
Freescale Semiconductor
Application Note

Document Number: AN3315
Rev. 0, 09/2006

Contents
Overview . 1
DMX512 Protocol Overview . 2

2.1 Physical Layer . 2
2.2 Data Protocol. 2
Software Flowchart . 5

3.1 Software Implementation. 6
3.2 Code Description. 6
3.3 Advantages and Disadvantages of Using Interrupt or

Non-Interrupt Methods. 7
3.4 Interrupt and Non-Interrupt Based Code: 8
3.5 DMX512 Frame-Detection Code 8
DMX512 Implementation Constrains 9
DMX512 Hardware Implementation 9
Considerations . 10
 Conclusion . 10

DMX512 Protocol
Implementation Using
MC9S08GT60 8-Bit MCU
by: Oscar Luna

Daniel Torres
RTAC Americas
1 Overview
This application note details the implementation of the
DMX512 using the MC9S08GT60 microcontroller.

Illumination entertainment markets have adopted
DMX512 protocol due to its simplicity and
characteristics and the necessity to unify a single
illumination standard. It has been adapted in the
high-brightness LED (HBLED) lighting industry for
light sources in microscopes and even fixtures in ships
and submarines. This market attracts new players as
low-end MCUs enable new applications. In many cases,
these new applications will be controlled by a central
control unit requiring a connectivity interface. In the
lighting market today, connectivity is dominated by two
protocols: DMX512 and DALI.

The newly-enabled applications using HBLEDs and
low-end MCUs include automotive signage, mobile
appliances, and illumination. Other novel uses for LEDs
range from water purification modules to automated

1
2

3

4
5
6
7

© Freescale Semiconductor, Inc., 2006. All rights reserved.

DMX512 Protocol Overview
systems for cultivating vegetables through the combined use of RGB LEDs.

2 DMX512 Protocol Overview
The DMX512 protocol is simple because it is an asynchronous 8-bit serial protocol and works in an
unidirectional line generated by a master device (or console). The protocol can handle up to 512 devices
in a DMX network and communicates at 250 kbps baud rate. Each bit in the frame is generated every 4us.

Every slave in the network is addressed using one specific byte in the frame. Each byte in the frame
describes 256 possible dimming levels on each slave. The media is driven using
ANSI/TIA/EIA-485-A-1998 balanced data-transmission techniques. Physical connection between devices
is via 5-pin XRL connectors or by hard-wiring the terminals.

2.1 Physical Layer
The EIA-485 are the protocol’s electrical specifications. The EIA-485-A standard does not point any
advice related to isolation issues but DMX512 standard does. Any suitable isolation method such as optical
isolation, transformer isolation, or other means may be used to avoid the undesirable propagation of
voltages exceeding limits based on the EIA-485-A standard.

The data link is compounded by a single, active differential-line driver, a terminated transmission line, and
one or more differential-line receivers. A DMX512 connection point has five assigned end-points: data 1-,
data1+, data2-, data2+ and a common reference. In some cases, data2- and data 2+ are not used or they
simply carry the same signals of the first differential line (data1- and data1+). In both cases, there should
be a low impedance connection between data link and common pin or contact of the DMX512 port.

The data link must have a terminator to eliminate ringing issues or signal reflection. The terminator must
be a 120 Ohms +5%/-10% impedance placed between data+ and data-.

Female connectors are used on controllers and other transmitting devices. Male connectors are used on
receiving devices. The required connector is a 5-pin XLR; pins are assigned as: common reference (1),
data1- (2), data1+ (3), data2- (4), data2+ (5).

2.2 Data Protocol
DMX512 data is transmitted sequentially in asynchronous serial format, starting with slot 0 and ending
with slot 512. Prior to the first data slot being transmitted, there is a reset sequence consisting of a BREAK
followed by a MARK AFTER BREAK and a START code. Valid data values under a NULL START code
are between 0 and 255.

(Figure 1 shows detailed information about the DMX512 frame’s compounding elements.)

