors that have
implementation restrictions. This application note discusses
these topics as they apply to the implementation of an
adaptive FIR filter for echo cancellation (ECAN) with the
StarCore™ SC140 architecture.

Document Number: AN3064
Rev. 1, 04/2006

Contents
1. Introduction . 1
2. Echo Cancellation and Adaptive Filtering 2
3. Adaptive Filtering on the SC140 Core 3
4. Conclusion . 14
5. References . 15
6. Appendix A . 15

Efficient Implementation of Adaptive
Filtering in Echo Cancellation Using
the SC140 Core
by Brad Zwernemann, Digital Systems Division

Freescale Semiconductor, Austin, Texas

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

2 Freescale Semiconductor

Echo Cancellation and Adaptive Filtering

2 Echo Cancellation and Adaptive Filtering
Network echo cancellation is used to cancel the reflected signal, or echo, generated in a telephony system
by impedance mismatches of network elements. Echo energy distribution is unique for each connection
and can be dynamic for a particular connection. The total energy of the echo and the delay of the echo can
change over time, so they require special consideration when an echo canceller is implemented.

An echo canceller requires the use of a specialized adaptive filter. A common adaptive filtering algorithm
used in echo cancellation is the Least Mean Square (LMS) algorithm, which offers relatively low
computation complexity and good stability. Though several variants of the LMS exist, there are three basic
operations: compute the output of the filter, calculate error, and update the filter coefficients. As the filter
length increases, the cost of computing the filter outputs and filter coefficients update increases, primarily
due to the number of multiply-and-accumulate (MAC) operations required. Typically, the computational
cost for adaptive filtering may count for as much as 40 to 70 percent of the total cycles consumed by the
echo cancellation component, therefore, it is critical to implement the adaptive filter efficiently.

Using the LMS algorithm, it can be demonstrated that, under certain assumptions, the error e can be
practically minimized through adaptive changes, or iterations h(m). The algorithm can be written for kth
iteration as follows:

The output of the FIR filter is given by:

Eqn. 1

The error signal:

 Eqn. 2

where d is the desired signal.

The adaptation formula:

Eqn. 3

where µ is frequently called the step size of the LMS algorithm and k is the sample number, also called the
iteration number. Because the sample number coincides with the iteration number, the algorithm is said to
perform per sample adaptation.

y k() hi

i 0=

N 1–

∑= x k i–()⋅

e k() d k() y k()–=

hi k 1+() hi k() µ e k() xi k() for 0 i N 1–≤ ≤⋅ ⋅+=

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 3

Adaptive Filtering on the SC140 Core

As the LMS algorithm governing equations indicate, three major computational steps are required to
implement the algorithm:

• Computation of the output of the FIR filter

• Computation of error

• Computation of updated coefficients of the FIR filter

Cycle consumption for the adaptive FIR filter is dictated primarily by two operations: applying the filter
and updating the filter coefficients. Using an example 256 tap filter, the FIR requires 256 MACs and
2 × 256 data moves. The update requires 256 MACS and 3 × 256 data moves.

Generally, DSPs have one to four arithmetic logic units and can move data in parallel with the arithmetic
operations. Read/write and register combinations may be restricted in some architectures, limiting the
efficiency of filtering operations.

3 Adaptive Filtering on the SC140 Core
DSPs have addressing modes that perform modulo address pointer updates automatically, eliminating the
need to check the modulo condition in software. Some DSPs can also execute multiple data moves and
arithmetic operations in parallel. Freescale StarCore-based DSPs have both modulo addressing and
parallel execution. The SC140 architecture has four arithmetic logic units (ALU) and two address
arithmetic units (AAU) and executes up to six instructions, including four arithmetic operations and two
moves of up to 64 bits each with pointer updates (see Figure 1). For details on StarCore architecture, see
the SC140 DSP Core Reference Manual.

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

4 Freescale Semiconductor

Adaptive Filtering on the SC140 Core

Figure 1. StarCore SC140 Block Diagram

The typical filtering application is based on the following buffered filter equation:

Eqn. 4

In real-time DSP implementations, the input x and filter coefficients h are kept in buffers of length N. As
Equation 4 shows, n is not used in the indices of the input or coefficient buffers. The equation assumes that
data is properly positioned within the buffers. Although the data in the coefficient buffer does not change,
new input samples must be shifted into the input buffer and the oldest shifted out. Shifting the data within
the buffer requires N additional moves, consuming processor cycles and decreasing efficiency. An efficient
alternative to data shifting is to use modulo data pointers. As inputs are updated in the input buffer, a
pointer to the oldest data with offset f is updated modulo N to wrap around the circular buffer as shown in
Figure 2.

