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This application note describes aspects of memory 
synchronization and cache coherency requirements for 
Freescale’s PowerQUICC™ III processor family. 
Coherency and synchronization must be considered, both for 
data and instructions, when initializing memory, moving 
memory contents from one location to another, or changing 
ownership of memory.

Issues can arise when: 

• Moving flash contents to DDR

• Changing local access windows

• Performing memory tests

• Releasing locks on data

Coherency and synchronization must be addressed for such 
applications.
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Introduction

1 Introduction
The PowerQUICC III processor is built on the Power Architecture™ technology and conforms with the 
Power ISA™ in its architecture as an out-of-order execution machine supporting weak memory ordering. 
To fully understand the implications, it is helpful to first define out of order execution and weak memory 
ordering.

Memory is considered to be well-behaved when the full address range is populated (for example, there are 
no memory holes) and speculative instruction or data pre-fetches will cause no undesired side effects. For 
example, DRAM memory mapped from address 0x0000_0000 to 0x01FF_FFFF is considered 
well-behaved memory. The full region from 0x0000_0000 to 0x01FF_FFFF is populated with memory 
with no memory holes. Non-sequential accesses to DRAM are allowed and cause no undesired side effects. 

Conversely, non-well-behaved memory may contain memory holes, and speculative data accesses to 
non-well-behaved memory may produce undesired side effects. Examples of this would be an ASIC or I/O 
device using indirect addressing, or a load from an I/O device (UART with FIFO) that auto-increments the 
address. In both cases, speculative data accesses must be explicitly prohibited through TLB attributes. 

Similarly, a speculative instruction access to non-well-behaved memory may cause a Machine Check 
exception or other undesired side effects. If a memory hole is unintentionally defined at the end of memory, 
the core may prefetch to that space. If code space is followed by non-execute space (possibly an I/O 
device), but mistakenly marked as execute space, the core may prefetch to that space and cause undesired 
side effects.

Figure 1. Non-Well-Behaved Memory

2 Cache Coherency
Cache coherency refers to managing all copies of data to ensure they are true reflections of data in memory. 
Unfortunately, disabling the caches does not always avoid cache coherency issues. 

2.1 Data Cache Coherency
Data cache content may be coherent with physical memory, or not, depending on how the physical memory 
contents are changed. Data cache is coherent with memory when load, store, and cache operations are 
executed to pages marked as coherence required. If TLB pages are marked as cacheable, the core may keep 
internal copies of instructions and data, even if the caches are disabled. Cache management instructions 
(for example, dcbf and icbi) must be used, as specified by the architecture, to ensure the core does not use 
or keep internal copies of instructions and data.
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Examples of methods that effectively change the contents of the physical memory the core sees are as 
follows:

•  Executing store or dcbz instructions in the core

•  DMA Transfers

•  Changing local access windows

For example, executing store or dcbz instructions to pages that are marked as coherence required results 
in the data cache being coherent with memory; if DMA transfer is performed with coherency enabled, the 
cache contents will be coherent with memory. However, changing a local access window to point to a new 
region of memory can leave non-coherent data in the data cache.

2.2 Instruction Cache Coherency
Instruction cache coherency must be handled separately from data cache coherency. Whereas there is 
hardware support for data cache coherency, instruction cache coherency must be maintained in software. 
Even if stores are performed to pages marked as coherence required, icbi instructions are required to 
ensure the instruction cache is coherent.

When changing the contents of physical memory, the user must ensure the following:

• The instruction and data caches do not contain stale instructions or data that were cached before 
changing the memory contents.

• The new contents reach the primary storage device (for example, DDR) before attempting to 
branch to addresses in the new region.

The methods for ensuring these conditions depends on whether or not the changes are being made 
coherently.

Approaches for avoiding coherency issues include the following:

• Marking pages as caching-inhibited

• Preventing speculative accesses to memory before the contents are established (this may also 
require synchronization)

• Using cache management instructions to avoid coherency problems on cacheable pages

• Using implementation-dependent processor features to maintain coherency

CAUTION
Using implementation-dependent processor features may result in 

non-portable code.

