
Freescale Semiconductor
Application Note

Document Number: AN3334
Rev. 0, 11/2006

Contents

Introduction . 1
Strings . 2

2.1 Storing Strings . 2
2.2 Accessing Strings . 3
2.3 String Applications. 3
Stacks . 3

3.1 Stack Reading and Writing 4
3.2 MCU Hardware Stack . 4
3.3 RS08 Stack Applications . 5
Queues . 7

4.1 Reading and Writing . 8
4.2 Queue Errors . 8
4.3 Queue Applications . 8
Multiple Access Circular Queue (MACQ) 11

5.1 Applications . 12
5.2 Example . 12
Tables . 14

6.1 Table Applications . 15
6.2 Table Example. 15
Linked Lists . 17

7.1 Linked List Applications . 18
7.2 State Machines . 18
7.3 State Machine Example. 19
7.4 Simulation . 20

8 Summary. 25

Data Structures for RS08
Microcontrollers
by: Inga Harris

8-bit Microcontroller Applications Engineer
East Kilbride, Scotland
1 Introduction
This application note presents data structures useful in
developing microcontroller software. You can apply
these basic data structures in a microcontroller
application.

A data structure describes how information is organized
and stored in a computer system. Although data
structures are usually presented in the context of
computers, the same principles can be applied to
embedded 8-bit processors. The efficient use of
appropriate data structures can improve both the
dynamic (time-based) and static (storage-based)
performance of microcontroller software.

The RS08 core differs from other Freescale 8-bit cores,
in that it does not have a stack pointer or index register
(data structures use both). Software can recover these
feature, as shown in this application note. For other
Freescale 8-bit core examples, refer to Freescale
document-order number AN1752.

1
2

3

4

5

6

7

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Strings
The code in this application note is written for the MC9RS08KA2 and tested using CodeWarrior™ 5.1
software and the DEMO9RS08KA2 board.

2 Strings
A string is a sequence of elements accessed in sequential order. The string data structure usually refers to
a sequence of characters. For example, a message output to a display is stored in memory as a string of
ASCII character bytes.

2.1 Storing Strings
A start and end address identify a string of elements. A string’s starting address can be defined in two ways:
using an absolute address label or a base address with an offset.

You can terminate string information in several ways. One common way is by using a special character to
mark the end of the string. One terminating character is $04, which is an ASCII EOT (end-of-transmission)
byte.

Figure 1 shows an example of string data.

Figure 1. String Data Structure

Another method of terminating a string is to identify its length. Its length can then be used as a counter
value, eliminating the need for an extra byte of storage for the end of the string.

If you use the sign bit (the most significant bit) to indicate the last byte of the string, you can terminate a
string of ASCII characters without using an extra byte of storage. Because ASCII character data is only
seven bits long, the last byte of a string can be indicated by a 1 in its most significant bit location. When
using this method, strip off the sign bit before using the ASCII character value.

H

E

L

L

O

$04

Address

$50

$51

$52

$53

$54

$55

Message Pointer

Data
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor2

Stacks
2.2 Accessing Strings
An efficient way to access a string is with the indexed addressing mode and the INC or DEC instructions.

String storage and access:
;***
;* String Display Code *
;* A generic method of displaying an entire string *
;***
 ORG ROMStart
_Startup:
mainLoop: LDA #Message
 TAX
Loop LDA $0E ;Load Accumulator with the

;contents of the memory address
;pointed to by X

 CMP #$04 ;Is it EOT?
;User needs to write following routines

;BEQ StringDone
;JSR ShowByte

 INCX ;Move to next byte
 BRA Loop

;*********************** ***
;* String Storage Example *
;* String is stored in RAM *
;***
 ORG RAMStart
Message EQU *

Message1 DC.B 'This is a string'
 DC.B $04
Message2 DC.B "This is another string"

 DC.B $04

2.3 String Applications
Practical applications of strings include storing predefined canned messages. This is useful for applications
requiring output to text displays, giving users information, or prompting users for input.

Strings are also effective for storing initialization strings for hardware such as modems. Strings may also
store predefined command and data sequences to communicate with other devices.

3 Stacks
A stack is a series of data elements accessed only at one end. An analogy for this data structure is a stack
of dinner plates; the first plate placed on the stack is the last plate taken from the stack. For this reason, the
stack is considered a last-in, first-out (LIFO) structure. The stack is useful when the latest data is desired.
A stack typically has a predefined maximum size.
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 3

Stacks
Figure 2 shows a representation of a stack.

