
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

The IEEE 1588™ protocol is used to synchronize the clocks
of two systems. Unlike the network time protocol (NTP)
which synchronizes with accuracy of few milliseconds, the
IEEE 1588™ protocol can achieve synchronization accuracy
within tens of nanoseconds. Such high accuracy is especially
beneficial for control applications that need synchronized
clocks for operation. The advantage of the IEEE 1588
protocol is that it can operate over a regular Ethernet
communication stack, so it can synchronize clocks of
systems that are physically separated by a reasonable
distance. Detailed information on synchronization using the
IEEE 1588 protocol is available in the protocol specification.

The Ethernet controller in PowerQUICC and QorIQ devices
contains dedicated hardware for registering time-stamps of
both incoming and outgoing Ethernet packets, which enables
nanoseconds synchronization of clocks. This document
describes the implementation of the IEEE 1588 protocol
using the dedicated hardware in eTSEC- and dTSEC-based
devices. The document does not cover IEEE 1588 protocol
implementation in QUICC Engine block-based devices. For
a detailed explanation of signals and registers, please refer to
the reference manual of the particular device.

Document Number: AN3423
Rev. 0, 09/2010

Contents
1. Clock Synchronization Using the IEEE 1588TM

Protocol 2
2. Hardware Support for the IEEE 1588 Protocol 3
3. The IEEE 1588 Protocol Driver 7
4. References .9
5. Revision History .9

Support for IEEE 1588™ Protocol in
PowerQUICC and QorIQ Processors
by Networking and Multimedia Group

Freescale Semiconductor, Inc.
Austin, TX

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

2 Freescale Semiconductor

Clock Synchronization Using the IEEE 1588TM Protocol

1 Clock Synchronization Using the IEEE 1588TM Protocol
In the systems using IEEE 1588TM, every slave synchronizes to it’s master’s clock by exchanging
synchronization messages with the master. The synchronization process is divided into two phases: offset
measurement and delay measurement.

In the offset measurement phase, the time difference between master and slave is corrected. During this
phase, the master periodically transmits a unique synchronization (sync) message to the related slave
clocks at defined intervals. This sync message contains an estimated value of the time at which this
message was transmitted. The master clock measures the time of transmission (TM1) and the slave clocks
measure the time of reception, TS1. The master sends the second message, the follow-up message, and the
exact time of transmission of the corresponding sync message to the slave clocks.

Upon reception of the sync message and, for increased accuracy, on reception of the corresponding
follow-up message, the slave clock calculates the correction (offset) in relation to the master clock while
taking into account the reception time-stamp of the sync message. The slave clock, Ts, must then be
corrected by this offset. If there is no delay over the transmission path, both clocks are synchronous.

Figure 1 illustrates this process.

Figure 1. Offset Correction in the IEEE 1588 Protocol

The second phase of the synchronization process is the delay measurement that determines the delay or
latency between slave and master. For this purpose, the slave clock sends a delay request packet to the
master and records the time of transmission of this message (TS3). When the master receives the packet,
it generates a time-stamp and sends the time of reception (TM3) back to the slave in a delay response
packet. The slave calculates the delay time between itself and master based on the following information:

• Local time-stamp for transmission
• Time-stamp for reception provided by the master
• Local reception time

Ts = 1000sTm = 1050s
Line Delay = 1s

Master Slave

TM1 = 1051

TM2 = 1053

Ts = 1001

Ts = 1052

TS1 = 1002

TS2 = 1053

Offset = TS1 – TM1 – Delay
= 1002 - 1051 – 0 = – 49

Adjust Time: Ts – Offset = Ts – (– 49)

Offset = TS2 – TM2 – Delay
= 1053 – 1053 – 0 = 0

Not Known Yet

TM1

Follow Up

TM2

Follow Up

Sync

Sync

Adjust Time: Ts – Offset = Ts – (– 0)

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

Freescale Semiconductor 3

Hardware Support for the IEEE 1588 Protocol

This calculation assumes a symmetrical propagation delay—that is, the time for propagation from slave to
master is the same as the propagation time from master to slave. Figure 2 illustrates this process.