The most difficult case is when memory contents are being changed non-coherently. The example below 
changes the local access window; the architecturally recommended procedure for doing so is as follows:

1. Mark the pages for the new area as guarded and non-executable, then execute an msync and isync. 
This will ensure that no future speculative accesses will occur to the new region before everything 
is ready.

2. Use dcbf to invalidate all addresses in the physical address space that is being remapped, then 
perform an msync. This will ensure the core does not contain any cached copies of the data from 
the old address space. Note that this is necessary even if the data cache is disabled, because the 
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core may keep copies of the data in other hardware structures. This step can be omitted if the user 
can guarantee that there has been no cacheable TLB mapping for this address space since power 
on reset.

3. Use icbi to invalidate all addresses in the physical address space that is being remapped, then 
perform an msync and isync. This will ensure the core does not contain cached copies of 
instructions from the old address space. Note that this is necessary even if the instruction cache is 
disabled because the core may keep copies of the instructions in other hardware structures. This 
step can be omitted if the user can guarantee that there has been no executable TLB mapping for 
this address space since power on reset.

4. Change the local access window mapping by reading the local access window contents back.

5. Mark the pages for the new area as needed for their intended use (for example, not guarded and/or 
executable).

The procedure for altering memory coherently only differs slightly. Step 2, above, can be omitted because 
the data cache coherency is handled by the hardware. However, instruction cache coherency must still be 
handled in software, therefore the following steps should be used for establishing a new memory region 
coherently:

1. Mark the pages for the new area as non-executable, then execute an isync. This will ensure that no 
future speculative instruction fetches will occur to the new region before everything is ready.

2. Perform store or dcbz instructions to establish instructions and data in the new region.

3. If the new region contains instructions, execute dcbf and msync to ensure the instructions are 
pushed out of the data cache. Use icbi to invalidate all addresses in the new region; follow this 
with an msync and isync. Note that this is necessary even if the instruction cache is disabled, 
because the core may keep copies of the instructions in other hardware structures. This step can be 
omitted if the user can guarantee that there has been no executable TLB mapping for this address 
space since power on reset.

4. Mark the pages for the new area as needed for their intended use (for example, executable).

If the user can ensure that the new physical address space has never before been used for cacheable 
accesses (instruction or data), the invalidation steps above may be skipped. This could be the case, for 
example, if during the boot process, the user is decompressing the contents of a FLASH memory into 
DDR. In this case, no TLB entry has previously been created for the new addresses, so there is no chance 
that speculative accesses have occurred to this region. The initial mappings used for decompression should 
be marked as non-executable.

A lower performance approach is to mark pages as caching-inhibited. By doing so, the user can avoid 
problems associated with cached copies. The core does not keep copies of instructions or data on pages 
that are marked as caching-inhibited. Additionally, simply executing an msync will guarantee that any 
modified data is pushed out to the core complex bus. No dcbf instructions are necessary.

A non-portable alternative is to clear the caches and core with implementation-dependent features. Code 
that uses these methods may not continue to work on future processors or, possibly, future revisions of the 
e500 processor. Setting L1CSR0[DCFI] to one will ensure that the contents of the L1 data cache are 
invalidated, and executing an msync will ensure that any other copies of data that exist in the core are 
purged. Setting L1CSR1[ICFI] to one will ensure that the contents of the L1 instruction cache are 
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invalidated. This should be followed by modification of the TLB entry (presumably to enable execution 
privileges), which will also invalidate any speculative copies of instructions that may exist in the core.

3 Synchronization
EREF: A Programmer's Reference Manual for Freescale Book E Processors describes both context and 
execution synchronizing instructions, which are both necessary for proper memory synchronization.

Any instruction that alters the context in which data addresses or instruction addresses are interpreted, or 
in which instructions are executed, is called a context-altering instruction. A Context Synchronizing 
Instruction ensures that all changes due to context altering instructions have taken effect. The term context 
includes privilege level, address space and memory protection. Context Synchronizing Instructions 
include isync, sc, rfi, rfci, and rfmci.

An execution synchronizing instruction ensures that an operation is not initiated, or does not complete, 
until all instructions already in execution have completed to a point at which they have reported all of the 
exceptions that they cause. These instructions have nothing to do with the context before, or following, the 
execution synchronization instruction. Execution synchronizing instructions include msync, mtmsr, 
wrtee, and wrteei. 