Figure 2. Stack Data Structure

Just like a physical stack of items, the software stack has a bottom and a top. Software should keep track
of the location of the top of the stack. This address can point to the first piece of valid data or to the next
available location. The code in Section 3.3, “RS08 Stack Applications,” uses the latter option; it points to
the next available location.

3.1 Stack Reading and Writing
A stack-read operation is called pulling, and a stack write operation is pushing. When you pull data from
the stack, the data is removed and the stack pointer adjusts. When you push data onto the stack, data adds
to the stack, and the stack pointer adjusts.

In the implementation of Figure 2, a push operation first stores the data to the address pointed to by the
stack pointer and then decrement the stack pointer. A pull operation retrieves the data the stack pointer
points to and then increments the stack pointer.

Two error conditions are intrinsic to this data structure: underflow and overflow. A stack underflow occurs
when you attempt to pull information off an empty stack. A stack overflow occurs when you attempt to
push information onto a full stack. When using this data structure, these conditions should be attended to.
An underflow condition should return an error. On an overflow, you can reject the data and return an error,
or the stack can wrap around to the bottom, destroying the data at the bottom of the stack.

3.2 MCU Hardware Stack
MCUs use a stack structure for saving program content before transferring program control. This
interaction may be the result of a jump or interrupt. In the event of an interrupt, the stack pushes the values
in the X (index register), A (accumulator), and CCR (condition code register) registers, as well as the PC
(program counter) value. When encountering a jump instruction, the PC value is pushed onto the stack. On
returning from an interrupt (RTI instruction), the program registers and PC are pulled from the stack. When
returning from a jump (RTS instruction), the PC is pulled from the stack.

Empty

Empty

Empty

Data Byte

Data Byte

Data Byte

Data Byte

Data Byte

Stack Pointer

Stack Top
(maximum)

Stack Grows
in this

Direction

Stack Bottom

$50

$51

$52

$53

$54

$55

$56

$57

Data Address
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor4

Stacks
3.2.1 RS08 Stack

The RS08 family of MCUs have no stack-pointer registers in the core and, therefore, no automatic program
control. Section 7, “Linked Lists,” shows a macro managing the use of the shadow program counter (SPC)
for nested subroutines. The rest of this chapter described a generic stack application adaptable for any
application need.

3.3 RS08 Stack Applications
A stack is useful for dynamically allocating memory or passing parameters to and from subroutines.
Typically, MCU RAM variables are statically allocated at assembly time.

For example:
; Statically allocated RAM variables
 ORG RAMSPACE

MyVar1 RMB 1
MyVar2 RMB 1
MyVar3 RMB 2

; Another method to statically allocate variable
MyVar4 EQU RAMSPACE+4
MyVar5 EQU RAMSPACE+5

This is appropriate for global variables, which need to be available throughout the program flow. However,
for local variables only used in specific subroutines, this method is not most efficient. These variables’
RAM space can be dynamically allocated by using a software stack or MCU stack, freeing up RAM
memory. The same method can apply to subroutine input and output parameters, passing them on the stack
instead of in the A or X register.

The following code shows a software implementation of a stack appropriate for RS08 family of MCUs.

Software stack:
;**
;* A simple software stack implementation simply shows the PUSH and *
;* PULL operations on a stack; not intended to be a complete application. *
;* StackPtr points to next (empty) available location *
;**
;Stack Equates
StackTop: equ $00000048
StackBottom: equ $0000004F

;
; variable/data section
;
 ORG RAMStart
StackPointer DC.B 1 ;Pointer to next stack byte
temp DC.B 1 ;Temporary storage location
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 5

Stacks
; code section
 ORG ROMStart
_Startup:
mainLoop:
Init LDA #StackBottom ;Initialize Stack Pointer
 STA StackPointer
 feed_watchdog
 LDA #$01
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Stack
 BCS FullErr
 JSR PushA ;Write to Full Stack
 BCS FullErr
Read JSR PullA ;Read from Stack
 BCS EmptyErr
 JSR PullA ;Read from Stack
 BCS EmptyErr
 JSR PullA ;Read from Stack
 BCS EmptyErr
Loop BRA Init ;your code here
EmptyErr DEC StackPointer ;your code here
 BRA Loop
FullErr INC StackPointer ;your code here
 BRA Read

;***
;* Push Subroutine *
;* Push the contents of the accumulator onto stack *
;* Use C bit of CCR to indicate full error *
;***
PushA STA temp ;place A in temporary storage
 LDA StackPointer ;Get Stack Pointer
 CMP #StackTop ;Check for full stack
 BLO Full
 LDX StackPointer
 LDA temp ;get A from temporary storage
 STA $0E ;and save in stack
 DEC StackPointer ;Decrement Stack Pointer
 CLC
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor6