Figure 2. Delay Measurement in the IEEE 1588 Protocol

2 Hardware Support for the IEEE 1588 Protocol
PowerQUICC and QorIQ processors contain a dedicated hardware block for supporting the IEEE 1588
protocol. This section explains the working of the hardware block and its functional usage.

2.1 IEEE 1588 Protocol Registers
Table 1 shows the details of the IEEE 1588 Protocol registers used in PowerQUICC and QorIQ devices,
which are discussed subsequently. For the most up to date information, refer to the reference manual of the
particular device.

Table 1. IEEE 1588 Registers

Sr. No. Name Description

1. TMR_CTRL Timer control register

2. TMR_EVENT Timer event register

3. TMR_TEMASK Timer event mask register

4. TMR_PEVENT Timer PTP packet event register

5. TMR_PEMASK Timer PTP packet event mask register

6. TMR_STAT Timer status register

7. TMR_CNT_H/L Timer counter register

8. TMR_ADD Timer drift compensation addend register

Tm = 1081

TM3 = 1082

TM4 = 1083

TM5 = 1085

TS3 = 1080

Ts = 1082

Ts = 1085

TS4 = 1083

TS5 = 1086

Ts = 1069sTm = 1070s
Line Delay = 1s

Master Slave

Delay = ((TS2 - TM2) + (TM3 – TS3)) / 2
= (0 + (1082 - 1080)) / 2 = 1

Offset = TS4 – TM4 – Delay
= 1083 – 1083 - 1 = – 1

Adjust Time: Ts - Offset = Ts – (– 1)

Offset = TS5 – TM5 – Delay
= 1086 – 1085 – 1 = 0

Now Known

Synchronous I

Delay Response

Delay Request
TM3

TM4

Follow Up

TM5

Follow Up

Sync

Sync

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

4 Freescale Semiconductor

Hardware Support for the IEEE 1588 Protocol

2.2 IEEE 1588 Protocol Clock
The IEEE 1588 protocol clock can use either the internal or external reference clock source. The hardware
support is built around an accumulator. The input clock can be divided using the accumulator and
ADDEND to the desired nominal frequency. For example, if the frequency of the input clock is 150 MHz
and the desired nominal frequency is 100 MHz, the value of ADDEND can be calculated as
232 ÷ FreqDivRatio. The frequency division ratio in this case is 1.5 (150 ÷ 100) and hence the ADDEND
would be equal to 0xAAAA_AAAA.

As shown in Figure 3, the value of ADDEND, to be program in TMR_ADD, is added to the accumulator
on every input clock, and the overflow bit of the accumulator is used to increment the clock counter
(TMR_CNT). If ADDEND is equal to 0xAAAA_AAAA, the overflow bit of accumulator would be
generated 100,000,000 times if ADDEND gets added to accumulator 150,000,000 times and hence the
division.

TCLK_PERIOD can be derived from the nominal clock. A value of 10 in TCLK_PERIOD, when nominal
frequency is 100 MHz, would ensure that the clock counter (TMR_CNT) has a granularity of
nanoseconds.

Figure 3. IEEE 1588 Protocol Basic Clock Diagram

9. TMR_ACC Timer accumulator register

10. TMR_PRSC Timer prescaler register

12. TMROFF_H/L Timer offset register

13. TMR_ALARM1-2_H/L Alarm time comparator register

13. TMR_FIPER1-3 Timer fixed interval periodic register

14. TMR_ETTS1-2_H/L External trigger stamp register

15. TMR_TXTS1-2_ID Transmit time-stamp identification register

16. TMR_TXTS1-2_H/L Transmit time-stamp register

Table 1. IEEE 1588 Registers (continued)

Sr. No. Name Description

RTC clk

System clk

Ext clk

TMR_CTRL
[CLKSEL]