The EREF: A Programmer's Reference Manual for Freescale Book E Processors manual describes these 
synchronizing instructions in great detail. Several of the more common instructions are summarized in the 
sections below.

3.1 isync (Instruction Synchronize)
isync causes any prefetched instructions to be discarded by the core, and it ensures that any subsequent 
instructions are fetched and then executed in the context established in the instructions preceding isync. 
Note that isync does not affect data accesses and does not wait for all stores to be performed.

In Figure 2, tlbwe instruction is modifying a TLB entry. The isync in this example ensures the TLB is 
written to and the instructions following the isync are executed in the new context established by the TLB 
write.

Figure 2. isync Example
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X BRA

Program

Preceding instructions
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... before isync can complete

The following instructions will be
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3.2 msync (Memory Synchronize)
msync performs two important functions:

1. msync provides an ordering function for data memory accesses across all storage classes.

2. Executing msync ensures that all instructions preceding the msync have completed before msync 
completes and that no subsequent instructions are initiated until after the msync completes.

Figure 3 is an example of loads and stores to two separate classes. Class 1 consists of a cache-inhibited 
region, while Class 2 is a cacheable region of memory. To enforce order between the cache-inhibited loads 
and stores and the cacheable load, it is necessary to insert an msync in between. Note that the store and 
load to cacheable space may still occur out of order (for example, the load will most likely bypass the 
store). In this example, the msync only is enforcing order between classes and guarantees that both the 
store and load to cache-inhibited space complete before the load to cacheable space initiates.

Figure 3. msync Example

3.3 mbar (Memory Barrier)
There are two flavors of the mbar instruction, depending on the MO field (bits 6–10). 

1. MO = 0, mbar behaves similarly to msync

2. MO = 1, mbar is a weaker, faster memory barrier designed to order the following:

— All stores

— Caching-inhibited and guarded loads to caching-inhibited and guarded stores

With MO = 1, mbar does not wait for its address tenure to be performed successfully on the bus before 
allowing subsequent instructions to complete. This provides a faster way to order data accesses in a limited 
subset of storage classes. 

Refer to Section 4, “mbar Erratum” for errata relating to mbar MO = 1 for PowerQUICC III.
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Figure 4 shows an mbar MO = 0 instruction used as a memory barrier between stores and loads to the 
same class. The mbar enforces ordering between the initial store and load and the load instruction 
subsequent to the mbar instruction. Note that mbar MO = 1 will not order loads. For an example usage 
of mbar MO = 1, refer to Figure 7 in Section 5.3, “Example—Synchronization Between Classes.” 

Figure 4. mbar Example

3.4 Core Complex Bus
On PowerQUICC III, synchronization instructions only enforce order on memory accesses to the point 
where they are performed on the core complex bus. To synchronize memory accesses beyond the core 
complex bus, the PowerQUICC III requires additional steps. In general, to ensure that store data has 
reached its final destination, a caching-inhibited store should be followed by a caching-inhibited load from 
the same address. If cacheable accesses are used, the store should be followed by the following:

1. dcbf or dcbst to the same address

2. msync
3. Load from the same address
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Refer to Section 5.1.1, “Special Consideration for PCI-Express Ordering” 
for more information.

3.5 CCSR Space
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mbar with MO = 0 or msync is required. This failure is limited to caching-inhibited loads bypassing the 
mbar MO = 1 barrier. The mbar MO = 1 instruction correctly enforces the ordering of caching-inhibited 
stores to caching-inhibited stores, and the ordering of cacheable stores to cacheable stores.

Based on the impact of this erratum, Table 1 lists the revised memory barrier requirements for maintaining 
memory access ordering for all storage classes.

5 Examples
This section contains examples in the following subsections: Section 5.1, “Example—Ordering of Stores 
and Loads to I/O,” Section 5.2, “Example—Buffer Descriptor Ownership,”
Section 5.3, “Example—Synchronization Between Classes,” Section 5.4, “Example—Copying ROM to 
DDR,” and Section 5.5, “Example—Changing a Local Access Window.”