The data transmission format is compounded as follows:
• Bit 1 start bit, low or space
• Bit 2-9 data bits (least significant bit to most significant bit)
• Bit 10,11 stop bits, high or MARK
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor2

DMX512 Protocol Overview
The data frame is compounded by these time slots:
• BREAK

Indicates the start of a new packet, typical value is 176 μsec.
• MARK AFTER BREAK

Separates the break and start code time slots. Values can be between 8 μsec and 1 second.
• START CODE

The first slot (slot 0) following a MARK AFTER BREAK. Identifies the function of subsequent
data bytes in the packet. For dimming commands the star code value is 0x00; therefore, it is also
known as a NULL START CODE. Alternate start codes may be used (refer to the
USSIT-DMX512-A protocol specification, annex D).

• DATA SLOTS
Subsequent data bytes where the dimming levels for each receiving device are placed. The number
of data slots is 512; DMX512 data packets with fewer data packets should not be transmitted. Time
between any two data packets may vary from 0 up to 1 sec. This time is known as MARK TIME
BETWEEN DATA SLOTS.

• MARK BEFORE BREAK
Time between the second stop bit of the last data slot of a given data packet and the falling edge of
the beginning of the BREAK for the next data packet. This time may vary from 0 up to 1 sec. Every
data packet transmitted over the data link starts with a BREAK, MARK AFTER BREAK, and a
START CODE sequence defined as a RESET sequence.

• BREAK-TO-BREAK.
The period between the falling edge at the start code of any one BREAK and the falling edge at the
start of the next BREAK. May vary from 1196 μsec up to 1.25 sec.
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor 3

DMX512 Protocol Overview
Figure 1. Typical DMX512 Frame

Each listed point describes the numbers shown in Figure 1
1. SPACE for BREAK
2. MARK AFTER BREAK
3. Slot Time
4. START Time
5. LEAST SIGNIFICANT data bit
6. MOST SIGNIFICANT data bit
7. STOP bit
8. STOP bit
9. MARK TIME BETWEEN SLOTS
10. MARK BEFORE BREAK
11. BREAK to BREAK time
12. RESET sequence
13. DMX512 packet
14. START CODE (Slot 0, data)
15. SLOT 1, data
16. SLOT nnn, data (Max 512)

10

1

3333

12

1213

11

10

1

4

14

7 8
8889

994

15

7 8 4

16

7 8

210

12
13

11

10

1

333
5 6 10 10

4

16

7 88
7

15

4
9

8
7

14

4

1

5 6
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor4

Software Flowchart
3 Software Flowchart

Figure 2. Flowchart

START

Configure MCU
to run at 20 MHz

using internal
reference clock

Configure UART
baud rate

at 250 kbps

Enable
receive interrupt
or poll receive
interrupt flag

Receive
interrupt
enabled?

Wait for
receive
interrupt

Yes

No

Receive interrupt
flag will be polled

using state machine
architecture

Receive
buffer
full?

No

Yes

Is a frame,
noise, or parity error

detected?

Yes

No

Flush received
byte and clear
DMX status

variables

1

DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor 5

Software Flowchart
Figure 2. Flowchart (continued)

3.1 Software Implementation
Because the protocol consists of an untyped byte stream produced by standard UARTs, the implementation
can be easily adapted to work with any microcontroller supporting baud rates up to 250 kbps.

The application software architecture developed in this application note is based on a State Machine
model. The shown software was developed to demonstrate DMX512 protocol implementation. User has
to develop the application layer which will control the lighting devices attached to the network.

3.2 Code Description
Required steps to implement the DMX512 driver using a generic UART:

1. MCUInit_Internal
Configures microcontroller to work with internal reference, enables FLL to operate at 20MHz, and
waits until FLL frequency becomes stable.

/* SOPT: COPE=0,COPT=1,STOPE=0,BKGDPE=1 */
 SOPT = 0x53;
 /* SPMSC1: LVDF=0,LVDACK=0,LVDIE=0,LVDRE=1,LVDSE=1,LVDE=1 */
 SPMSC1 = 0x1C;
 /* SPMSC2: LVWF=0,LVWACK=0,LVDV=0,LVWV=0,PPDF=0,PPDACK=0,PDC=0,PPDC=0 */
 SPMSC2 = 0x00;

Store received
byte into DMX

buffer and
increase DMX

buffer index

Is DMX
buffer
full?

