
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2007. All rights reserved.

This application note describes aspects of memory
synchronization and cache coherency requirements for
Freescale’s PowerQUICC™ III processor family.
Coherency and synchronization must be considered, both for
data and instructions, when initializing memory, moving
memory contents from one location to another, or changing
ownership of memory.

Issues can arise when:

• Moving flash contents to DDR

• Changing local access windows

• Performing memory tests

• Releasing locks on data

Coherency and synchronization must be addressed for such
applications.

Document Number: AN3441
Rev. 1, 12/2007

Contents
1 Introduction . 2
2 Cache Coherency . 2
3 Synchronization . 5
4 mbar Erratum . 7
5 Examples . 8
6 Summary . 14
7 Revision History . 15

Coherency and Synchronization
Requirements for PowerQUICC™ III
by Power Architecture Applications Engineering

Networking and Multimedia Group
Freescale Semiconductor, Inc.
Austin, TX

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

2 Freescale Semiconductor

Introduction

1 Introduction
The PowerQUICC III processor is built on the Power Architecture™ technology and conforms with the
Power ISA™ in its architecture as an out-of-order execution machine supporting weak memory ordering.
To fully understand the implications, it is helpful to first define out of order execution and weak memory
ordering.

Memory is considered to be well-behaved when the full address range is populated (for example, there are
no memory holes) and speculative instruction or data pre-fetches will cause no undesired side effects. For
example, DRAM memory mapped from address 0x0000_0000 to 0x01FF_FFFF is considered
well-behaved memory. The full region from 0x0000_0000 to 0x01FF_FFFF is populated with memory
with no memory holes. Non-sequential accesses to DRAM are allowed and cause no undesired side effects.

Conversely, non-well-behaved memory may contain memory holes, and speculative data accesses to
non-well-behaved memory may produce undesired side effects. Examples of this would be an ASIC or I/O
device using indirect addressing, or a load from an I/O device (UART with FIFO) that auto-increments the
address. In both cases, speculative data accesses must be explicitly prohibited through TLB attributes.

Similarly, a speculative instruction access to non-well-behaved memory may cause a Machine Check
exception or other undesired side effects. If a memory hole is unintentionally defined at the end of memory,
the core may prefetch to that space. If code space is followed by non-execute space (possibly an I/O
device), but mistakenly marked as execute space, the core may prefetch to that space and cause undesired
side effects.

Figure 1. Non-Well-Behaved Memory

2 Cache Coherency
Cache coherency refers to managing all copies of data to ensure they are true reflections of data in memory.
Unfortunately, disabling the caches does not always avoid cache coherency issues.

2.1 Data Cache Coherency
Data cache content may be coherent with physical memory, or not, depending on how the physical memory
contents are changed. Data cache is coherent with memory when load, store, and cache operations are
executed to pages marked as coherence required. If TLB pages are marked as cacheable, the core may keep
internal copies of instructions and data, even if the caches are disabled. Cache management instructions
(for example, dcbf and icbi) must be used, as specified by the architecture, to ensure the core does not use
or keep internal copies of instructions and data.

Valid Opcode

Valid Opcode

Valid Opcode

Non-Execute Space

Code Space

Valid Opcode

Valid Opcode

Valid Opcode

I/O DeviceNo Memory

Code Space

• • •

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 3

Cache Coherency

Examples of methods that effectively change the contents of the physical memory the core sees are as
follows:

• Executing store or dcbz instructions in the core

• DMA Transfers

• Changing local access windows

For example, executing store or dcbz instructions to pages that are marked as coherence required results
in the data cache being coherent with memory; if DMA transfer is performed with coherency enabled, the
cache contents will be coherent with memory. However, changing a local access window to point to a new
region of memory can leave non-coherent data in the data cache.

2.2 Instruction Cache Coherency
Instruction cache coherency must be handled separately from data cache coherency. Whereas there is
hardware support for data cache coherency, instruction cache coherency must be maintained in software.
Even if stores are performed to pages marked as coherence required, icbi instructions are required to
ensure the instruction cache is coherent.

When changing the contents of physical memory, the user must ensure the following:

• The instruction and data caches do not contain stale instructions or data that were cached before
changing the memory contents.