5.1 Example—Ordering of Stores and Loads to I/O
As mentioned in Section 1, “Introduction,” ordering of stores and loads to non-well-behaved memory, 
specifically I/O, can be especially problematic. Consider an I/O device (an ASIC) where data needs to be 
written to one location, and a result is returned in a different location. Because this is I/O, it is assumed 
that the TLB pages pointing to the ASIC locations are marked as guarded and non-cacheable.

High level C code might look like the following:

WRITE_ASIC_REG(rxx_start_addr, rxxStartAddr);

rxxDataReport=READ_ASIC(rxx_data_repoty);

The PowerQUICC III is a weakly ordered machine, so loads and stores are executed out of order. In this 
case, the read bypasses the write, and incorrect data is read out of the ASIC, which causes undesirable 
results. The guarded TLB entry does not enforce order between loads and stores. Instead, guarded attribute 
enforces order between loads and loads, stores and stores, and loads and stores to the same address. To 

Table 1. FLS Power Architecture Synchronization for Memory Access Ordering

Cache/Memory Access Attributes WIMGE
Speculative 
Execution

Store-Store 
Ordered

Load-Load 
Ordered

Store-Load 
Ordered

Load-Store 
Ordered

Caching-inhibited, guarded 01x1x None Yes Yes Requires mbar 
(MO = 0)

Yes

Caching-inhibited, non-guarded 01x0x Permitted Requires mbar 
(MO = 1)

Requires 
msync

Requires 
msync

Yes

Write-through, guarded 10x1x None Requires mbar 
(MO = 1)

Requires 
msync

Requires 
msync

Yes

Write-through, non-guarded 10x0x Permitted Requires mbar 
(MO = 1)

Requires 
msync

Requires 
msync

Yes

Write-back, coherency-required 001xx Permitted Requires mbar 
(MO = 1)

Requires 
msync

Requires 
msync

Yes

Write-back, coherency not required 000xx Permitted Requires mbar 
(MO = 1)

Requires 
msync

Requires 
msync

Yes

Note:  Power Architecture technology states that combinations where WIMGE = 11xxx are not supported.
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properly enforce order in the above example, msync or mbar MO = 0 must be used in between the store 
and the load.

WRITE_ASIC_REG(rxx_start_addr, rxxStartAddr);

_asm_volatile(“mbar”);

rxxDataReport=READ_ASIC(rxx_data_repoty);

The above C code produces assembly similar to that in Figure 5.

Figure 5. Example Code—Ordering Loads and Stores to I/O

Note the use of _asm_volatile in the C code. Without this syntax, the gcc compiler is allowed to optimize 
the mbar and put it out of order in the sequential code model. Other compilers may use alternate syntax 
for this function, so the mbar must be marked as non-optimizable as per the particular compiler in use.

Because order is being enforced only on a single class, mbar MO = 1 should be sufficient to ensure the 
store completes before the load initiates. However, the mbar failure discussed in Section 4, “mbar 
Erratum” is important to note, and because I/O is typically marked as cache-inhibited and guarded, it is 
necessary to use mbar MO = 0 as specified in Table 1.

5.1.1 Special Consideration for PCI-Express Ordering
Many legacy applications that use custom FPGAs and/or ASICs to extend the microprocessor’s 
functionality are beginning to move to and become standardized on PCI-Express as the system 
interconnect of choice. It is important for system designers that are moving away from legacy PCI 2.x to 
understand that even though load/store ordering can be maintained to caching-inhibited and guarded I/O 
space on the internal processor bus, certain PCI-Express implementations and configurations may still 
allow those transactions to be reordered to increase performance or avoid deadlock.

The summary of the ordering rules for the PCI-Express controller implemented in the PowerQUICC III 
processor family is provided in Table 2, which is based on Table 2-23 for ordering rules of the PCI-Express 
Base Specification, Rev 1.0a, but is only specific to Freescale’s PCI-Express controller implementation.
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In Table 2, columns 1–5 represent a first issued transaction, and rows A–E represent a subsequently issued 
transaction. The table entry indicates the ordering relationship between the two transactions, as follows:

• Yes—the second transaction (row) must be allowed to pass the first transaction (column).

• No—the second transaction (row) must not be allowed to pass the first transaction (column).

• RO = 0—the relaxed ordering bit in the PCI-Express device control register is cleared.

• RO = 1—the relaxed ordering bit in the PCI-Express device control register is set.