Address Generator
Register File

BMU

Program
Sequencer

EONCE

JTAG
Controller

Unified
Data/Program Memory

ISAP

AAU

AAU

ALU

ALU

ALU

ALU

AGU

Instruction Bus

128 32 32 32 64 64

25

PDB PAB XABA XABB XDBA XDBB

DALU

DALU
Register File

y n[] x k[]h N 1– k–[]
k 0=

N 1–

∑=

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 5

Adaptive Filtering on the SC140 Core

Figure 2. FIR Filter Buffers

The new filter equation using modulo is shown in Equation 5:

Eqn. 5

A partial implementation of an FIR filter in StarCore assembly language is shown in Figure 3. The code
illustrates the sequence of arithmetic operations and data reads to compute a single output of the filter.

xN-f xN-1 x0 x1 xN-1-f… …Input Buffer

h0 hN-1h1 …Filter Buffer

offset f

y n[] x k f+()modN[]h N 1– k–[]

where 0 f N≤ ≤

k 0=

N 1–

∑=

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

6 Freescale Semiconductor

Adaptive Filtering on the SC140 Core

Figure 3. Code Segment 1—FIR Filter Code for StarCore

In Code Segment 1, the basic looped four mac (multiply accumulate) plus two move.4f instruction set
results in an efficient N/4 + 3 cycles for the output to be calculated. For our 256 tap filter example this
works out to 67 cycles. Additional overhead is required for setting up address, modulo, and loop registers.
The overhead may require five or more operations, but the operations can often be executed in parallel with
non-related operations. FIR setup overhead typically adds no more than two or three cycles to the
implementation. Code Segment 1 serves as the foundation for more complex filter implementations.

For parallel processing techniques, memory alignment of data is necessary. Multiple data moves, as in the
example above, require the data access to be on an 8-byte boundary. The alignment simplifies access by
allowing the use of the move.4f instruction for all input and coefficient data moves.

Filter coefficient update implementation is very similar to FIR filter implementation. The following code
in Figure 4 gives an example of filter coefficient updates on the SC140 core.

 [
 clr d0 ; clear accumulators
 clr d1
 clr d2
 clr d3
 move.4f (r1)+,d4:d5:d6:d7 ; read coefficients
 move.4f (r2)-,d8:d9:d10:d11 ; read input data
]
 LOOPSTART3
 [
 mac d7,d8,d0 ; acc += x * h
 mac d6,d9,d1
 mac d5,d10,d2
 mac d4,d11,d3
 move.4f (r1)+,d4:d5:d6:d7
 move.4f (r2)-,d8:d9:d10:d11
]
 LOOPEND3
 [
 mac d7,d8,d0
 mac d6,d9,d1
 mac d5,d10,d2
 mac d4,d11,d3
]
 [
 add d0,d1,d3 ; accumulate output y
 add d2,d3,d2
]
 [
 adr d3,d2 ; output y in d2
]

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 7

Adaptive Filtering on the SC140 Core

Figure 4. Code Segment 2—Update FIR Code for SC140

The SC140 core can perform four reads and four writes in a single cycle. Coefficient update requires one
multiply accumulate, two reads, and one write per data. Updates require one additional memory access
over the filter and, therefore, a greater number of cycles than the filter for the same filter size. The update
is accomplished by performing eight multiply accumulate operations and twelve move operations per
iteration of the loop. The total number of cycles for a filter of size N is 3N/8 + 1. For our 256 tap example
filter, the update requires 97 cycles.

The read/write and register use combination is restricted in some architectures and may require a greater
number of cycles than SC140 core. The ability to perform eight memory accesses, read or write, with four
arithmetic operations and flexible register usage makes the SC140 core much more efficient at coefficient
update than some other DSP architectures.

For best efficiency and code simplification, use the following guidelines when implementing an adaptive
FIR filter:

• Buffer sizes should be equivalent.

• Buffer sizes should be a multiple of four.

• Align input and filter buffers on 8-byte boundaries.

• Access input buffer and filter buffer on 8-byte boundaries.

• Process four inputs and four outputs per filter iteration.

• Use the four mac and two move.4f instruction sequence for all filter computation.

• Use modulo addressing mode.

It is not always possible to follow all of these guidelines. Echo canceller requirements in particular make
some of these requirements difficult.

