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1 Introduction to the XGATE
The XGATE is a coprocessor for the S12X(E) CPU that can serve multiple purposes. It can be used as a 
DMA controller, it can run driver code for the MCU’s peripherals, it can generate low-latency system 
responses, and it can be used for many other applications. Here is a short overview of the main 
characteristics of the XGATE and its debug features.

1.1 RISC Core

Figure 1. Programmer’s Model

The XGATE consists of a RISC core that is triggered through interrupts and is powered down when not in 
use. On S12X devices, interrupts that are handled by the XGATE cannot be nested. A new interrupt can 
be serviced only when the previous interrupt activity has finished. On S12XE devices, one level of 
interrupt nesting is possible.

The RISC core has a set of seven general-purpose registers in its register block, a program counter, and a 
condition code register (see Figure 1). These registers are mapped to the XGATE’s register space. They 
can be read and modified when the XGATE is stopped for debug purposes.

1.2 Stages of Operation
The interaction with the XGATE module can be categorized into three stages: 

• Initial configuration
• Actual application
• Debug

1.2.1 Initial Configuration 
After a system reset, the XGATE is not ready to execute application code. It remains in a disabled state, 
waiting to be configured by the CPU12X. This is the time when the vector base register (XGVBR) and the 
initial stack pointer registers1 (XGISP74 and XGISP31) must be set. Also, program code and vector tables, 

1. S12XE devices only.
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which are supposed to reside in RAM, must now be initialized. Enabling the XGATE (setting the XGE bit 
in the XGMCTL register) causes the XGATE to proceed to the application stage.

1.2.2 Application
The XGATE performs its work in the application stage. It operates autonomously, except when it detects 
a software problem. Then it requests help from the CPU12X.

• Idle/running—When the XGATE becomes enabled after the initial configuration, it starts out in a 
low-power idle state, waiting for a service request from a peripheral module or from the CPU12X. 
When a service request comes in, it executes its associated thread of code and reenters the idle 
state upon completion. 

• Software error handling—During code execution a number of conditions are checked, which 
could indicate faulty application code. These error conditions are checked on an S12X(E) device:
— Execution of an illegal instruction
— Code execution from register space (address range 0x0000 to 0x0800)
— Opcode/vector fetch from an odd address
— 16-bit load/store accesses to an odd address
— Write accesses to flash memory
— S12X_MPU access violations1

When one of these error conditions occurs, the XGATE stops (even in the middle of an instruction). It 
enters a software error state that allows the CPU12X to analyze the failure and to reinitialize the XGATE 
module.

1.2.3 Debugging
The XGATE provides two ways to leave the application stage for debug purposes: debug mode and freeze 
mode.

Debug mode stops the program execution and provides access to the internal resources of the XGATE’s 
RISC core. Section 1.5, “Debug Features,” describes the debug features enabled in this mode. There are 
three ways to enter debug mode:

• Manually set the XGDBG through a write access to the XGMCTL register
• Execute a BRK instruction
• Generate a breakpoint through the S12XDBG module

To resume normal operation, the XGDBG bit must be cleared through a write access to the XGMCTL 
register.

In freeze mode (BDM active), the XGATE can also be configured (XGFRZ bit set) to seize program 
execution whenever the CPU12X enters BDM active mode. This can be helpful for debugging tasks that 
involve interaction between the CPU12X and the XGATE.

1. S12XE devices only.
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1.3 Memory Map
The XGATE is capable of accessing a subset of the MCU’s memory. It has its own memory map, which 
contains the full register space, a portion of the chip’s RAM, and a portion of the flash memory. The 
XGATE memory map is linear and static. There are no mapping or page registers.

Figure 2 shows the memory map of an S12X(E) device.
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Figure 2. S12X(E) Memory Map
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1.4 Status and Control Registers
Similar to other peripherals of S12X(E) devices, a register interface controls the XGATE. This set of 
registers is mapped to the address range 0x0380 to 0x03AF (in any memory map). To debug XGATE 
application code, these registers must be accessed via BDM hardware commands or via monitor code 
running on the main CPU.

Figure 3 summarizes the XGATE’s registers and explains their purpose in the three situations: 
configuration, running application code, and debugging.