Queues
 RTS
Full LDA temp ;get A from temporary storage
 SEC ;Set Carry Bit for error
 RTS

;***
;* Pull Subroutine *
;* Pull the contents off the stack into accumulator *
;* Use C bit of CCR to indicate empty error *
;***
PullA LDA StackPointer ;Get Stack Pointer
 CMP #StackBottom ;Check for empty stack
 BEQ Empty
 LDX StackPointer
 INCX ;Increment Stack Pointer
 LDA ,X ;Get Data off stack
 STX StackPointer ;Record New Stack Pointer
 CLC ;Clear Carry Bit
 RTS
Empty SEC ;Set Carry Bit for error
 RTS

Using the software stack, a subroutine can allocate variables by pushing (allocating) bytes on the stack,
accessing them with X (tiny address $0F) and D[X] (tiny address $0E), and pulling them (deallocating)
before returning. In this way, multiple subroutines can use the same RAM space.

Parameters can also be passed to and from subroutines. An input parameter can be pushed on the stack.
When a subroutine is entered, it can access the input parameter relative to the stack pointer. By the same
token, a subroutine can push an output parameter onto the stack to be passed back to the calling routine.

Using the stack to pass parameters and allocate variables optimizes memory usage.

4 Queues
A queue is a series of elements that accepts data from one end and extracts data from the other end. An
analogy for this data structure is a checkout line at the supermarket; the first people in are the first people
out. For this reason, it is considered a first-in, first-out (FIFO) structure. This is useful when accessing data
in the order it is received. A queue usually has a predefined maximum size.

Figure 3 illustrates a queue.
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 7

Queues
Figure 3. Queue

4.1 Reading and Writing
The read operation of a queue is called dequeue, and the write operation is enqueue. Two pointers are
necessary for a queue; one for the head of the line, and one for the tail. For an enqueue operation, after
checking the size of the queue, the data is stored at the location the put pointer points to, and the put pointer
adjusts. For a dequeue operation, the data is read from the get-pointer location, and the pointer adjusts.

Queues usually have a fixed size, so track of the number of items in the queue. This can be done with a
variable containing the size of the queue or with pointer arithmetic.

4.2 Queue Errors
As with the stack structure, a queue can be subject to underflow and overflow errors. The enqueue
operation should be non-destructive and should error if the queue is full. The dequeue operation should be
destructive (remove the data element) and should error if the queue is empty.

4.3 Queue Applications
A practical application of a FIFO queue is for a data buffer. Queues can be used as buffers for transmitted
or received data and for use with printers or serial communication devices.

An effective application for this is storing data received from the serial input/output port for processing
later.

Queue software example:
;***
;*Illustrates an example of a queue for RS08 *
;***
;***
;*variable/data section *
;***
 ORG RAMStart ;Insert your data definition here

Data 1

Data 2

Data 3

Data 4

Data 5

Empty

Empty

Empty

Dequeue from get pointer

Enqueue at put pointer

Data Address

$50

$51

$52

$53

$54

$55

$56

$57

Queue Top

Queue Bottom

Queue
grows

in
this

direction
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor8

Queues
TempA DC.B 1 ;Temporary Accumulator
TempX DC.B 1 ;Temporary X register

GetPointer DC.B 1
PutPointer DC.B 1
QCount DC.B 1
QMax DC.B 1

QueueTop: equ $44
QueueBottom: equ $47

;***
;*Program Code *
;***
 ORG ROMStart

_Startup:
mainLoop: LDA #QueueBottom ;calculate maximum Queue size
 SUB #QueueTop
 INCA
 STA QMax

InitQ LDA #QueueTop ;Initialize Q pointer and
 ;
variables
 STA GetPointer
 STA PutPointer
 CLR QCount

;***
;* Write and Read from the Queue *
;* A good application of this is to place bytes received from *
;* the SCI into the queue and retrieve them later *
;* This code does not deal with the error conditions *
;***
 JSR Dequeue ;Will return Empty error
 feed_watchdog
 LDA #$FF
 JSR Enqueue ;Will load FF in to $44
 JSR Enqueue ;Will load FF in to $45
 JSR Enqueue ;Will load FF in to $46
 JSR Enqueue ;Will load FF in to $47 and
 ;wraps back to $44
 JSR Enqueue ;Will return a Full error as

;QCount is 4
 JSR Dequeue ;Will Pull FF from $44
 JSR Dequeue ;Will Pull FF from $45
 feed_watchdog
 LDA #$55
 JSR Enqueue ;Will load 55 in to $44
 JSR Enqueue ;Will load 55 in to $45
 BRA mainLoop
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 9