No

Yes

1

DMX frame is
ready to be
processed

Process received
frame

1

DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor6

Software Flowchart
 /* ICGC1: RANGE=1,REFS=0,CLKS1=0,CLKS0=1,OSCSTEN=1 */
 ICGC1 = 0x4C;
 /* ICGC2: LOLRE=0,MFD2=1,MFD1=1,MFD0=1,LOCRE=0,RFD2=0,RFD1=0,RFD0=0 */
 ICGC2 = 0x70;
 ICGTRM = *(unsigned char*far)0xFFBE; /* Initialize ICGTRM register from a non volatile
memory */
 while(!ICGS1_LOCK) { /* Wait FLL be stable */
2. vfnDMX512Init

Configures SCI module to work with a baud rate of 250 kbps, enables RX interrupt, clears all RX
flags, and initializes DMX control variables.
 /** Variable used to clear the SCI flags */
UINT8 uInt8ClearFlags = 0;

 DMX512BDH = 0x00;

DMX512BDL = BAUD_RATE_250K; /* Configure Baud Rate at 250Kbps*/
DMX512C1 = DMX512_RESET_VALUE;

 /* Disable Rx interrupt. Data arrived will be polled */

DMX512C2 = CONFIG_DMX512_RX_POLL;
 /*

Clear any Flag that could be set */
 uInt8ClearFlags = DMX512S1;
 uInt8ClearFlags = DMX512S2;
 DMX512C3 = DMX512_RESET_VALUE;
 uInt8ClearFlags = DMX512Data; /* Reading the DMX512_RX Data Register */

 /*Set the program flow control flags*/
 DMX512Comm.RxOffset = 0;

DMX512Comm.RxFlags = 0;
DMX512Comm.StartRxFlag = 0 ;

 DMX512Comm.RxStatus = DMX512_READY ;
3. vfnDMX512Driver:

There are two methods to detect a valid DMX512 frame. The first method uses the SCI receiver
interrupt. The second method polls the SCI receiver interrupt flag. (See sections 3.1 and 3.2 for
code.)

3.3 Advantages and Disadvantages of Using Interrupt or
Non-Interrupt Methods

Developer must choose which method better suits the application. Both alternatives are presented in the
source code.

• Interrupt-Method Advantage:
Byte reception is assured because MCU services the UART receiver interrupt routine every time a
byte is received. Therefore, data reception is independent of program flow. This task is always
serviced.

• Interrupt-Method Disadvantage:
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor 7

Software Flowchart
Because the DMX512 console sends every time the DMX frame completes (512 data bytes + 1
command byte), the MCU will constantly service the SCI receiver interrupt, consuming most of
the MCU processing time. The application tasks must be completed during the remaining time.
Time to complete these tasks could be longer than using polling method. Developer must be aware
the interrupt-service routine will have higher priority than program flow.

• Non-Interrupt Method Advantage:
Program flow time could be prioritized in order to attend the incoming DMX frame and continue
with normal program flow.

• Non-Interrupt Method Disadvantage:
DMX512 frames could be lost if the DMX512 receiving task is not called on time during the
normal program flow.

3.4 Interrupt and Non-Interrupt Based Code:
The frame-detection method is the same in both solutions. The main difference between methods resides
in the state-machine model. In the non-interrupt method, the state machine is always polling the receiver
interrupt flag (see code for more details). If non-interrupt method is not used then developer should change
the following line code in the DMX initialization routine (vfnDMX512Init):
 DMX512C2 = CONFIG_DMX512_RX_POLL;

If developer decides to use the interrupt-base method, the following line in the DMX initialization routine
must be declared instead of the above code:
 DMX512C2 = CONFIG_DMX512_RX_ISR_EN;

3.5 DMX512 Frame-Detection Code
The following code is used to detect the DMX512 data frames. Two local variables are declared, u8Status
is used to capture and clear the SCI status register flags. The u8Dummy is a temporal variable where the
data byte retrieved from the SCI Rx data register is stored. After declaring these variables, the next step is
to check if the receiver buffer is full. That does not mean the received data is valid. To verify data, the
framing, noise, and parity flags must be checked. If one flag is set, data is flushed and the DMX512 driver
status flags are cleared. The driver will wait for the next DMX512 frame to sync.