32 bit Accumulator

+

32 bit Addend

64 bit counter
TMR_CNT

1588 CLK/
Nominal
Frequency

+

TCLK_PERIOD

+

64 bit offset

TMR_ADD_H/L

Read by
time-stamping
hardware

eTSEC1 Tx clk

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

Freescale Semiconductor 5

Hardware Support for the IEEE 1588 Protocol

In order to synchronize, the Precision Time Protocol (PTP) application running on the PTP slave, may
change the value of TMR_CNT when the difference between the master and slave is large. When the
difference is small, applications may tweak ADDEND to make nominal clock slower or faster.

2.3 Generating FIPER and ALARM
After the clocks are synchronized, some systems may need phase-aligned pulses to drive other peripherals.
The fixed interval period register (FIPER) can be used to generate periodic pulses. A down count register
loads the value programmed in the FIPER. The FIPER register must be programmed before the timer is
enabled. At every tick of the timer accumulator overflow, the counter decrements by the value of
TMR_CTRL[TCLK_PERIOD]. It generates a pulse when the down counter value reaches zero. It reloads
the down counter in the cycle following a pulse.

As shown in Figure 4, FIPER gets decremented by the TCLK_PERIOD on every pulse of the nominal
clock. This implies that FIPER and TMR_CNT decrements at the same pace, however they are not aligned.
FIPER1 can be aligned with TMR_CNT by using ALARM1 a trigger. Other FIPERs do not have this
functionality.

For example, if a user wish to use the FIPER1 register to generate a 1 PPS (pulse per second) event aligned
with TMR_CNT, the following procedure should be used:

1. Program TMR_FIPER1 to a value that will generate a pulse every second.
2. To trigger FIPER1 by ALARM1, set TMR_CTRL[FS].
3. Program ALARM1 to a value which is a whole number of seconds, and greater than the present

TMR_CNT. In the formula below, n seconds are added to TMR_CNT. The sum is divided by 109
and the integer quotient results in a whole number of seconds.

TMR_ALARM1 = floor{(TMR_CNT + n)/ 109} Eqn. 1

For example, if TMR_CNT = 5.3 seconds and n = 2 seconds,

TMR_ALARM1 = floor(7.3*109, 109) = 7 seconds

4. Enable the timer

The hardware waits for TMR_ALARM1 to expire before enabling the count down of TMR_FIPER1. The
end result is that TMR_FIPER1 pulses every second after the original timer ALARM1 expires.

If the PPS signals need to be phase-aligned to the prescale output clock, the alarm value should be
programmed 1 clock period less than the desired value.

To track the prescale output clock, users must the FIPER by writing a new value to the register before
enabling the FIPER. The FIPER value can be calculated as shown in the following equation:

Value of FIPER = (prescale_value × tclk_per × N) – tclk_per Eqn. 2

For example, if prescale = 9 and clock period = 10, the FIPER can obtain the following values: 80, 170,
260.......

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

6 Freescale Semiconductor

Hardware Support for the IEEE 1588 Protocol

Figure 4 shows the FIPER and ALARM.

Figure 4. FIPER and ALARM

NOTE
If an application chooses to change the value of TMR_CNT for
synchronization, the FIPER should be stopped. Value of ALARM1 should
be re-calculated to trigger FIPER1 again.

2.4 Hardware Time-Stamp Mechanism
Precision time-stamping is achieved by time-stamping the packets as soon as they are received on the
receiver side and as soon as they are transmitted from the transmitter side. As a prerequisite,
TMR_CTRL[TE] should be set to 1 to enable the IEEE 1588 protocol timer.

2.4.1 Receive Time-Stamping
To enable time-stamping on the receive side, RCTRL[TS] in eTSEC (RCTRL[RTSE] in dTSEC) should
be set to 1. As soon as the MAC receives a packet, the value of TMR_CNT is copied to TMR_RXTS_H/L.
This time-stamp is also inserted into the packet data buffer as padding alignment bytes if
TMR_CTRL[RTPE] is set to 1.