 [
 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]
 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]
]
 FALIGN
 LOOPSTART1
 [
 macr d15,d4,d3
 macr d15,d5,d2
 macr d15,d6,d1
 macr d15,d7,d0
 move.4f (r2)-,d4:d5:d6:d7 ; load data
 move.4f (r1)+,d8:d9:d10:d11 ; load coefficients
]
 [
 macr d15,d4,d11
 macr d15,d5,d10
 macr d15,d6,d9
 macr d15,d7,d8
 move.4f (r2)-,d4:d5:d6:d7 ; load data
 moves.4f d0:d1:d2:d3,(r3)+ ; write coefficients
]
 [
 moves.4f d8:d9:d10:d11,(r3)+ ; write coefficients
 move.4f (r1)+,d0:d1:d2:d3 ; load coefficients
]
 LOOPEND1

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

8 Freescale Semiconductor

Adaptive Filtering on the SC140 Core

3.1 Filtering Requirements for ECAN
High performance programmable DSP-based echo cancellers using the LMS algorithm have special
filtering requirements not found in standard filtering applications. The signal reflections handled by echo
cancellers have energy within a limited time span (echo span). However, the reflection energy may be
delayed anywhere from zero milliseconds to an interval several times greater than the echo span itself. The
echo canceller must search the full potential delay range (echo tail span) and find the region of the
reflection energy. As a result, only a portion of the filter coefficients may have significant energy. The
energy is usually concentrated in a particular delay range allowing a windowed filter approach to be used.
With more complex networks, the energy may exist in several delay ranges, so multiple windows must be
used. Windowing provides sufficient coverage to cancel echo while eliminating the inefficiency of
filtering in the negligible energy range. Echo cancellers are also required to limit response time to one
millisecond per ITU G.168 standards [2]. To meet this requirement, an echo canceller must be able to filter
a single input and single output.

3.1.1 Pointers and Modulo Addressing
An example high performance echo canceller can use an echo tail span of N samples and an echo span of
M samples where N > M. The M sample echo span represents a windowed segment of a full N sample filter
where only the windowed portion has significant energy. As the window moves to coincide with the bulk
delay time of the echo, the location of the access into the coefficient buffer changes. Figure 4 shows an
input buffer and a filter coefficient buffer. The input buffer contains the N newest input samples. The
coefficient buffer contains N coefficients, but only M coefficients have significant energy. The region of
significant energy is shifted by a delay of d.

Figure 5. Input and Filter Coefficient Buffers

Input Buffer

…

0 N - 1

Coefficient Buffer

… … …

0 d d + M - 1 N - 1

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 9

Adaptive Filtering on the SC140 Core

The coefficient definition for windowed filtering is:

Eqn. 6

Region of significant energy:

Eqn. 7

An input data buffer for the full N sample echo tail is kept in memory, but for memory conservation a buffer
of only M samples is kept for coefficients. To facilitate a shortened coefficient buffer, changes in the access
point to the filter coefficients must be translated into changes in the access point to the input buffer, as
demonstrated in Equation 8. In the example, d represents echo bulk delay.

The windowed filter equation is as shown in Equation 8:

Eqn. 8

Table 1 details an example of windowed filtering and lists the characteristics of the input and filter
coefficients.

Table 1. Windowed FIR Filter Example

Buffer Size N = 16

Window Size M = 4

Input Offset f = 4

Bulk Delay d = 5

h i[] 0 for 0 i d
and
h i[] 0 for d M i N
where 0 d N M–≤ ≤

≤ ≤+,≅

≤ ≤,≅

h i[] for d i d M+<≤,

y n[] x k f d– N M–+ +()mod N[]h d M 1– k–+[]

where 0 f N

and 0 d N M–≤ ≤

<≤

k 0=

M 1–

∑=

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

10 Freescale Semiconductor

Adaptive Filtering on the SC140 Core

The connecting lines represent multiplication and all products are summed to form y[n]. The shaded
regions of the filter coefficient buffer are outside of the window and are not used in the output computation.

Figure 6. Windowed FIR Filter Buffers

Equation 9 is a simplified equation for use with buffer h of size M with a built in delay shift d:

Eqn. 9

Using Equation 9, the filter coefficient buffer can be reduced from a size of N to the size M. The proper
window location based on delay must be kept and is used when updating the coefficients.

3.1.2 Data Alignment
Efficient filtering implementations on StarCore DSPs use four multiply accumulate instructions in parallel.
To use these four arithmetic instructions, new data may need to be moved into as many as eight data
registers. The StarCore architecture can move up to eight 16-bit groupings of data in two parallel move
instructions if each set of four 16-bit data are aligned on 8-byte boundaries. However, because the echo
canceller must process inputs and outputs one at a time, the pointer into the input datas move one 16-bit
input at a time and, therefore, is not always 8-byte aligned.