When a valid data is received, it is stored in the DMX512 buffer until the 1 command + 512 data bytes
have been received. If buffer is full, the DMX512 driver tells the main program a complete DMX512 frame
has been received. It will set the RxStatus flag to DMX512_RX_PROC_MSG state and initialize the
DMX512 buffer index.

The RxStatus and the StartRx flags must be cleared in the main program flow once the DMX512 data
buffer has been read, then the buffer can be used again. See AN3315SW software files for details.
 /** Variable used to capture the SCI status register */
 UINT8 u8Status = 0;
 /** Variable used to store the Data register content */
 UINT8 u8Dummy = 0;

 u8Status = DMX512S1;
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor8

DMX512 Implementation Constrains
 u8Dummy = DMX512Data;

 if((u8Status & 0x20) !=0) /* Rx data buffer is full ?*/
 {

 if ((u8Status & 0x07) != 0) /* Check for Errors (Framing, Noise, Parity) */
 {
 u8Dummy = DMX512Data;
 DMX512Comm.RxOffset = 0;
 DMX512Comm.StartRxFlag = 0;
 DMX512Comm.RxStatus = DMX512_RX_DATA;
 return;
 }

 DMX512Comm.RxBuffer1[DMX512Comm.RxOffset++] = u8Dummy ;

 if(DMX512Comm.RxOffset >= DMX_RX_BUFFER_SIZE)
 {
 DMX512Comm.RxOffset = 0;
 DMX512Comm.StartRxFlag = 1;
 DMX512Comm.RxStatus = DMX512_RX_PROC_MSG;
 }

 }

4 DMX512 Implementation Constrains
To implement the DMX512 protocol in an 8-bit microcontroller, it is important to keep in mind the
following considerations:

• MCU UART must support a baud rate of 250 kbps.
• MCU UART must support a data frame compounded by 1 start bit, 8 data bits, 1 stop bit in a NRZ

format.
• 513 bytes in RAM are needed to store the complete DMX512 frame. MCU must have at least 1Kb

of RAM.

5 DMX512 Hardware Implementation
Figure 3 shows the recommended hardware that should be implemented using the referenced code in this
document. Listed below are considerations to keep in mind when the proposed HW becomes implemented:

• Jumper JP9 must be set in case the device becomes the last in the DMX bus.
• Pins 4 & 5 in the male connector are not used.
• The developer is allowed to Enable/Disable the RE signal in the transceiver by software or

hardware. The DMX512 driver in this document does not control the RE signal.
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor 9

Considerations
Figure 3. Proposed Hardware Implementation

6 Considerations
This example code was developed using the CodeWarrior IDE version 5.0 for HC(S)08 and tested on the
MC9S08GT60 device. Interrupt vectors must be modified to fit the specific MCU vector table located in
the vectors and interrupts section of the data sheet for each MCU. The complete software driver was tested
using the proposed hardware schematic shown in this document.

7 Conclusion
A DMX512 driver has been presented in this document. The described software and hardware fully
comply with the ANSI/TIA/EIA-485-A-1998 standard. Today, the DMX512 standard has been adopted
as the main lighting protocol in applications where multiple receiving points are needed. DMX512 is used
not only in the entertainment market but also in home, industrial, and appliance lighting markets.
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor10

THIS PAGE IS INTENTIONALLY BLANK
DMX512 Protocol Implementation Using MC9S08GT60 8-Bit MCU, Rev. 0

Freescale Semiconductor 11

Document Number: AN3315
Rev. 0
09/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Overview
	2 DMX512 Protocol Overview
	2.1 Physical Layer
	2.2 Data Protocol

	3 Software Flowchart
	3.1 Software Implementation
	3.2 Code Description
	3.3 Advantages and Disadvantages of Using Interrupt or Non-Interrupt Methods
	3.4 Interrupt and Non-Interrupt Based Code:
	3.5 DMX512 Frame-Detection Code

	4 DMX512 Implementation Constrains
	5 DMX512 Hardware Implementation
	6 Considerations
	7 Conclusion