Register
Usage

Initial Configuration Application Debugging

XGMCTL
Module control register

XGE  • Enable write access to 
XGISP74, XGISP31, and 
XGVBR

 • Disable incoming requests —

XGFRZ — —  • Suspend XGATE activities while 
the CPU12X is in BDM active 
mode

 • Synchronize concurrent 
XGATE/CPU12X code

XGDBG — —  • Manually enter and leave debug 
mode

XGSS — —  • Execute a single instruction out 
of debug mode

XGFACT —  • Keep clocks of peripheral 
modules running in STOP mode

—

XGSWEF —  • Resume operation after a 
software error has occurred
(to be cleared by error handler)

—

XGIE —  • Disable maskable XGATE 
interrupts

—

XGCHID
Channel ID register

—
 • Check the state of the XGATE 

(idle or busy)
 • Initiate and terminate threads

XGCHPL
Channel priority level

—
 • Check the priority level of the 

current thread
 • Initiate a thread with a certain 

priority level

XGISPSEL
XGISPxx select register

 • Map either XGISP74, XGISP31, 
or XGVBR to address 0x0386

— —

XGISP74
XGISP31

Initial stack pointer registers

 • Select the stack segment for 
each priority level

— —

Figure 3. XGATE Register Usage



Introduction to the XGATE

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 7

1.5 Debug Features
The XGATE module has a number of built-in debug features that are enabled when debug mode is entered 
(XGDBG bit set).

1.5.1 Manually Starting and Terminating Threads
In debug mode, threads can be started by writing a non-zero value to the channel ID register (XGCHID). 
This has the same effect as if the equivalent request of the peripheral module or CPU12X would have been 
received by a running application. The execution of the thread begins when debug mode is left.

On S12XE devices, the priority of a thread can be set by writing to the XGCHID and the XGCHPL register 
simultaneously.

To terminate a thread in debug mode, 0x00 must be written to the XGCHID register. This has the same 
effect as a RTS instruction being executed by the XGATE’s RISC core.

XGVBR
Vector base register

 • Select the vector table — —

XGIF
Channel interrupt flags

—
 • Poll and clear channel interrupt 

flags
—

XGSWT
Software triggers

—
 • Trigger XGATE requests or 

CPU12X interrupts by software
—

XGSEM
Semaphores

—
 • Synchronize concurrent 

XGATE/CPU12X code
—

XGCCR
Condition code register

— —
 • Read and modify condition code 

bits

XGPC
Program counter

— —

 • Determine the current program 
counter

 • Jump to a different location in 
the program

XGR1
XGR2
XGR3
XGR4
XGR5
XGR6
XGR7

General-purpose 
registers

— —
 • Read and modify register 

content

Register
Usage

Initial Configuration Application Debugging

Figure 3. XGATE Register Usage (continued)



Debugging XGATE Code, Rev. 0

Introduction to the S12XDBG Module

Freescale Semiconductor8

1.5.2 Single Stepping
If a thread is active (XGCHID ≠ 0x00) in debug mode, a single instruction can be executed by writing a 1 
to the XGSS bit. Debug mode is temporarily left while the execution takes place.

1.5.3 Manipulating RISC Core Registers
When the XGATE is in debug mode, the program counter (PC), the condition code register (CCR), and all 
general-purpose registers (R1 to R7) are mapped into the module’s register space. These registers can then 
be read or written by the CPU12X or by BDM hardware commands.

2 Introduction to the S12XDBG Module
The S12XDBG module provides two important features for debugging XGATE code: intelligent 
breakpoints and a trace buffer to record bus transactions. The next sections explain how to operate this 
module.

2.1 Comparators
The S12XDBG module has four comparators (A, B, C, and D) to monitor bus transactions of the XGATE 
and the CPU12X. Each comparator can be assigned to either one of the cores. The comparators check for 
different properties of a bus transaction. The data bus can be monitored by comparators A and C only. The 
data size can be monitored by comparators B and D only (Figure 4).

Figure 4. Comparators of the S12XDBG module

2.1.1 Tagged and Forced Comparator Outputs
The output of each comparator can be processed on two ways: it can be used directly (forced triggers) or 
passed to the XGATE or CPU12X as instruction tag (tagged triggers). These tags are fed into the 
instruction queue of the core (Figure 5). When the instruction is about to be executed, the tag is passed 
back. 

Abus ≡ Aconst or Abus ≥ Aconst optional opt.