A simple solution is to create four sets of code for the four possibe data alignments. At each call to the
filter, the offset is measured and the appropriate code is executed. The alignment can be determined by
analyzing the offset to be added to the base address of the input pointer. Each code segment initially
accesses zero, one, two, or three inputs individually to align the input pointer. When the input pointer is
aligned, the code can begin accessing data in 8-byte blocks. An alternative to accessing data individually
is to create a pointer on an 8-byte boundary that points to the boundary just before the relevant data. The
pointer is then used to access blocks of eight bytes and the irrelevant data is simply ignored. Examples are
shown in the next section.

x12 x13 x0x15x14 x1 x5x4x3x2 x6 x7 x10x9x8 x11

h0 h1 h4h3h2 h5 h9h8h7h6 h10 h11 h14h13h12 h15

Input Buffer

Filter Coefficient Buffer

f = 4

d = 5

y n[] x f d– N 1– k–+()mod N[]h k[]

where 0 f N

and 0 d N M–≤ ≤

<≤

k 0=

M 1–

∑=

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 11

Adaptive Filtering on the SC140 Core

3.2 Example of Windowed FIR Application and Update
In the example presented in this section, an FIR is first applied and then updated.

3.2.1 Apply FIR
It is helpful to create a model for the filter in C code before the assembly code version is implemented. In
Code Segment 3, the windowed filter uses two buffers of size N and M where N > M. The buffer of length
M is treated as a sliding window. Modulo pointer updates for input buffer x are required only when
f - d > M - 1.

Figure 7. Code Segment 3–C Code for Windowed FIR

The code is split into two sections depending on where the window is placed within the buffer. In one case,
the window is completely within the bounds of the buffer and no modulo is necessary. In the other case,
the window wraps around the buffer and split computation is needed to handle the modulo addressing. The
split computation is not necessary if hardware modulo addressing is used. Hardware-based modulo
addressing is most easily implemented in assembly code.

Code Segment 1 is the base code for FIR filters, but some modifications are needed to handle data that is
not 8-byte aligned. In Code Segment 3, a modified portion of the assembly code implementation is shown.
This example is from one of the four sets of code described in Section 3.1.2, “Data Alignment”. The data
is off alignment by four bytes. Only two of the first four data read are relevant (registers d8 and d9). The
data in registers d10 and d11 is ignored. To use the move.4f instruction, the pointer must point four bytes
before the start of the valid data.

 acc = 0;
temp = delay-offset; // -N < (delay-offset) < N-M

if (temp < 0) {
 temp += N; // 0 < temp < N-1
}

if (temp <= (N-M)) {
 for (k=0; k<M; k++) {
 acc += x[offset-delay+N-1-k] * h[k];
 }
}

else { // temp is > (N-M)
 i = offset-delay+N-1;
 for (k=0; i>=0; k++, i--) { // from x[offset-delay+N-1] down to x[0]
 acc += x[i] * h[k];
 }
 i = N-1;
 for (; k<M; k++,i--) { // from x[N-1] down to x[offset-delay+N-M]
 acc += x[i] * h[k];
 }
}

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

12 Freescale Semiconductor

Adaptive Filtering on the SC140 Core

Figure 8. Code Segment 4–Assembly Code Alignment Off by Four Bytes

Code Segment 5 is similar, but alignment is off by two bytes so only one 16-bit input is ignored.

Figure 9. Code Segment 5–Assembly Code Alignment Off by Two Bytes

Similar code must be included after the loop to complete the execution for the remaining non-aligned data.
Excess data is read again and discarded. Though extra data moves are performed, there is no increase in
cycle consumption because the move.4f instruction requires only one cycle just as other data moves.
Section 6, “Appendix A”, features more detailed code examples.

 [
 clr d0
 clr d1
 clr d2
 clr d3
 move.4f (r1)+,d4:d5:d6:d7
 move.4f (r2)-,d8:d9:d10:d11
]
 [
 mac d5,d8,d1
 mac d4,d9,d0
 move.4f (r1)+,d12:d13:d14:d15
 move.4f (r2)-,d8:d9:d10:d11
]
 LOOPSTART3
 [
 mac d13,d8,d1
 mac d12,d9,d0
 mac d7,d10,d3
 mac d6,d11,d2
 move.4f (r1)+,d4:d5:d6:d7
 move.4f (r2)-,d8:d9:d10:d11
]

 [
 clr d0
 clr d1
 clr d2
 clr d3
 move.4f (r1)+,d4:d5:d6:d7
 move.4f (r2)-,d8:d9:d10:d11
]
 [
 mac d6,d8,d2
 mac d5,d9,d1
 mac d4,d10,d0
 move.4f (r1)+,d12:d13:d14:d15
 move.4f (r2)-,d8:d9:d10:d11
]
 LOOPSTART3
 [
 mac d14,d8,d2
 mac d13,d9,d1
 mac d12,d10,d0
 mac d7,d11,d3
 move.4f (r1)+,d4:d5:d6:d7
 move.4f (r2)-,d8:d9:d10:d11
]