RTC clk

System clk

Ext clk

TMR_CTRL
[CLKSEL]

32 bit Accumulator

+

32 bit Addend

64 bit counter
TMR_CNT

1588 CLK/
Nominal
Frequency

+

TCLK_PERIOD

+

64 bit offset

>=

64 bit ALARM
Alarm

Trigger

FIPER

CLK divider
(prescalar)

PPS Signal

GCLK

TCLK_PERIOD

-

eTSEC1 Tx clk

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

Freescale Semiconductor 7

The IEEE 1588 Protocol Driver

Time-stamp insertion into the data buffer requires receive pad alignment length (RCTRL[PAL]) to be set
to a value greater than or equal to 8. Retrieving time-stamps from the packet data itself is easier and faster
than retrieving time-stamps stored in registers. This solution easily scales to handle a large number of
received PTP packets even when the CPU cannot process a PTP packet before the next PTP packet arrives.

2.4.2 Transmit Time-Stamping
To enable time-stamping of a particular packet on transmit side, TxFCB[PTP] in eTSEC should be set to
1. In dTSEC, setting TCTRL[TTSE] to 1 ensures that all the packets will be time-stamped during
transmission. On the TX side, the MAC time-stamps the packet when it starts transmission of the packet.
The packet ID and time-stamp are stored in the TMR_TXTS1-2_ID and TMR_TXTS1-2_H/L registers,
respectively. Software can probe the ID registers to retrieve the correct time-stamp of the outgoing packet
when requested.

The hardware can also be configured to store transmission time-stamps in the padding alignment bytes
(PAL) located between the transmission frame buffer and the frame data. In the eTSEC, it is required that
a minimum of two TxBDs are used per packet. The first points to the start of the 8 byte TxFCB. The second
points to the start of frame data. In memory, the TxFCB, and at least the first 16 bytes of the TxPAL must
be located in contiguous memory locations. The first TxBD[TOE] is set. When TMR_CTRL[RTPE] and
TxFCB[PTP] are set, the time-stamp is written to memory location TxBD[Data Buffer Pointer]+16.

NOTE
It is recommended that time-stamps written on the buffer be used instead of
the registers to ensure accuracy even in high traffic environments.

3 The IEEE 1588 Protocol Driver
The lowest level software should take care of the hardware initialization, retrieval of time-stamps, and
providing a bridge to upper level application. The lowest level software is often part of the Ethernet driver.
This section explains the functions of the lowest level driver available in board support packages
distributed by Freescale.

3.1 Initialization
The procedure to initialize the IEEE 1588 protocol hardware is as follows:

1. Select input clock by TMR_CTRL[CKSEL].
2. Initialize TMR_PRSC with the desired prescalar value.
3. TMR_ADD and TCLK_PERIOD should be initialized as described in Section 2.2, “IEEE 1588

Protocol Clock.”
4. If PPS is required, FIPER should be equal to 109 ÷ TCLK_PERIOD.
5. Setting TMR_CTRL[FS] to 1 ensures that FIPER1 is triggered by ALARM1.
6. ALARM should be few seconds ahead of TMR_CNT to make sure alarm is hit at the boundary of

a second to trigger FIPER.

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

8 Freescale Semiconductor

The IEEE 1588 Protocol Driver

7. RCTRL[TS] in eTSEC or RCTRL[RTSE] in dTSEC should be set to 1 for time-stamp on receive
side.

8. To enable time-stamping of a packet to be transmitted, TxFCB[PTP] in eTSEC or TCTRL[TTSE]
in dTSEC should be set to 1.

As mentioned in Section 2.4, “Hardware Time-Stamp Mechanism,” the time-stamps can be retrieved
either through time-stamp registers or the frame control buffers. If the user wants to retrieve time-stamps
through registers, software should initialize buffers to store time-stamps and packet identification
numbers.