Queues
;***
;* Subroutines *
;***
;***
;* Enqueue - enqueues a data byte passed in accumulator
*
;* Checks for a full queue and returns a set carry bit if
*
;* full otherwise returns a cleared carry bit if successful
*
;***
Enqueue STX TempX ;Save X register contents
 STA TempA ;Save accumulator contents
 LDA QCount ;Check for a full Q
 CMP QMax
 BEQ QFull
 LDA TempA ;If Queue has space restore A
 LDX PutPointer
 STA $0E ;Place A in the queue
 LDA PutPointer
 CMP #QueueBottom
 BEQ WrapPut
 INC PutPointer ;Increment Pointer if not

;wrapping
 BRA EnQDone

WrapPut LDA #QueueTop ;If OK move pointer back to
;Top of Queue

 STA PutPointer

EnQDone LDX TempX ;Restore X register
 LDA TempA ;Restore accumulator contents
 INC QCount ;Increment Q Counter
 CLC ;Clear Carry Bit
 RTS

QFull LDX TempX ;Restore X register
 LDA TempA ;Restore accumulator contents
 SEC ;Set Carry Bit
 RTS

;***
;* Dequeue - dequeues a data byte from queue and return in A *
;* If Queue is empty returns a carry set to indicate error *
;* otherwise returns a cleared carry bit and data in A *
;***
Dequeue STX TempX ;Save X register contents
 LDA QCount ;Check for an empty Q
 CMP #$00
 BEQ QEmpty
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor10

Multiple Access Circular Queue (MACQ)
 LDX GetPointer ;If Queue has population
 LDA $0E ;get item from Queue
 STA TempA
 LDA GetPointer
 CMP #QueueBottom
 BEQ WrapGet
 INC GetPointer ;Increment Pointer
 BRA DeQDone

WrapGet LDA #QueueTop ;If OK move pointer back to
 ;Top of Queue
 STA GetPointer

DeQDone LDX TempX ;Restore X register
 LDA TempA
 DEC QCount ;Decrement Q Counter
 CLC ;Clear Carry Bit
 RTS
QEmpty LDX TempX ;Restore X register
 SEC ;Set Carry Bit
 RTS

5 Multiple Access Circular Queue (MACQ)
A multiple access circular queue (or circular buffer) is a modified version of the queue data structure. It is
a fixed-length, order-preserving data structure and contains the most recent entries. It is useful for
data-flow problems, when only the latest data is of interest. Once initialized, it is full, and a write operation
discards the oldest data.

Figure 4 depicts a MACQ.

Figure 4. Result of a MACQ Write

Latest data here Data Address

$50

$51

$52

$53

$54

$55

$56

$57

New Data

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 8

Data 7

Data 6

Data 5

Data 4

Data 3

Data 2

Data 1
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 11

Multiple Access Circular Queue (MACQ)
5.1 Applications
A MACQ is useful for data streams requiring the latest data and can afford to have a destructive write
operation. For example, a weather forecaster might use temperature readings from the last five days to
predict the next day’s temperature. Daily temperature readings can be recorded in a MACQ, so the latest
data is available.

MACQs are also useful for digital filters; they can calculate running averages, etc.

5.2 Example
MACQ illustrates the implementation of a circular buffer. This could store A/D converter readings. In this
way, the latest A/D conversion results are accessible through the circular buffer.

MACQ:
;***
;*Illustrates an example of a MACQ for RS08 *
;***
;***
;*variable/data section *
;***
 ORG RAMStart ;Insert your data definition here

TempA DC.B 1 ;Temporary Accumulator
TempX DC.B 1 ;Temporary X register
TempData DC.B 1 ;Temporary data storage

QPointer DC.B 1
QSize DC.B 1

QueueTop: equ $40
QueueBottom: equ $47
;***
;*Program Code *
;***
 ORG ROMStart
_Startup:
mainLoop: LDA #QueueBottom ;calculate maximum Queue size
 SUB #QueueTop
 INCA
 STA QSize

InitQ LDA #QueueBottom ;Initialize Q pointer
 STA QPointer

;***
;* Write and Read from the MACQ *
;* A good application of this is to store ACMP Readings, so *
;* the latest readings are always available *
;***
 LDA #$55
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor12