• The new contents reach the primary storage device (for example, DDR) before attempting to
branch to addresses in the new region.

The methods for ensuring these conditions depends on whether or not the changes are being made
coherently.

Approaches for avoiding coherency issues include the following:

• Marking pages as caching-inhibited

• Preventing speculative accesses to memory before the contents are established (this may also
require synchronization)

• Using cache management instructions to avoid coherency problems on cacheable pages

• Using implementation-dependent processor features to maintain coherency

CAUTION
Using implementation-dependent processor features may result in

non-portable code.

The most difficult case is when memory contents are being changed non-coherently. The example below
changes the local access window; the architecturally recommended procedure for doing so is as follows:

1. Mark the pages for the new area as guarded and non-executable, then execute an msync and isync.
This will ensure that no future speculative accesses will occur to the new region before everything
is ready.

2. Use dcbf to invalidate all addresses in the physical address space that is being remapped, then
perform an msync. This will ensure the core does not contain any cached copies of the data from
the old address space. Note that this is necessary even if the data cache is disabled, because the

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

4 Freescale Semiconductor

Cache Coherency

core may keep copies of the data in other hardware structures. This step can be omitted if the user
can guarantee that there has been no cacheable TLB mapping for this address space since power
on reset.

3. Use icbi to invalidate all addresses in the physical address space that is being remapped, then
perform an msync and isync. This will ensure the core does not contain cached copies of
instructions from the old address space. Note that this is necessary even if the instruction cache is
disabled because the core may keep copies of the instructions in other hardware structures. This
step can be omitted if the user can guarantee that there has been no executable TLB mapping for
this address space since power on reset.

4. Change the local access window mapping by reading the local access window contents back.

5. Mark the pages for the new area as needed for their intended use (for example, not guarded and/or
executable).

The procedure for altering memory coherently only differs slightly. Step 2, above, can be omitted because
the data cache coherency is handled by the hardware. However, instruction cache coherency must still be
handled in software, therefore the following steps should be used for establishing a new memory region
coherently:

1. Mark the pages for the new area as non-executable, then execute an isync. This will ensure that no
future speculative instruction fetches will occur to the new region before everything is ready.

2. Perform store or dcbz instructions to establish instructions and data in the new region.

3. If the new region contains instructions, execute dcbf and msync to ensure the instructions are
pushed out of the data cache. Use icbi to invalidate all addresses in the new region; follow this
with an msync and isync. Note that this is necessary even if the instruction cache is disabled,
because the core may keep copies of the instructions in other hardware structures. This step can be
omitted if the user can guarantee that there has been no executable TLB mapping for this address
space since power on reset.

4. Mark the pages for the new area as needed for their intended use (for example, executable).

If the user can ensure that the new physical address space has never before been used for cacheable
accesses (instruction or data), the invalidation steps above may be skipped. This could be the case, for
example, if during the boot process, the user is decompressing the contents of a FLASH memory into
DDR. In this case, no TLB entry has previously been created for the new addresses, so there is no chance
that speculative accesses have occurred to this region. The initial mappings used for decompression should
be marked as non-executable.

A lower performance approach is to mark pages as caching-inhibited. By doing so, the user can avoid
problems associated with cached copies. The core does not keep copies of instructions or data on pages
that are marked as caching-inhibited. Additionally, simply executing an msync will guarantee that any
modified data is pushed out to the core complex bus. No dcbf instructions are necessary.

A non-portable alternative is to clear the caches and core with implementation-dependent features. Code
that uses these methods may not continue to work on future processors or, possibly, future revisions of the
e500 processor. Setting L1CSR0[DCFI] to one will ensure that the contents of the L1 data cache are
invalidated, and executing an msync will ensure that any other copies of data that exist in the core are
purged. Setting L1CSR1[ICFI] to one will ensure that the contents of the L1 instruction cache are

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 5

Synchronization

invalidated. This should be followed by modification of the TLB entry (presumably to enable execution
privileges), which will also invalidate any speculative copies of instructions that may exist in the core.