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 13

Adaptive Filtering on the SC140 Core

3.2.2 Update FIR
In an echo cancellation application, the LMS algorithm updates the coefficients of the FIR filter to adapt
to the echo. The implementation of the FIR update is very similar to the FIR itself, with two major
differences. First, where the single FIR output is the sum of products of multiply accumulate instructions,
the update has an output for every multiply accumulate instruction. Thus, there is a write for each data item
as opposed to a single write for each call. Second, the FIR update outputs the sum of the coefficient plus
the input multiplied by a constant value. The FIR output is the sum of the product of the input and
coefficients. Code Segment 6 details the update FIR implementation in C code.

Figure 10. Code Segment 6–C Code for Update Windowed FIR

The assembly code for the FIR update is also very similar to the FIR code. There are a few changes:

• The macr (multiply accumulate with round) instruction is used in place of mac because each macr
result is an output.

• The moves.4f instruction is used in every iteration of the loop to write the updated filter
coefficients.

• Each macr instruction has register d15, a constant value, as one of the operands.

Code Segment 7 shows an example of assembly code for an update FIR where data is not 8-byte aligned.

 // y is passed to the function
acc = 0;
temp = delay-offset; // -N < (delay-offset) < N-M

if (temp < 0) {
 temp += N; // 0 < temp < N-1
}

if (temp <= (N-M)) {
 for (k=0; k<M; k++) {
 h[k] += y * x[offset-delay+N-1-k]
 }
}

else { // temp is > (N-M)
 i = offset-delay+N-1;
 for (k=0; i>=0; k++, i--) { // from x[offset-delay+N-1] down to x[0]
 h[k] += y * x[i]
 }
 i = N-1;
 for (; k<M; k++,i--) { // from x[N-1] down to x[offset-delay+N-M]
 h[k] += y * x[i]
 }
}

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

14 Freescale Semiconductor

Conclusion

Figure 11. Code Segment 7–Assembly Code Update FIR Not Aligned

4 Conclusion
Although an echo canceller requires special filtering, a cycle efficient filter can be implemented with
relatively little added complexity. Careful implementation allows the full use of StarCore modulo
addressing, parallel read and write, and parallel arithmetic operations. Cycle consumption is comparable
to a standard filter of the same size and code size is increased to approximately four times that of the
standard filter if the method described in this application note is used.

 [
 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]
 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]
]
 [
 tfr d15,d4
 macr d15,d4,d1
 macr d15,d5,d0
 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]
 dosetup1 IL_update_off_by_one
]
 [
 tfr d4,d15
 macr d4,d14,d3
 macr d4,d15,d2
 move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]
 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]
]

 FALIGN
 LOOPSTART1
update_off_by_one:
 [
 macr d15,d6,d11
 macr d15,d7,d10
 macr d15,d12,d9
 macr d15,d13,d8
 moves.4f d0:d1:d2:d3,(r3)+
 move.4f (r1)+,d0:d1:d2:d3
]
 [
 tfr d15,d4
 macr d15,d4,d1
 macr d15,d5,d0
 moves.4f d8:d9:d10:d11,(r3)+
 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]
]
 [
 tfr d4,d15
 macr d4,d14,d3
 macr d4,d15,d2
 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]
 move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]
]
 LOOPEND1

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 15

References

5 References
1. SC140 DSP Core Reference Manual, (MNSC140CORE) Freescale Semiconductor, 2004.

2. ITU-T Recommendation G.168–Digital Network Echo Cancellers, 1997/2000/2002/2004.

3. Roman A. Dyba, Perry P. He, and Lúcio F. C. Pessoa, Network Echo Cancellers and Freescale
Solutions Using the StarCore SC140 Core (AN2598).

4. Simon Haykin, Adaptive Filter Theory, Third Edition, Prentice Hall, 1997.

6 Appendix A

6.1 Apply FIR
;============================ START_INLINE ====================================

;* apply_fir *

;* apply_fir (data *ec) *

;==

 [

 adda #taps,r6,r1 ; for apply_fir

 adda #bulk_delay,r6,r3 ; r3 points to bulk_delay

]

 [

 move.w (r1),d6 ; (taps)

 adda #first_ref,r6,r5 ; r5 poits to first_ref

]

 [

 asl d6,d11 ; d11 = # of bytes for taps

 asrr #>3,d6 ; d6 = taps/8

]

 [

 adda #data,r6,r1 ; fir_ptr = data

 adda #ref_base,r6,r0

]