Multiple Access Circular Queue (MACQ)
 JSR WriteQ ;Writes 55 to $47
 LDA #$56
 JSR WriteQ ;Writes 56 to $46
 LDA #$57
 JSR WriteQ ;Writes 57 to $45
 LDA #$58
 JSR WriteQ ;Writes 58 to $44
 LDA #$59
 JSR WriteQ ;Writes 59 to $43
 LDA #$5A
 JSR WriteQ ;Writes 5A to $42
 LDA #$5B
 JSR WriteQ ;Writes 5B to $41
 LDA #$5C
 JSR WriteQ ;Writes 5C to $40
 feed_watchdog
 JSR WriteQ ;Queue is full on this write
 ;Shifts all entries down one
 ;Writes 5C to $40
 LDA #$00
 JSR ReadQ ;Read newest item
 LDA #$01
 JSR ReadQ ;Reads 2nd newest item
 LDA #$02
 JSR ReadQ ;Reads 3rd newest item
 feed_watchdog
 BRA mainLoop

;***
;* Subroutines *
;***
;***
;* WriteQ - A contains data to be written. Write is *
;* destructive on a full Q, once initialized Q is always full *
;***
WriteQ STX TempX ;Save X register contents
 STA TempA ;Save A contents
 LDA QPointer ;Load Q Pointer
 CMP #QueueTop-1 ;See if Queue is full
 BEQ QFull
 LDX QPointer
 LDA TempA
 STA $0E ;Store data to the Queue
 DEC QPointer ;Decrement Pointer
 BRA QDone

;Once queue is initialized, it is always full
QFull LDA TempA
 STA TempData
 LDX #QueueBottom-1 ;Start shifting data down

SwapLoop LDA $0E ;Get 1st item to shift - 2nd
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 13

Tables
 ;last one
 INC X
 STA $0E ;Store in next queue space
 ;overwritting last item
 DEC X
 DEC X
 TXA
 CMP #QueueTop ;Check to see whether any
 ;more item to shift
 BHS SwapLoop
 LDX #QueueTop
 LDA TempData
 STA $0E ;Place new item at top of
 ;queue
QDone LDX TempX
 LDA TempA
 RTS

;***
;* ReadQ - A contains queue index location to be read. *
;* Returns value in A *
;***
ReadQ STX TempX ;Save X register contents
 STA TempA ;Save A contents
 ADD #QueueTop ;Add QueueTop to A
 TAX ;X is adress of desired value
 LDA $0E
 RTS

6 Tables
A table can be viewed as a vector of identically structured lists. A table is a common way of storing lookup
data such as display data or vector bytes.

Figure 5 shows an example of a table.

Figure 5. Table Representation

$0100

$0500

$0800

$0090

$1200

$2200

$0100

$0100

$50

$51

$52

$53

$54

$55

$56

$57

Data AddressTop-of-Table
Pointer
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor14

Tables
A table is commonly used to look up information. Table entries can be accessed with an offset from the
base address of the table. Therefore, a read from a table is typically done by computing the offset of the
desired data and accessing it using an indexed addressing mode.

6.1 Table Applications
The table data structure is common in MCU applications. One way to use tables is by performing character
conversions. For LCDs (liquid crystal displays), an ASCII character byte may need to be converted to
segment bitmaps for the display. A table could be used for this.

Another table application is a jump table. This is a table of vector values that are addresses to be loaded
and vectored to. Some program parameters can be converted to an offset into a jump table, so the
appropriate vector is fetched for a certain input.

For example, in their memory maps, Freescale MCUs have a built-in vector table used for interrupt and
exception processing. These vector tables allow pre-programmed addresses to be defined for certain MCU
exceptions. When an exception occurs, a new program-counter value is fetched from the appropriate table
entry.

You can also use the table data structure by storing predefined values for lookup. (for example, storing
interpolation data in a table performing mathematical functions). This use of a table is documented in the
application note, “Integer Math routines for RS08,” Freescale document order number, AN3348.

Another example involves using a table of sinusoidal values to produce sine-wave output, as in the
application note “Arithmetic Waveform Synthesis with the HC05/08 MCUs,” Freescale document order
number AN1222. If an equation to calculate data is CPU-intensive and can be approximated with discrete
values, these values can be precalculated and stored in a table. In this way, a value can be quickly fetched,
saving CPU time.

6.2 Table Example
An example of the use of tables to convert ASCII data to LCD segment values:
;***
;*variable/data section *
;***
 ORG RAMStart ;Insert your data definition here
LCD1 DC.B 1
LCD2 DC.B 1

;***
;*Program Code *
;***
 ORG ROMStart
_Startup:
mainLoop: LDA #73 ;Load an ASCII character - I
 JSR Convert ;Convert the character into a
 ;table offset
 MOV #$E1,PAGESEL ;Change memory page to access
 ;Table
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 15

Tables
ADD #$C0

;alternative code for "Change memory page to access Table"
 ;MOV #HIGH_6_13(Table),PAGESEL
 ;STA MAP_ADDR_6(Table)