3 Synchronization
EREF: A Programmer's Reference Manual for Freescale Book E Processors describes both context and
execution synchronizing instructions, which are both necessary for proper memory synchronization.

Any instruction that alters the context in which data addresses or instruction addresses are interpreted, or
in which instructions are executed, is called a context-altering instruction. A Context Synchronizing
Instruction ensures that all changes due to context altering instructions have taken effect. The term context
includes privilege level, address space and memory protection. Context Synchronizing Instructions
include isync, sc, rfi, rfci, and rfmci.

An execution synchronizing instruction ensures that an operation is not initiated, or does not complete,
until all instructions already in execution have completed to a point at which they have reported all of the
exceptions that they cause. These instructions have nothing to do with the context before, or following, the
execution synchronization instruction. Execution synchronizing instructions include msync, mtmsr,
wrtee, and wrteei.

The EREF: A Programmer's Reference Manual for Freescale Book E Processors manual describes these
synchronizing instructions in great detail. Several of the more common instructions are summarized in the
sections below.

3.1 isync (Instruction Synchronize)
isync causes any prefetched instructions to be discarded by the core, and it ensures that any subsequent
instructions are fetched and then executed in the context established in the instructions preceding isync.
Note that isync does not affect data accesses and does not wait for all stores to be performed.

In Figure 2, tlbwe instruction is modifying a TLB entry. The isync in this example ensures the TLB is
written to and the instructions following the isync are executed in the new context established by the TLB
write.

Figure 2. isync Example

ADDI

STORE

tlbwe

isync

X ADDI

X BRA

Program

Preceding instructions
must complete ...

... before isync can complete

The following instructions will be
discarded and refetched in new context

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

6 Freescale Semiconductor

Synchronization

3.2 msync (Memory Synchronize)
msync performs two important functions:

1. msync provides an ordering function for data memory accesses across all storage classes.

2. Executing msync ensures that all instructions preceding the msync have completed before msync
completes and that no subsequent instructions are initiated until after the msync completes.

Figure 3 is an example of loads and stores to two separate classes. Class 1 consists of a cache-inhibited
region, while Class 2 is a cacheable region of memory. To enforce order between the cache-inhibited loads
and stores and the cacheable load, it is necessary to insert an msync in between. Note that the store and
load to cacheable space may still occur out of order (for example, the load will most likely bypass the
store). In this example, the msync only is enforcing order between classes and guarantees that both the
store and load to cache-inhibited space complete before the load to cacheable space initiates.

Figure 3. msync Example

3.3 mbar (Memory Barrier)
There are two flavors of the mbar instruction, depending on the MO field (bits 6–10).

1. MO = 0, mbar behaves similarly to msync

2. MO = 1, mbar is a weaker, faster memory barrier designed to order the following:

— All stores

— Caching-inhibited and guarded loads to caching-inhibited and guarded stores

With MO = 1, mbar does not wait for its address tenure to be performed successfully on the bus before
allowing subsequent instructions to complete. This provides a faster way to order data accesses in a limited
subset of storage classes.

Refer to Section 4, “mbar Erratum” for errata relating to mbar MO = 1 for PowerQUICC III.

ADDI

STORE

CI LOAD

msync

Cacheable LOAD

BRA

Program

Preceding coherent loads/stores must
complete with respect to other processors

... before following instruction can execute

and mechanisms which access the target
locations coherently ...Class 1

Class 2

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 7

mbar Erratum

Figure 4 shows an mbar MO = 0 instruction used as a memory barrier between stores and loads to the
same class. The mbar enforces ordering between the initial store and load and the load instruction
subsequent to the mbar instruction. Note that mbar MO = 1 will not order loads. For an example usage
of mbar MO = 1, refer to Figure 7 in Section 5.3, “Example—Synchronization Between Classes.”

Figure 4. mbar Example

3.4 Core Complex Bus
On PowerQUICC III, synchronization instructions only enforce order on memory accesses to the point
where they are performed on the core complex bus. To synchronize memory accesses beyond the core
complex bus, the PowerQUICC III requires additional steps. In general, to ensure that store data has
reached its final destination, a caching-inhibited store should be followed by a caching-inhibited load from
the same address. If cacheable accesses are used, the store should be followed by the following:

1. dcbf or dcbst to the same address

2. msync
3. Load from the same address

NOTE
Order may not be enforced on some peripheral busses as per their
specifications (for example, relaxed ordering in PCI-X and PCI-Express).
Refer to Section 5.1.1, “Special Consideration for PCI-Express Ordering”
for more information.