For PowerQUICC III, only one case exists where reordering of memory read or write requests can take 
place in the PCI-Express controller—a memory write request may bypass a read request to avoid deadlock.

NOTE
It still may be possible for an external PCI-Express switch or ASIC 
connected to the microprocessor to reorder reads and/or write requests per 
the PCI-Express Base Specification, Rev 1.0a. 

The ordering rules defined in Table 2 apply within a single Traffic Class (TC). There is no ordering 
requirement among transactions with different TC labels.

In the example in Figure 5, the order of the write followed by the read is properly ordered by the 
PowerQUICC III’s PCI-Express controller independent of the Relaxed Ordering (RO) bit’s setting. 

Table 2. PowerQUICC III PCI Express Transaction Ordering Rules Summary

Row Pass Column?

Posted Request
Non-Posted

Request
Request

Completion

Memory Write or 
Message 
Request

(Column 1)

Read Request 
(Column 2)

I/O or 
Configuration 
Write Request 

(Column 3)

Read 
Completion 
(Column 4)

I/O or 
Configuration 

Write 
Completion 
(Column 5)

P
o

st
ed

R
eq

u
es

t 

Memory Write or 
Message Request 

(Row A)

No Yes Yes Yes Yes

N
o

n
-P

os
te

d
R

eq
u

es
t 

Read Request
(Row B)

No No No a) No, RO=0

b) Yes, RO=1

a) No, RO=0

b) Yes, RO=1

I/O or 
Configuration 
Write Request 

(Row C)

No No No a) No, RO=0

b) Yes, RO=1

a) No, RO=0

b) Yes, RO=1

C
om

p
le

ti
o

n

Read Completion 
(Row D)

a) No, RO=0

b) Yes, RO=1

Yes Yes No No

I/O or 
Configuration 

Write Completion 
(Row E)

a) No, RO=0

b) Yes, RO=1

Yes Yes No No
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5.2 Example—Buffer Descriptor Ownership
Even though SDRAM is typically defined as “well-behaved,” the user must still be aware of cases when 
cores and peripherals share data structures and ownership is important. One of the common related issues 
is synchronization of a lock release. 

A problem may occur in advanced micro-architectures supporting out-of-order memory accesses when a 
store, which releases a lock on a data structure, is performed ahead of stores to a different address(es) that 
provide context or messaging to the new owner of that data structure. Note that if two stores occur to the 
same address, they are guaranteed to be ordered by the architecture. Because the lock has been released, 
the new owner may be working out of the wrong context or with incorrect messaging. The resulting 
activity by the new owner may cause undesired side effects to the operation of the system.

One solution is to ensure the lock release store occurs after all other stores are complete. As mentioned 
previously, the Power Architecture technology defines memory synchronization instructions mbar (and 
eieio1) to properly order stores with respect to other stores under all MMU settings. Changing the attributes 
of the MMU pages in the e500 core to write-through does not guarantee the desired sequential store 
ordering to the buffer descriptors (BDs). Caching-inhibited stores must be performed in program order, so 
even though this may be a potential alternative to using the memory barriers, it may have a negative impact 
on packet performance. 

An example of this problem is the use of shared buffer descriptors by the e500v2 core and eTSEC 
controllers of the MPC8548E. The eTSECs provide a means of receiving Ethernet frame data into buffer 
memory and transmitting buffered frames out on the line based on a pointer and certain bits in the header 
resident in the BD. These buffers and BDs are shared between the eTSECs and software running on the 
e500v2 core. 

The driver software running on the e500v2 core initializes the eTSECs for proper operation and also 
supplies a means of handing ownership of the buffers and BDs between the eTSECs and the e500v2 core. 
The Ethernet controller uses a ring of BDs to receive and transmit Ethernet Frames. The beginning is 
indicated by a register pointing to the physical address of the start of the ring. The end is determined by a 
“wrap” bit being set in the last descriptor of the ring. 

When a packet is received, the empty bit in the receive BD is cleared and the RXF bit in the IEVENT 
register is set, triggering an interrupt when the corresponding bit in the IMASK register is also set. This 
interrupt notifies the driver software running on the core that it may take ownership of the descriptor and 
associated buffered data. Once the buffer is processed and the header and pointer information updated in 
the BD by the core, it can hand the ownership of the BD and buffer back to the eTSEC for continued Rx 
of Ethernet frames by clearing the empty bit (the lock release).