 TAX ;Transfer offset in to X
 LDA $0E ;Load the first byte
 STA LCD1 ;Store in data register
 INCX
 LDA $0E ;Load the second byte
 STA LCD2 ;Store in data register
 BRA mainLoop

;***
;* Convert ASCII character byte in A to an offset value into *
;* the table of LCD segment values. Valid ASCII values are *
;* (DECIMAL): 65-90 *
;***
Convert CMP #65 ;Check for numeric
 BLO ConvError
 CMP #91 ;Check for invalid values
 BHS ConvError
 SUB #65 ;Convert to table offset
 BRA ConvDone

ConvError CLRA ;Invalid value shows as blank

ConvDone ROLA ;Multiply offset by 2 as
;2 bytes per LCD location

 RTS

;***
;* LCD LookUp Table *
;* Lookup table of LCD segment values for ASCII character *
;* values. Some characters can not be displayed on 15-segment *
;* LCD, so they are marked as invalid, and will be displayed *
;* as a blank space. *
;* ENSURE TABLE FITS WITHIN ONE PAGE *
;***
 ORG $3840
Table FDB $2764 ;'A'
 FDB $8785 ;'B'
 FDB $01E0 ;'C'
 FDB $8781 ;'D'
 FDB $21E4 ;'E'
 FDB $2164 ;'F'
 FDB $05E4 ;'G'
 FDB $2664 ;'H'
 FDB $8181 ;'I'
 FDB $06C0 ;'J'
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor16

Linked Lists
 FDB $206A ;'K'
 FDB $00E0 ;'L'
 FDB $1662 ;'M'
 FDB $1668 ;'N'
 FDB $07E0 ;'O'
 FDB $2364 ;'P'
 FDB $07E8 ;'Q'
 FDB $236C ;'R'
 FDB $25A4 ;'S'
 FDB $8101 ;'T'
 FDB $06E0 ;'U'
 FDB $4062 ;'V'
 FDB $4668 ;'W'
 FDB $500A ;'X'
 FDB $9002 ;'Y'
 FDB $4182 ;'Z'
EndTable EQU *-Table ;End of table label

7 Linked Lists
A list is a data structure whose elements may vary in precision. For example, a record containing a person’s
name, address, and phone number could be considered a list. A linked list is a group of lists, each
containing a pointer to another list.

Figure 6 represents a linked list.

Figure 6. Linked List

Each list in the structure contains the same type of information, including a link to the next item in the list.
The link might be an absolute address or an offset from a base address. In a doubly linked list, pointers are
kept to the next and previous item in the list. A linked list can be traversed easily by simply following the
pointers from one list to the next.

NEXTPTRA NEXTPTRCNEXTPTRB

DATA1A

DATA2A

DATA3A

DATA4A

DATA1B

DATA2B

DATA3B

DATA4B

DATA1C

DATA2C

DATA3C

DATA4C

LISTA LISTB LISTC
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 17

Linked Lists
7.1 Linked List Applications
Traditionally, a linked list defines a dynamically allocated database, in which the elements can be ordered
or resorted by adjusting the links. However, in a small MCU, there are more appropriate applications of
linked lists.

A linked list can be a structure for a command interpreter. Each command could contain the string of
characters, an address of a subroutine to call on that command, and a link to the next command in the linked
list. In this way, a command string could be input, searched for in a linked list, and appropriate action taken
when the string is found.

7.2 State Machines

Another useful application of a linked list is defining a state machine. A state machine can be represented
by a discrete number of states, each having an output and pointers to the next state(s). See Figure 7.

Figure 7. State Machine

A state machine can be considered a Mealy or a Moore machine. A Mealy machine’s output is a function
of both its inputs and its current state. A Moore machine has an output dependent only on its current state.

This state machine model can be useful for controlling sequential devices such as vending machines,
stepper motors, or robotics. These machines have a current internal state, receive input, produce output,
and advance to the next state.

You can first model a process as a sequential machine, then convert this behavior to a linked-list structure
and write an interpreter for it. Modify the state machine by changing the data structure (linked list) and not
the code.

State CState D

State A State B

0/1

1/1

0/1

0/0

1/0

0/0

1/1

1/0

Input/Output
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor18

Linked Lists
7.3 State Machine Example
Imagine you want to cross the street. Before you can safely cross, you must push the pedestrian-crossing
controller. The controller has two light patterns: one for automobile lights and one for the pedestrian lights.
To activate the pedestrian-crossing, you must press a button at the side of the road. See Figure 8.