3.5 CCSR Space
It is important to note that when changing register values in CCSR space, it is sometimes necessary to
prevent speculative memory accesses to certain address regions. The core does not initiate speculative
memory accesses to any address for which there is no TLB mapping.

Additionally, the core will not initiate speculative instruction fetches from mapped pages that are marked
non-executable nor speculative data reads from pages that are marked guarded.

4 mbar Erratum
Specific to e500v1 and e500v2 cores, the mbar instruction may fail when the MO field is equal to “1”. In
particular, mbar MO = 1 fails to properly order caching-inhibited guarded loads with respect to
caching-inhibited guarded stores. For guaranteed store-load ordering to cache-inhibited guarded memory,

ADDI

STORE

LOAD

mbar

LOAD

BRA

Program

Preceding instructions must complete
accesses to main memory ...

... before following instruction can

Barrier prevents
reordering

access memory

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

8 Freescale Semiconductor

Examples

mbar with MO = 0 or msync is required. This failure is limited to caching-inhibited loads bypassing the
mbar MO = 1 barrier. The mbar MO = 1 instruction correctly enforces the ordering of caching-inhibited
stores to caching-inhibited stores, and the ordering of cacheable stores to cacheable stores.

Based on the impact of this erratum, Table 1 lists the revised memory barrier requirements for maintaining
memory access ordering for all storage classes.

5 Examples
This section contains examples in the following subsections: Section 5.1, “Example—Ordering of Stores
and Loads to I/O,” Section 5.2, “Example—Buffer Descriptor Ownership,”
Section 5.3, “Example—Synchronization Between Classes,” Section 5.4, “Example—Copying ROM to
DDR,” and Section 5.5, “Example—Changing a Local Access Window.”

5.1 Example—Ordering of Stores and Loads to I/O
As mentioned in Section 1, “Introduction,” ordering of stores and loads to non-well-behaved memory,
specifically I/O, can be especially problematic. Consider an I/O device (an ASIC) where data needs to be
written to one location, and a result is returned in a different location. Because this is I/O, it is assumed
that the TLB pages pointing to the ASIC locations are marked as guarded and non-cacheable.

High level C code might look like the following:

WRITE_ASIC_REG(rxx_start_addr, rxxStartAddr);

rxxDataReport=READ_ASIC(rxx_data_repoty);

The PowerQUICC III is a weakly ordered machine, so loads and stores are executed out of order. In this
case, the read bypasses the write, and incorrect data is read out of the ASIC, which causes undesirable
results. The guarded TLB entry does not enforce order between loads and stores. Instead, guarded attribute
enforces order between loads and loads, stores and stores, and loads and stores to the same address. To

Table 1. FLS Power Architecture Synchronization for Memory Access Ordering

Cache/Memory Access Attributes WIMGE
Speculative
Execution

Store-Store
Ordered

Load-Load
Ordered

Store-Load
Ordered

Load-Store
Ordered

Caching-inhibited, guarded 01x1x None Yes Yes Requires mbar
(MO = 0)

Yes

Caching-inhibited, non-guarded 01x0x Permitted Requires mbar
(MO = 1)

Requires
msync

Requires
msync

Yes

Write-through, guarded 10x1x None Requires mbar
(MO = 1)

Requires
msync

Requires
msync

Yes

Write-through, non-guarded 10x0x Permitted Requires mbar
(MO = 1)

Requires
msync

Requires
msync

Yes

Write-back, coherency-required 001xx Permitted Requires mbar
(MO = 1)

Requires
msync

Requires
msync

Yes

Write-back, coherency not required 000xx Permitted Requires mbar
(MO = 1)

Requires
msync

Requires
msync

Yes

Note: Power Architecture technology states that combinations where WIMGE = 11xxx are not supported.