When the kernel requests that a packet be transmitted, the driver starts where it last left off, and points the 
descriptor at the buffer that is ready to be sent. The driver informs the eTSEC that there are packets ready 
to be transmitted by setting the ready bit (the lock release) in the descriptor header. Once the eTSEC 
finishes transmitting the packet, the ready bit is cleared by the eTSEC, TXF bit set in the IEVENT register, 
and an interrupt may be triggered, which allows the driver to clean up the buffer and prepares it for the 
next transmission of Frame data.

1. mbar MO = 1 is functionally the same as eieio in the classic PowerPC ISA™, however mbar MO = 0 (which is
functionally the same as msync and sync) has the same opcode as eieio in the classic PowerPC ISA.
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For this example, the buffer descriptors are allocated in system memory (DDR2 SDRAM) where each BD 
contains the pointer to a packet buffer in system memory. The eTSEC BD is 8 bytes and has status, and 
length in first 32 bits and the buffer pointer in next 32 bits.

The proper sequence is to first perform a write to the packet pointer and then a second write to the length 
and status bits to give up the ownership of this BD to eTSEC. To ensure these stores are performed in order 
and the eTSEC is operating in the correct context, an mbar or memory barrier is required, as outlined in 
Figure 6.

In the example provided in Figure 6, mbar MO = 1 is used based on the EREF recommendation and the 
expectation of higher packet performance. Note that the opcode for mbar M = 0 (not mbar MO = 1) is 
identical to the opcode for the eieio instruction on classic PowerPC™ cores; mbar MO = 0 is guaranteed 
to execute on all past cores developed by Freescale. If cross core compatibility is desired, it is 
recommended that the user replaces the memory barrier with mbar MO = 0 in the sequence above. If 
performance is desired and only the e500 core or future Book E cores are being used, it is recommended 
that the user employs mbar MO = 1 as the memory barrier.

In the Linux 2.6 Gianfar.c Ethernet driver, there are only two memory barriers required to maintain proper 
operation of the lock release:

• For receive, the mbar (or eieio) is inserted after the RxBD’s buffer pointer is set and before the 
RxBD's Empty (E) bit is set, which can be seen in the Gianfar.c function gfar_new_skb( ).

• For transmit, the mbar (or eieio) is inserted after the TxBD's buffer pointer is set and before the 
TxBD's Ready (R) bit is set, which can be seen in the Gianfar.c function gfar_private( ).

Figure 6. Lock Release on Packet Buffer

5.3 Example—Synchronization Between Classes
As mentioned in Example 5.1, mbar with MO = 1 orders the following:

1. Stores with respect to other stores

2. Cache-inhibited and guarded loads with respect to caching-inhibited and guarded stores

mbar with MO = 1 does not impose order between cacheable and cache-inhibited space.

Refer to Section 4, “mbar Erratum” for errata relating to mbar MO = 1.

BRA

Cacheable STORE

mbar MO=1

Cacheable STORE

Cacheable STORE

BRA

Cacheable STORE

mbar MO=1

Cacheable STORE

Cacheable STORE

Program

Store Word to BD in external memory to update packet buffer pointer

Store Word to BD in SDRAM to update length and ownership of buffer

Memory Barrier ensures context is set before ownership changes
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Figure 7 is an example of a sequential program with stores and loads to two different classes. In this 
example, Set 1 consists of cache-inhibited, non-guarded space, while Set 2 is cacheable space. With the 
mbar inserted, loads and stores are ordered within their respective sets. In this case, the first load/store to 
cache-inhibited, non-guarded space (LOAD/STORE) is ordered with respect to the second load/store to 
cache-inhibited, non-guarded space. Similarly, the stores to cacheable space (STORE) is ordered with 
respect to one another. However, there is no ordering enforced between the two classes, meaning the first 
store to cacheable space may occur after the second load/store to cache-inhibited, non-guarded space 
occurs.

Figure 7. Synchronization Between Classes

To enforce order between the two classes, the user needs to insert an msync or mbar with MO = 0 in place 
of the mbar with MO = 1 in the example above.