Figure 8. Pedestrian Crossing Controller Example

This is like a Moore state machine: its output is a function of its current state. The next state is a function
of the current state and the state of the input. Figure 9 shows a state graph for this example. The initial state
is a green light on the automobile lights and a red light for the pedestrians. The controller remains in this
state until a pedestrian’s input. The flow continues as shown in the diagram. The output is a pattern for the
light array to activate the lights for the state.

Figure 9. Pedestrian Crossing Controller State Machine

 Pedestrian
Lights

Automobile
Lights

State 1
Output =
00001010
Delay = 30

Input = 0

Input = 1
State 2
Output =
00010010
Delay = 5

Input = 1 or 0

Input = 1 or 0

Input = 1 or 0

State 3
Output =

00100001
Delay = 15

State 4
Output =
0010000T
Delay = 10
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 19

Linked Lists
7.4 Simulation
This example can be simulated using LEDs and a MC9RS08KA2 MCU. A push-button switch can
simulate the input sensor. Figure 10 illustrates the simulation circuit. Using five bits of an output port, a
pattern can be generated to display the appropriate lights (LEDs). Table 1 shows the bitmap in this
application.

Figure 10. Circuit Simulation of Pedestrian Crossing Controller

Table 1. Pedestrian Crossing Lights Bitmap For Port A

With the hardware in place, the last step is defining the state machine in software. Do this by implementing
a linked-list data structure and the code to access and interpret the machine.

For this example, each list in the data structure defines the current state of the lights. Each list contains:
• The byte that is the bitmap for the lights.
• A delay value — the time the controller remains in the state
• The next state pointer for an input of 0

 Car Ped

State
R Y G Button R G

PTA5 PTA4 PTA3 PTA2 PTA1 PTA0
1 0 0 1 0 1 0
2 0 1 0 1 1 0
3 1 0 0 X 0 1
4 1 0 0 X 0 Flashing

PTA0 PTA3

PTA4

PTA1 PTA5

MC9RS08KA2

PTA2

G

R

G

R

Y

Outputs Outputs

Inputs

Vdd

1k

1k 1k

0.1µF
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor20

Linked Lists
• The next state pointer for an input of 1

The program’s main loop should execute the program flow charted in Figure 11.

Figure 11. State Machine Program Flow

Pedestrian-crossing controller state machine:
;***
;* Pedestrian Crossing Signal/Lights Controller example. *
;* Illustrates a linked list implementation of a state machine for *
;* the MC9RS08KA2 *
;***
;***
; Macro to manage nested Subroutine entry code *
;***
ENTRY_CODE: MACRO
 SHA
 STA pcBUFFER+(2*(\1))
 SHA
 SLA
 STA pcBUFFER+(2*(\1))+1
 SLA

ENDM

;***
; Macro to manage nested Subroutine exit code *
;***
EXIT_CODE: MACRO
 SHA
 LDA pcBUFFER+2*(\1)
 SHA

Get Input
Input = 0 Input = 1

Load Next
State Pointer

(Offset)(Offset)
State Pointer

Load Next
Pattern

Light
Output

Load
 Initial
State

Delay for
Given Value
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 21

Linked Lists
 SLA
 LDA pcBUFFER+2*(\1)+1
 SLA

ENDM

; Include derivative-specific definitions
 INCLUDE 'derivative.inc'

;***
;*variable/data section *
;***
 XDEF _Startup
 ABSENTRY _Startup

MAXlevel EQU 1 ;Nesting depth for subroutine
 ;macro

ORG RAMStart ;Insert your data definition here
TempA DC.B 1
TempX DC.B 1
DelayCntr DC.B 1
pcBUFFER DS.W MAXlevel ;Buffer for return address of
 ;nested subroutine macro

;***
;*Program Code *
;***
 ORG ROMStart
_Startup:
mainLoop: MOV #$C0,ICSC2 ;Select Bus Frequency of 1MHz
 LDA #$00
 STA PTAD ;Predefine output levels
 LDA #$33
 STA PTADD ;GPIO PTA 0, 1, 3, 4, 5 Outputs
 MOV #$E4,PAGESEL ;Change memory page to access
 ;Table
 LDA #STATES ;Index initial space
 ADD #$C0

;alternative code for "Change memory page to access Table"
;MOV #HIGH_6_13(State1),PAGESEL
;LDA MAP_ADDR_6(State1)

 TAX

Loop LDA $0E ;Get Light Pattern
 STA PTAD ;Output Light Pattern
 CMP %00100000 ;Check to see if in State 4
 BNE LoadDelay
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor22

Linked Lists
 JSR ToggleWalk

LoadDelay INCX
 LDA $0E ;Get delay
 BRA SecDelay ;Cause delay
NextState MOV #$E4,PAGESEL ;Change memory page to access
 ;Table