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 9

Examples

properly enforce order in the above example, msync or mbar MO = 0 must be used in between the store
and the load.

WRITE_ASIC_REG(rxx_start_addr, rxxStartAddr);

_asm_volatile(“mbar”);

rxxDataReport=READ_ASIC(rxx_data_repoty);

The above C code produces assembly similar to that in Figure 5.

Figure 5. Example Code—Ordering Loads and Stores to I/O

Note the use of _asm_volatile in the C code. Without this syntax, the gcc compiler is allowed to optimize
the mbar and put it out of order in the sequential code model. Other compilers may use alternate syntax
for this function, so the mbar must be marked as non-optimizable as per the particular compiler in use.

Because order is being enforced only on a single class, mbar MO = 1 should be sufficient to ensure the
store completes before the load initiates. However, the mbar failure discussed in Section 4, “mbar
Erratum” is important to note, and because I/O is typically marked as cache-inhibited and guarded, it is
necessary to use mbar MO = 0 as specified in Table 1.

5.1.1 Special Consideration for PCI-Express Ordering
Many legacy applications that use custom FPGAs and/or ASICs to extend the microprocessor’s
functionality are beginning to move to and become standardized on PCI-Express as the system
interconnect of choice. It is important for system designers that are moving away from legacy PCI 2.x to
understand that even though load/store ordering can be maintained to caching-inhibited and guarded I/O
space on the internal processor bus, certain PCI-Express implementations and configurations may still
allow those transactions to be reordered to increase performance or avoid deadlock.

The summary of the ordering rules for the PCI-Express controller implemented in the PowerQUICC III
processor family is provided in Table 2, which is based on Table 2-23 for ordering rules of the PCI-Express
Base Specification, Rev 1.0a, but is only specific to Freescale’s PCI-Express controller implementation.

stw

mr

mr

addi

cmpwi

mbar

lwz

r31,20(r1)

r31,r3

r3,r31

r31,r31,60

r30,0

r3,28(r1)

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

10 Freescale Semiconductor

Examples

In Table 2, columns 1–5 represent a first issued transaction, and rows A–E represent a subsequently issued
transaction. The table entry indicates the ordering relationship between the two transactions, as follows:

• Yes—the second transaction (row) must be allowed to pass the first transaction (column).

• No—the second transaction (row) must not be allowed to pass the first transaction (column).

• RO = 0—the relaxed ordering bit in the PCI-Express device control register is cleared.

• RO = 1—the relaxed ordering bit in the PCI-Express device control register is set.

For PowerQUICC III, only one case exists where reordering of memory read or write requests can take
place in the PCI-Express controller—a memory write request may bypass a read request to avoid deadlock.

NOTE
It still may be possible for an external PCI-Express switch or ASIC
connected to the microprocessor to reorder reads and/or write requests per
the PCI-Express Base Specification, Rev 1.0a.

The ordering rules defined in Table 2 apply within a single Traffic Class (TC). There is no ordering
requirement among transactions with different TC labels.

In the example in Figure 5, the order of the write followed by the read is properly ordered by the
PowerQUICC III’s PCI-Express controller independent of the Relaxed Ordering (RO) bit’s setting.

Table 2. PowerQUICC III PCI Express Transaction Ordering Rules Summary

Row Pass Column?

Posted Request
Non-Posted

Request
Request

Completion

Memory Write or
Message
Request

(Column 1)

Read Request
(Column 2)

I/O or
Configuration
Write Request

(Column 3)

Read
Completion
(Column 4)

I/O or
Configuration

Write
Completion
(Column 5)

P
o

st
ed

R
eq

u
es

t

Memory Write or
Message Request

(Row A)

No Yes Yes Yes Yes

N
o

n
-P

os
te

d
R

eq
u

es
t

Read Request
(Row B)

No No No a) No, RO=0

b) Yes, RO=1

a) No, RO=0

b) Yes, RO=1

I/O or
Configuration
Write Request

(Row C)

No No No a) No, RO=0

b) Yes, RO=1

a) No, RO=0

b) Yes, RO=1

C
om

p
le

ti
o

n

Read Completion
(Row D)

a) No, RO=0

b) Yes, RO=1

Yes Yes No No

I/O or
Configuration

Write Completion
(Row E)

a) No, RO=0

b) Yes, RO=1

Yes Yes No No

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 11

Examples

5.2 Example—Buffer Descriptor Ownership
Even though SDRAM is typically defined as “well-behaved,” the user must still be aware of cases when
cores and peripherals share data structures and ownership is important. One of the common related issues
is synchronization of a lock release.