3.2 Recording Time-Stamps
During transmission, the driver should check if the packet to be transmitted is a PTP packet. If yes, the
driver should add padding as described in Section 2.4.2, “Transmit Time-Stamping.” After a packet is
transmitted, the driver can store the time-stamp and packet identification number.

Upon receiving a PTP packet, the driver stores the time-stamp with a packet identification number in a
circular buffer. A user-space application using IOCTL can later retrieve the time-stamp.

3.3 Application Programming Interface
The lower level driver interacts with the hardware on one end and higher level applications at the other.
The higher level application, in this case, implements precision time protocol (PTP). This section discusses
the IOCTLs implemented by a low level driver in Linux-based board support packages (BSP) distributed
by Freescale.

• PTP_GET_RX_TIMESTAMP_SYNC
The user-space application provides the message ID of SYNC message, for which time-stamp is to
be retrieved, to the IOCTL. The driver returns the time-stamp. Retrieval of a particular time-stamp
also ensures that any preceding time-stamps are automatically cleared. For example, suppose the
buffer inside kernel currently has time-stamps for SYNC message IDs from 4–22 and the
application requests the time-stamp for SYNC message ID 20. The kernel-space driver returns the
time-stamp of ID 20 and also clears the time-stamps from values 4–20.

• PTP_GET_RX_TIMESTAMP_DEL_REQ
The user-space application provides the message ID of Delay_Request message, for which
time-stamp is to be retrieved. The IOCTL returns the time-stamp as a 64-bit value. The buffer is
automatically cleared as mentioned above for SYNC messages.

• PTP_GET_TX_TIMESTAMP
The user-space application calls this IOCTL without providing any message ID. The kernel-space
driver returns the last recorded TX time-stamp to the application.

• PTP_ADJ_ADDEND
This IOCTL is used by user-space application to program ADDEND registers.

• PTP_GET_ADDEND
The user-space application may use this to read the current value of ADDEND.

• PTP_GET_CNT

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

Freescale Semiconductor 9

References

The user-space application calls PTP_GET_CNT to retrieve the current value of TMR_CNT_H/L
registers. This is provided back to the user-space application as a 64-bit value.

• PTP_SET_CNT
The user-space application provides a 64-bit value to be loaded into the TMR_CNT_H/L registers.
As discussed in Section 2.3, “Generating FIPER and ALARM,” every time there is a change in
TMR_CNT_H/L, FIPER should be stopped and value of ALARM should be recalculated to trigger
FIPER.

4 References
The following list contains documents for further reference.

• MPC8313E PowerQUICC™ II Pro Integrated Host Processor Reference Manual
• P4080 QorIQ Integrated Multicore Communication Processor Reference Manual
• IEEE 1588 Precise Time Synchronization, available at

http://www.ieee1588.com/Synchronisation.htm

5 Revision History
Table 2 provides a revision history for this application note.

Table 2. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 09/2010 Initial release

Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors, Rev. 0

10 Freescale Semiconductor

Revision History

Document Number: AN3423
Rev. 0
09/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, and PowerQUICC are trademarks of
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ and QUICC
Engine are trademarks of Freescale Semiconductor, Inc. All other product
or service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org.
© 2010 Freescale Semiconductor, Inc.

	Support for IEEE 1588™ Protocol in PowerQUICC and QorIQ Processors
	1 Clock Synchronization Using the IEEE 1588TM Protocol
	2 Hardware Support for the IEEE 1588 Protocol
	2.1 IEEE 1588 Protocol Registers
	2.2 IEEE 1588 Protocol Clock
	2.3 Generating FIPER and ALARM
	2.4 Hardware Time-Stamp Mechanism
	2.4.1 Receive Time-Stamping
	2.4.2 Transmit Time-Stamping

	3 The IEEE 1588 Protocol Driver
	3.1 Initialization
	3.2 Recording Time-Stamps
	3.3 Application Programming Interface

	4 References
	5 Revision History