 [

 tfra r1,r2

 move.w (r0),d3

]

 [

 move.l d3,r0

 deceq d6 ; d6 = taps/8 -1

 adda #echospan,r6,r8

]

 [

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

16 Freescale Semiconductor

Appendix A

 move.w (r5),d1 ; d1 = first_ref

 move.w (r3),d2 ; d2 = bulk_delay

]

 [

 addl1a r0,r2 ; ref_ptr = data + ref_base + ...

 move.w (r8),d3 ; echospan

]

 [

 asl d3,d3 ; (echospan)*2 size in bytes for buffer

 sub d2,d1,d5 ; new_ref = new_ref - bulk_delay

 push mctl

 move.l #$0800,mctl ; m0 used w/ r2,

]

 [

 and #2,d5,d1

 move.l d5,r4

 move.l d3,m0 ; (echospan)*2 size in bytes for buffer

]

 [

 tstgt d1

 and #1,d5,d1

 doensh3 d6

]

 [

 tstgt d1

 tfra r2,r10

 btd IL_fir_offby23

]

 [

 addl1a r4,r2 ; ref_ptr = data + ref_base + new_ref

 move.l #IL_fir_end_add1,r0

]

 [

 ift suba #2,r2

 ift jmp IL_fir_offset1

]

IL_fir_offset0

 [

 clr d0

 clr d1

 clr d2

 clr d3

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 17

Appendix A

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11 ; only use d8 [X|-|-|-]

]

 [

 mac d4,d8,d0

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPSTART3

 [

 mac d12,d8,d0

 mac d7,d9,d3

 mac d6,d10,d2

 mac d5,d11,d1

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11

]

 [

 mac d4,d8,d0

 mac d15,d9,d3

 mac d14,d10,d2

 mac d13,d11,d1

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPEND3

 [

 mac d12,d8,d0

 mac d7,d9,d3

 mac d6,d10,d2

 mac d5,d11,d1

 move.4f (r2)-,d8:d9:d10:d11

 jmpd r0

]

 [

 mac d15,d9,d3

 mac d14,d10,d2

 mac d13,d11,d1

]

IL_fir_offset1

 [

 clr d0

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

18 Freescale Semiconductor

Appendix A

 clr d1

 clr d2

 clr d3

 move.4f (r1)+,d4:d5:d6:d7 ; load fir[0] -> fir[3]

 move.4f (r2)-,d8:d9:d10:d11 ; only use d8 & d9 [Y|X|-|-]

]

 [

 mac d5,d8,d1

 mac d4,d9,d0

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPSTART3

 [

 mac d13,d8,d1

 mac d12,d9,d0

 mac d7,d10,d3

 mac d6,d11,d2

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11

]

 [

 mac d5,d8,d1

 mac d4,d9,d0

 mac d15,d10,d3

 mac d14,d11,d2

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPEND3

 [

 mac d13,d8,d1

 mac d12,d9,d0

 mac d7,d10,d3

 mac d6,d11,d2

 move.4f (r2)-,d8:d9:d10:d11

 jmpd r0

]

 [

 mac d15,d10,d3

 mac d14,d11,d2

]

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 19

Appendix A

IL_fir_offby23

 [

 bt IL_fir_offset3

 suba #4,r2

]

IL_fir_offset2

 [

 clr d0

 clr d1

 clr d2

 clr d3

 move.4f (r1)+,d4:d5:d6:d7 ; load fir[0] -> fir[3]

 move.4f (r2)-,d8:d9:d10:d11 ; only use d8,d9 & d10 [Z|Y|X|-]

]

 [

 mac d6,d8,d2

 mac d5,d9,d1

 mac d4,d10,d0

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPSTART3

 [

 mac d14,d8,d2

 mac d13,d9,d1

 mac d12,d10,d0

 mac d7,d11,d3

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11

]

 [

 mac d6,d8,d2

 mac d5,d9,d1

 mac d4,d10,d0

 mac d15,d11,d3

 move.4f (r1)+,d12:d13:d14:d15

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPEND3

 [

 mac d14,d8,d2

 mac d13,d9,d1

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

20 Freescale Semiconductor

Appendix A

 mac d12,d10,d0

 mac d7,d11,d3

 move.4f (r2)-,d8:d9:d10:d11

 jmpd r0

]

 mac d15,d11,d3

IL_fir_offset3

 suba #2,r2 ; sub #6

 [

 clr d0

 clr d1

 clr d2

 clr d3

 move.4f (r1)+,d4:d5:d6:d7 ; load fir[0] -> fir[3]

 move.4f (r2)-,d8:d9:d10:d11 ; use d8,d9,d10,d11 [A|Z|Y|X]