A problem may occur in advanced micro-architectures supporting out-of-order memory accesses when a
store, which releases a lock on a data structure, is performed ahead of stores to a different address(es) that
provide context or messaging to the new owner of that data structure. Note that if two stores occur to the
same address, they are guaranteed to be ordered by the architecture. Because the lock has been released,
the new owner may be working out of the wrong context or with incorrect messaging. The resulting
activity by the new owner may cause undesired side effects to the operation of the system.

One solution is to ensure the lock release store occurs after all other stores are complete. As mentioned
previously, the Power Architecture technology defines memory synchronization instructions mbar (and
eieio1) to properly order stores with respect to other stores under all MMU settings. Changing the attributes
of the MMU pages in the e500 core to write-through does not guarantee the desired sequential store
ordering to the buffer descriptors (BDs). Caching-inhibited stores must be performed in program order, so
even though this may be a potential alternative to using the memory barriers, it may have a negative impact
on packet performance.

An example of this problem is the use of shared buffer descriptors by the e500v2 core and eTSEC
controllers of the MPC8548E. The eTSECs provide a means of receiving Ethernet frame data into buffer
memory and transmitting buffered frames out on the line based on a pointer and certain bits in the header
resident in the BD. These buffers and BDs are shared between the eTSECs and software running on the
e500v2 core.

The driver software running on the e500v2 core initializes the eTSECs for proper operation and also
supplies a means of handing ownership of the buffers and BDs between the eTSECs and the e500v2 core.
The Ethernet controller uses a ring of BDs to receive and transmit Ethernet Frames. The beginning is
indicated by a register pointing to the physical address of the start of the ring. The end is determined by a
“wrap” bit being set in the last descriptor of the ring.

When a packet is received, the empty bit in the receive BD is cleared and the RXF bit in the IEVENT
register is set, triggering an interrupt when the corresponding bit in the IMASK register is also set. This
interrupt notifies the driver software running on the core that it may take ownership of the descriptor and
associated buffered data. Once the buffer is processed and the header and pointer information updated in
the BD by the core, it can hand the ownership of the BD and buffer back to the eTSEC for continued Rx
of Ethernet frames by clearing the empty bit (the lock release).

When the kernel requests that a packet be transmitted, the driver starts where it last left off, and points the
descriptor at the buffer that is ready to be sent. The driver informs the eTSEC that there are packets ready
to be transmitted by setting the ready bit (the lock release) in the descriptor header. Once the eTSEC
finishes transmitting the packet, the ready bit is cleared by the eTSEC, TXF bit set in the IEVENT register,
and an interrupt may be triggered, which allows the driver to clean up the buffer and prepares it for the
next transmission of Frame data.

1. mbar MO = 1 is functionally the same as eieio in the classic PowerPC ISA™, however mbar MO = 0 (which is
functionally the same as msync and sync) has the same opcode as eieio in the classic PowerPC ISA.

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

12 Freescale Semiconductor

Examples

For this example, the buffer descriptors are allocated in system memory (DDR2 SDRAM) where each BD
contains the pointer to a packet buffer in system memory. The eTSEC BD is 8 bytes and has status, and
length in first 32 bits and the buffer pointer in next 32 bits.

The proper sequence is to first perform a write to the packet pointer and then a second write to the length
and status bits to give up the ownership of this BD to eTSEC. To ensure these stores are performed in order
and the eTSEC is operating in the correct context, an mbar or memory barrier is required, as outlined in
Figure 6.