5.4 Example—Copying ROM to DDR
A common operation at boot time is to decompress the contents of a FLASH or ROM into DDR, then begin 
executing from the DDR. Assuming that there has not been a TLB mapping for the DDR physical address 
space since power on reset, this process can safely be performed with the following steps:

1. Configure the DDR local access windows by writing to the registers in CCSR space. CCSR space 
should be cache-inhibited and guarded.

2. Ensure the configuration is complete by performing caching-inhibited loads from the modified 
locations in CCSR space.

3. Establish TLB entries for DDR space. These entries should be marked as non-executable and 
guarded to prevent speculative instruction and data reads; the entries can be marked as cacheable 
for performance.

4. Inflate the code into DDR. This can be done with the caches enabled. Either dcbst or dcbf 
instructions should be executed to ensure the inflated code is pushed out of the core.

5. Execute an msync to ensure all of the dcbst or dcbf instructions have been performed.

6. Change the TLB entry to allow execution privileges. Perform the required synchronization for 
changing TLB entries, which includes the required context-synchronizing instruction (for 
example, isync) to ensure that subsequent instruction fetches use the correct translation. See the 
e500 Core Family Reference Manual for details.

7. Branch to the inflated code in DDR.

Setting the TLB entries for DDR space only one time is a common programming error. If these entries are 
set to executable in step 2 above, then the core is allowed to speculatively fetch instructions to this space. 

ADDI

LOAD/STORE

STORE

mbar

LOAD/STORE

STORE

Program

Set 2: STOREs to coherent memory
with WIMG = x01x

Set 1: CI/(nG) LOADs,
CI/(nG) STOREs
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Summary

Depending on when these instructions are speculatively fetched, for example, prior to valid instructions 
being copied to DDR, the core may have stale instructions consisting of invalid opcodes. From the core’s 
point of view, this is essentially self-modifying code. As outlined in the steps above, to prevent such a 
coherency issue the user must first set up the DDR TLBs to both guarded and non-executable to prevent 
speculative instruction and data accesses to the space. Only once the desired code has been copied over to 
DDR, the software may reconfigure the TLBs to executable and non-guarded, allowing speculative 
accesses to memory.

5.5 Example—Changing a Local Access Window
Care must be taken, and coherency issues must be considered, when modifying an existing local access 
window. This example demonstrates one safe way to alter local access windows. Assume that the core 
previously had an existing TLB entry for some addresses in the range that is to be mapped, and assume 
that the entry is marked cacheable and executable. Care must be taken to manage the coherency of the 
region, even if the caches are disabled. 

The following steps are portable and safe:

1. Set up TLB entries for the physical address space to be remapped. Mark the entries as guarded and 
non-executable.

2. Use dcbf and icbi to invalidate the entire region. Follow this process with msync and isync, 
which ensures that stale copies of instructions and/or data are purged from the caches.

3. Perform a caching-inhibited store to CCSR space to modify the LAW.

4. Perform a caching-inhibited load from the modified CCSR addresses to ensure the LAW update is 
complete.

5. Begin accessing the newly mapped area.

6 Summary
Synchronization and coherency are two continually important issues in embedded systems programming. 
Coherency refers to the issue of managing all copies of data to ensure that all the copies are true reflections 
of data in memory. The e500 core on the PowerQUICC III manages data coherency in hardware, but 
instruction coherency must be managed in software. 

Additionally, the Power ISA defines a Weakly Ordered Memory Access Model (or Relaxed Memory 
Coherency Model). The benefits of such an architecture include the following:

• Reduced effect of memory latency on instruction throughput

• No time penalty incurred even if the result is not needed later, because execution is typically 
performed by idle resources

The risk is that out of order operations may violate requirements for memory that is non-well-behaved. 
Note that it is the software programmer’s responsibility for access ordering. 
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Revision History

7 Revision History 
Table 3 provides a revision history for this application note. 

Table 3. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 12/2007 Added Section 4, “mbar Erratum.”

Added Section 5.1.1, “Special Consideration for PCI-Express Ordering.”
Added Section 5.2, “Example—Buffer Descriptor Ownership.”
Modified Sections 3.3, 5.1, and 5.3 to account for the mbar erratum in section 4.

0 9/2007 Initial release.
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