]

 [

 mac d7,d8,d0

 mac d6,d9,d1

 mac d5,d10,d2

 mac d4,d11,d3

 move.4f (r2)-,d8:d9:d10:d11

 move.4f (r1)+,d4:d5:d6:d7

]

 LOOPSTART3

 [

 mac d7,d8,d3

 mac d6,d9,d2

 mac d5,d10,d1

 mac d4,d11,d0

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11

]

 [

 mac d7,d8,d3

 mac d6,d9,d2

 mac d5,d10,d1

 mac d4,d11,d0

 move.4f (r1)+,d4:d5:d6:d7

 move.4f (r2)-,d8:d9:d10:d11

]

 LOOPEND3

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 21

Appendix A

 [

 mac d7,d8,d3

 mac d6,d9,d2

 mac d5,d10,d1

 mac d4,d11,d0

]

IL_fir_end_add1

 [

 add d0,d1,d0

 add d2,d3,d2

]

IL_fir_end_add2

 [

 add d0,d2,d0

 pop mctl

]

 nop ; MCTL Stall

 [

 rnd d0,d2

]

;==

;* end apply_fir *

;==

6.2 Update FIR
;==

;* update_fir *

;* update_fir (data *ec, const Word16 y) *

;==

 [

 adda #taps,r6,r5 ; r5 points to # of taps

 adda #bulk_delay,r6,r3 ; r3 points to bulk_delay

]

 [

 move.w (r3),d2 ; d2 = bulk_delay

 move.w (r5),d0 ; d0 = taps

]

 adda #first_ref,r6,r5 ; r2 points to first_ref

 [

 move.w (r5),d1 ; d1 = first_ref

 add #2,d3

 adda #ref_base,r6,r0

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

22 Freescale Semiconductor

Appendix A

]

 [

 adda #data,r6,r1 ; fir_ptr = data

 move.w (r0),d4

]

 [

 move.l d4,r0

 adda #echospan,r6,r8

]

 [

 tfra r1,r2

 sub d2,d1,d5 ; d5 = first_ref - (bulk_delay)

 move.w (r8),d4 ; echospan

]

 [

 push mctl

 asl d5,d6 ; d5 = new_ref in bytes

 and d5,d3

 addl1a r0,r2 ; ref_ptr = data + ref_base + ...

 asl d4,d4 ; (echospan)*2 size in bytes for buffer

]

 [

 move.l d4,m0 ; (echospan)*2 size in bytes for buffer

 move.l #$0800,mctl ; m0 used with r2

]

 nop ; MCTL Stall

 [

 move.l d6,r4

 tfra r2,r10

 tstgt d3

 and #01,d5,d1

]

 [

 btd IL_update_offset2or3

 tstgt d1

 doen1 d0

]

 [

 adda r4,r2

 tfra r1,r3 ; transfer r1 to r3, for storing updated FIR

]

 [

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 23

Appendix A

 ift jmp IL_update_offset1

 ift suba #2,r2

]

IL_update_offset0or1

 [

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

]

 [

 tfr d15,d4

 macr d15,d4,d0

 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]

 dosetup1 IL_update_off_by_zero

]

 [

 tfr d4,d15

 macr d4,d13,d3

 macr d4,d14,d2

 macr d4,d15,d1

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

 move.4f (r1)+,d8:d9:d10:d11

]

 FALIGN

 LOOPSTART1

IL_update_off_by_zero:

 [

 macr d15,d5,d11

 macr d15,d6,d10

 macr d15,d7,d9

 macr d15,d12,d8

 moves.4f d0:d1:d2:d3,(r3)+

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

]

 [

 tfr d15,d4

 macr d15,d4,d0

 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]

 moves.4f d8:d9:d10:d11,(r3)+

]

 [

 tfr d4,d15

 macr d4,d13,d3

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

24 Freescale Semiconductor

Appendix A

 macr d4,d14,d2

 macr d4,d15,d1

 move.4f (r1)+,d8:d9:d10:d11

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

]

 LOOPEND1

 [

 jmp IL_end_update_fir

]

IL_update_offset1

 [

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

]

 [

 tfr d15,d4

 macr d15,d4,d1

 macr d15,d5,d0

 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]

 dosetup1 IL_update_off_by_one

]

 [

 tfr d4,d15

 macr d4,d14,d3

 macr d4,d15,d2

 move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

]

 FALIGN

 LOOPSTART1

IL_update_off_by_one:

 [

 macr d15,d6,d11

 macr d15,d7,d10

 macr d15,d12,d9

 macr d15,d13,d8

 moves.4f d0:d1:d2:d3,(r3)+

 move.4f (r1)+,d0:d1:d2:d3

]