In the example provided in Figure 6, mbar MO = 1 is used based on the EREF recommendation and the
expectation of higher packet performance. Note that the opcode for mbar M = 0 (not mbar MO = 1) is
identical to the opcode for the eieio instruction on classic PowerPC™ cores; mbar MO = 0 is guaranteed
to execute on all past cores developed by Freescale. If cross core compatibility is desired, it is
recommended that the user replaces the memory barrier with mbar MO = 0 in the sequence above. If
performance is desired and only the e500 core or future Book E cores are being used, it is recommended
that the user employs mbar MO = 1 as the memory barrier.

In the Linux 2.6 Gianfar.c Ethernet driver, there are only two memory barriers required to maintain proper
operation of the lock release:

• For receive, the mbar (or eieio) is inserted after the RxBD’s buffer pointer is set and before the
RxBD's Empty (E) bit is set, which can be seen in the Gianfar.c function gfar_new_skb().

• For transmit, the mbar (or eieio) is inserted after the TxBD's buffer pointer is set and before the
TxBD's Ready (R) bit is set, which can be seen in the Gianfar.c function gfar_private().

Figure 6. Lock Release on Packet Buffer

5.3 Example—Synchronization Between Classes
As mentioned in Example 5.1, mbar with MO = 1 orders the following:

1. Stores with respect to other stores

2. Cache-inhibited and guarded loads with respect to caching-inhibited and guarded stores

mbar with MO = 1 does not impose order between cacheable and cache-inhibited space.

Refer to Section 4, “mbar Erratum” for errata relating to mbar MO = 1.

BRA

Cacheable STORE

mbar MO=1

Cacheable STORE

Cacheable STORE

BRA

Cacheable STORE

mbar MO=1

Cacheable STORE

Cacheable STORE

Program

Store Word to BD in external memory to update packet buffer pointer

Store Word to BD in SDRAM to update length and ownership of buffer

Memory Barrier ensures context is set before ownership changes

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 13

Examples

Figure 7 is an example of a sequential program with stores and loads to two different classes. In this
example, Set 1 consists of cache-inhibited, non-guarded space, while Set 2 is cacheable space. With the
mbar inserted, loads and stores are ordered within their respective sets. In this case, the first load/store to
cache-inhibited, non-guarded space (LOAD/STORE) is ordered with respect to the second load/store to
cache-inhibited, non-guarded space. Similarly, the stores to cacheable space (STORE) is ordered with
respect to one another. However, there is no ordering enforced between the two classes, meaning the first
store to cacheable space may occur after the second load/store to cache-inhibited, non-guarded space
occurs.

Figure 7. Synchronization Between Classes

To enforce order between the two classes, the user needs to insert an msync or mbar with MO = 0 in place
of the mbar with MO = 1 in the example above.

5.4 Example—Copying ROM to DDR
A common operation at boot time is to decompress the contents of a FLASH or ROM into DDR, then begin
executing from the DDR. Assuming that there has not been a TLB mapping for the DDR physical address
space since power on reset, this process can safely be performed with the following steps:

1. Configure the DDR local access windows by writing to the registers in CCSR space. CCSR space
should be cache-inhibited and guarded.

2. Ensure the configuration is complete by performing caching-inhibited loads from the modified
locations in CCSR space.

3. Establish TLB entries for DDR space. These entries should be marked as non-executable and
guarded to prevent speculative instruction and data reads; the entries can be marked as cacheable
for performance.

4. Inflate the code into DDR. This can be done with the caches enabled. Either dcbst or dcbf
instructions should be executed to ensure the inflated code is pushed out of the core.

5. Execute an msync to ensure all of the dcbst or dcbf instructions have been performed.

6. Change the TLB entry to allow execution privileges. Perform the required synchronization for
changing TLB entries, which includes the required context-synchronizing instruction (for
example, isync) to ensure that subsequent instruction fetches use the correct translation. See the
e500 Core Family Reference Manual for details.

7. Branch to the inflated code in DDR.

Setting the TLB entries for DDR space only one time is a common programming error. If these entries are
set to executable in step 2 above, then the core is allowed to speculatively fetch instructions to this space.