;alternative code for "Change memory page to access Table"
;MOV #HIGH_6_13(State1),PAGESEL

 BRCLR 2,PTAD,Input0 ;Check for pedestian input

Input1 INCX
 INCX
 LDA $0E
 ADD #$C0
 STA $0F ;Get next state offset
 BRA Loop ;input = 1

Input0 MOV #$E4,PAGESEL ;Change memory page to access
 ;Table
 INCX
 LDA $0E
 ADD #$C0
 STA $0F ;Get next state offset
 BRA Loop ;input = 0

ToggleWalk INCX
 LDA $0E ;Get Delay

FlashLight BSET 0,PTAD
 JSR Delay0 ;Turn LED on for ~0.5 second
 BCLR 0,PTAD
 JSR Delay0 ;Turn LED off for ~0.5 second
 DECA
 CMP #00
 BEQ Input0 ;Branch to "input 0" routine
 ;if 10 seconds have passed
 BRA FlashLight ;Else repeat flash

;***
;* Delay subroutines *
;***
;* Cause a delay of approx (1 second * Accumulator value) @ fop = 1M *
;* Delay value passed in through A *
;***
SecDelay: feed_watchdog
 CMP #$00
 BEQ SecDone
 JSR Delay0
 JSR Delay0 ;1 sec delay (2 x 0.5 sec)
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 23

Linked Lists
 DECA
 BRA SecDelay
SecDone BRA NextState

;***
;* Cause a delay of ~1/2 of a second *
;***
Delay0: ENTRY_CODE 0
 feed_watchdog
 STA TempA
 LDA #$B2

DLoop0 CMP #$00
 BEQ DDone0
 JSR Delay1
 DECA
 BRA DLoop0

DDone0 LDA TempA
 EXIT_CODE 0
 RTS

;***
;* Cause about 2.8msec delay @ fop of 1MHz *
;***
Delay1: ENTRY_CODE 1
 feed_watchdog
 STA DelayCntr
 LDA #$FF

DLoop1 CMP #$00
 BEQ DDone1
 DECA
 BRA DLoop1

DDone1 LDA DelayCntr
 EXIT_CODE 1
 RTS
;***
;* DataStructure for state machine linked list *
;* Offsets and base address scheme is adequate for small *
;* table (<255 bytes) *
;***
 ORG $3900
LIGHTS EQU 0 ;Offset for light pattern
DELAY EQU 1 ;Offset for time delay
NEXT0 EQU 2 ;Offset for pointer 0
NEXT1 EQU 3 ;Offset for pointer 1
STATES EQU * ;Base address of states

;* Cars Green, Pedestrians Red
State1 EQU *-STATES ;Offset into STATES
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor24

Summary
 FCB %00001010 ;Output for state
 FCB 30 ;Delay for state
 FCB State1 ;Next state for input of 0
 FCB State2 ;Next state for input of 1

;* Cars Yellow, Pedestrians Red
State2 EQU *-STATES
 FCB %00010010
 FCB 5
 FCB State3
 FCB State3

;* Cars Red, Pedestrians Green
State3 EQU *-STATES
 FCB %00100001
 FCB 15
 FCB State4
 FCB State4

;* Cars Red, Pedestrians Flashing Green
State4 EQU *-STATES
 FCB %00100000 ;Green initially off when state
 ;entered
 FCB 10
 FCB State1

 FCB State1

8 Summary
The use of data structures is not limited to large, complicated computers. Although the data structure is a
powerful concept in such a context, the same principles apply to smaller processors such as 8-bit
microcontrollers.

The code to implement these data structures does not have to be complex or confusing. The goal of
programming should be to modularize commonly used functions, so they may be reused in other
applications with minimal modification.

Data structure concepts can improve the static and dynamic performance of an MCU application without
affecting its portability or legibility.
Data Structures for RS08 Microcontrollers, Rev. 0

Freescale Semiconductor 25

Document Number: AN3334
Rev. 0
11/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Strings
	2.1 Storing Strings
	2.2 Accessing Strings
	2.3 String Applications

	3 Stacks
	3.1 Stack Reading and Writing
	3.2 MCU Hardware Stack
	3.2.1 RS08 Stack

	3.3 RS08 Stack Applications

	4 Queues
	4.1 Reading and Writing
	4.2 Queue Errors
	4.3 Queue Applications

	5 Multiple Access Circular Queue (MACQ)
	5.1 Applications
	5.2 Example

	6 Tables
	6.1 Table Applications
	6.2 Table Example

	7 Linked Lists
	7.1 Linked List Applications
	7.2 State Machines
	7.3 State Machine Example
	7.4 Simulation

	8 Summary