 [

 tfr d15,d4

 macr d15,d4,d1

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 25

Appendix A

 macr d15,d5,d0

 moves.4f d8:d9:d10:d11,(r3)+

 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]

]

 [

 tfr d4,d15

 macr d4,d14,d3

 macr d4,d15,d2

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

 move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

]

 LOOPEND1

 [

 jmp IL_end_update_fir

]

IL_update_offset2or3

 [

 bt IL_update_offset3

 suba #4,r2

]

IL_update_offset2

 [

 dosetup1 IL_update_off_by_two

]

 [

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

]

 [

 tfr d15,d4

 macr d15,d4,d2

 macr d15,d5,d1

 macr d15,d6,d0

 move.4f (r2)-,d12:d13:d14:d15 ; load data[ptr] ->data[ptr+3]

]

 [

 tfr d4,d15

 macr d4,d15,d3

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

 move.4f (r1)+,d8:d9:d10:d11 ; load fir[0] -> fir[3]

]

 FALIGN

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

26 Freescale Semiconductor

Appendix A

 LOOPSTART1

IL_update_off_by_two:

 [

 macr d15,d7,d11

 macr d15,d12,d10

 macr d15,d13,d9

 macr d15,d14,d8

 moves.4f d0:d1:d2:d3,(r3)+

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

]

 [

 tfr d15,d4

 macr d15,d4,d2

 macr d15,d5,d1

 macr d15,d6,d0

 move.4f (r2)-,d12:d13:d14:d15

 moves.4f d8:d9:d10:d11,(r3)+

]

 [

 macr d4,d15,d3

 tfr d4,d15

 move.4f (r1)+,d8:d9:d10:d11

 move.4f (r2)-,d4:d5:d6:d7

]

 LOOPEND1

 [

 jmp IL_end_update_fir

]

IL_update_offset3

 [

 dosetup1 IL_update_off_by_three

 suba #2,r2

]

 [

 move.4f (r1)+,d0:d1:d2:d3 ; load fir[0] -> fir[3]

 move.4f (r2)-,d4:d5:d6:d7 ; load data[ptr] ->data[ptr+3]

 clr d8

 clr d9

 clr d10

 clr d11

]

Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core, Rev. 1

Freescale Semiconductor 27

Appendix A

 FALIGN

 LOOPSTART1

IL_update_off_by_three:

 [

 macr d15,d4,d3

 macr d15,d5,d2

 macr d15,d6,d1

 macr d15,d7,d0

 move.4f (r2)-,d4:d5:d6:d7

 move.4f (r1)+,d8:d9:d10:d11

]

 [

 macr d15,d4,d11

 macr d15,d5,d10

 macr d15,d6,d9

 macr d15,d7,d8

 move.4f (r2)-,d4:d5:d6:d7

 moves.4f d0:d1:d2:d3,(r3)+

]

 [

 moves.4f d8:d9:d10:d11,(r3)+

 move.4f (r1)+,d0:d1:d2:d3

]

 LOOPEND1

IL_end_update_fir

 [

 pop mctl

]

;==

;* end update_fir *

;==

Document Number: AN3064
Rev. 1
04/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
StarCore is a licensed trademark of StarCore LLC. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 2666 8080
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	Efficient Implementation of Adaptive Filtering in Echo Cancellation Using the SC140 Core
	1 Introduction
	2 Echo Cancellation and Adaptive Filtering
	3 Adaptive Filtering on the SC140 Core
	Figure 1. StarCore SC140 Block Diagram
	Figure 2. FIR Filter Buffers
	Figure 3. Code Segment 1-FIR Filter Code for StarCore
	Figure 4. Code Segment 2-Update FIR Code for SC140
	3.1 Filtering Requirements for ECAN
	3.1.1 Pointers and Modulo Addressing
	Figure 5. Input and Filter Coefficient Buffers
	Table 1. Windowed FIR Filter Example
	Figure 6. Windowed FIR Filter Buffers

	3.1.2 Data Alignment

	3.2 Example of Windowed FIR Application and Update
	3.2.1 Apply FIR
	Figure 7. Code Segment 3-C Code for Windowed FIR
	Figure 8. Code Segment 4-Assembly Code Alignment Off by Four Bytes
	Figure 9. Code Segment 5-Assembly Code Alignment Off by Two Bytes

	3.2.2 Update FIR
	Figure 10. Code Segment 6-C Code for Update Windowed FIR
	Figure 11. Code Segment 7-Assembly Code Update FIR Not Aligned

	4 Conclusion
	5 References
	6 Appendix A
	6.1 Apply FIR
	6.2 Update FIR