ADDI

LOAD/STORE

STORE

mbar

LOAD/STORE

STORE

Program

Set 2: STOREs to coherent memory
with WIMG = x01x

Set 1: CI/(nG) LOADs,
CI/(nG) STOREs

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

14 Freescale Semiconductor

Summary

Depending on when these instructions are speculatively fetched, for example, prior to valid instructions
being copied to DDR, the core may have stale instructions consisting of invalid opcodes. From the core’s
point of view, this is essentially self-modifying code. As outlined in the steps above, to prevent such a
coherency issue the user must first set up the DDR TLBs to both guarded and non-executable to prevent
speculative instruction and data accesses to the space. Only once the desired code has been copied over to
DDR, the software may reconfigure the TLBs to executable and non-guarded, allowing speculative
accesses to memory.

5.5 Example—Changing a Local Access Window
Care must be taken, and coherency issues must be considered, when modifying an existing local access
window. This example demonstrates one safe way to alter local access windows. Assume that the core
previously had an existing TLB entry for some addresses in the range that is to be mapped, and assume
that the entry is marked cacheable and executable. Care must be taken to manage the coherency of the
region, even if the caches are disabled.

The following steps are portable and safe:

1. Set up TLB entries for the physical address space to be remapped. Mark the entries as guarded and
non-executable.

2. Use dcbf and icbi to invalidate the entire region. Follow this process with msync and isync,
which ensures that stale copies of instructions and/or data are purged from the caches.

3. Perform a caching-inhibited store to CCSR space to modify the LAW.

4. Perform a caching-inhibited load from the modified CCSR addresses to ensure the LAW update is
complete.

5. Begin accessing the newly mapped area.

6 Summary
Synchronization and coherency are two continually important issues in embedded systems programming.
Coherency refers to the issue of managing all copies of data to ensure that all the copies are true reflections
of data in memory. The e500 core on the PowerQUICC III manages data coherency in hardware, but
instruction coherency must be managed in software.

Additionally, the Power ISA defines a Weakly Ordered Memory Access Model (or Relaxed Memory
Coherency Model). The benefits of such an architecture include the following:

• Reduced effect of memory latency on instruction throughput

• No time penalty incurred even if the result is not needed later, because execution is typically
performed by idle resources

The risk is that out of order operations may violate requirements for memory that is non-well-behaved.
Note that it is the software programmer’s responsibility for access ordering.

Coherency and Synchronization Requirements for PowerQUICC™ III, Rev. 1

Freescale Semiconductor 15

Revision History

7 Revision History
Table 3 provides a revision history for this application note.

Table 3. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 12/2007 Added Section 4, “mbar Erratum.”

Added Section 5.1.1, “Special Consideration for PCI-Express Ordering.”
Added Section 5.2, “Example—Buffer Descriptor Ownership.”
Modified Sections 3.3, 5.1, and 5.3 to account for the mbar erratum in section 4.

0 9/2007 Initial release.

Document Number: AN3441
Rev. 1
12/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. The
PowerPC name is a trademark of IBM Corp. and is used under license. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

	1 Introduction
	Figure 1. Non-Well-Behaved Memory

	2 Cache Coherency
	2.1 Data Cache Coherency
	2.2 Instruction Cache Coherency

	3 Synchronization
	3.1 isync (Instruction Synchronize)
	Figure 2. isync Example

	3.2 msync (Memory Synchronize)
	Figure 3. msync Example

	3.3 mbar (Memory Barrier)
	Figure 4. mbar Example

	3.4 Core Complex Bus
	3.5 CCSR Space

	4 mbar Erratum
	Table 1. FLS Power Architecture Synchronization for Memory Access Ordering

	5 Examples
	5.1 Example-Ordering of Stores and Loads to I/O
	Figure 5. Example Code-Ordering Loads and Stores to I/O
	5.1.1 Special Consideration for PCI-Express Ordering
	Table 2. PowerQUICC III PCI Express Transaction Ordering Rules Summary

	5.2 Example-Buffer Descriptor Ownership
	Figure 6. Lock Release on Packet Buffer

	5.3 Example-Synchronization Between Classes
	Figure 7. Synchronization Between Classes

	5.4 Example-Copying ROM to DDR
	5.5 Example-Changing a Local Access Window

	6 Summary
	7 Revision History
	Table 3. Document Revision History