Global address Data R/W 8/16 Bit

Comparator A

Abus ≡ Aconst or Abus ≤ Aconst opt.opt. Comparator B

Abus ≡ Aconst or Abus ≥ Aconst optional opt. Comparator C

Abus ≡ Aconst or Abus ≤ Aconst opt.opt. Comparator D

XGATE

CPU12X
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Figure 5. Tagged vs. Forced Comparator Outputs

This detour through the XGATE or CPU12X core makes it possible to generate a comparator hit 
immediately before a selected instruction becomes executed. The use of direct output generates 
comparator hits when the opcode of a selected instruction is fetched.

This example illustrates the difference between the two types of comparator outputs (Figure 6). The 
program code contains a loop that performs eight iterations. The comparator is set to the first instruction 
after the loop. Running this code generates eight forced comparator hits (due to opcode prefetching of the 
BNE instruction), but only one tagged comparator is hit.

Figure 6. Behavior of Tagged and Direct Comparator Outputs

Tagged triggers are used for setting breakpoints before an instruction boundary. Forced triggers are used 
for setting breakpoints on data accesses.

2.2 Matches
The comparator outputs of the S12XDBG module (direct and tagged) are fed into a match logic (Figure 7). 
This match logic provides the option to combine two comparator outputs to perform address range 
checking. In most of the examples in Section 3, “Examples,” the comparator outputs (A to D) map to the 
match outputs (1 to 4).

Abus ≡ Aconst or Ahigh ≥ Abus ≥ Alow

XGATE
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Memory

Comparator

Tagged trigger

Forced trigger

Tag

To back of instruction queue

From front of instruction queue

Opcode
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LDL R1, #$08

LOOP: NOP

SUBL R1, #$01

BNE LOOP

END: NOP Comparator checks
for address END

8x

8 forced triggers (due to opcode prefetches of the BNE instruction

1 tagged trigger
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Figure 7. Match Events

2.3 State Sequencer
The outputs of the match logic control a finite state machine called the state sequencer (Figure 8). The state 
sequencer has five states: an initial disarmed state (state0), three intermediate states with configurable 
transitions (state1 to state 3), and a final state that can trigger a breakpoint or invoke the trace buffer.

Figure 8. State Sequencer Diagram

A breakpoint can be set up by configuring a transition from state1 to the final state. Complex breakpoint 
conditions can be achieved by multiple transitions between state1, state2, and state3 followed by a 
transition to final state.

2.4 Tracing
The S12XDBG module contains an internal trace buffer that can record program flow and data transfers 
of the XGATE and the CPU12X.
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2.4.1 Trace Modes
The trace buffer of the S12XDBG module can record up to 128 entries. Four trace modes allow efficient 
use of the buffer capacity (Figure 9).

• Normal mode—Normal mode produces a trace of the program flow. To save trace buffer entries, 
only changes of the linear flow (conditional branches, indexed jumps, and interrupts) are 
recorded. By matching this trace against the program memory, the complete program flow can be 
reconstructed.

• Loop1 mode—Loop1 mode works exactly like normal mode with one exception, it ignores 
recurring entries resulting from conditional branches. This mode reduces trace buffer entries 
when executing loops.
Tracing a loop that does not contain conditional branch instructions inside its body, results in a 
single trace buffer entry. However, tracing the same loop in normal mode generates one entry per 
loop iteration.

• Detail mode—Detailed mode generates a trace of data transfers (no opcode fetches).
• Pure PC mode— Pure PC also traces the program flow. Unlike normal or loop1 mode, a trace 

buffer entry is generated for every instruction.

Trace Mode Type of Bus Transaction

Any executed 
instruction

Any change of flow 
instruction

First change of flow 
instruction of a loop

 Any data transfer

Normal Mode Νο Yes Yes Νο

Loop1 Mode Νο Νο Yes Νο

Detail Mode Νο Νο Νο Yes

Pure PC Mode Yes Νο Νο Νο

Figure 9. Trace Modes
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2.4.2 Trace Alignment
The alignment of the trace can be adjusted relative to an event generated by the state sequencer. S12XDBG 
module offers three options (Figure 10).

Figure 10. Trace Alignment

• Begin trigger alignment—The trace begins when the state sequencer enters the final state. The 
S12XDBG module keeps the cores running until the trace buffer is full, then it executes a 
breakpoint.

• End trigger alignment—The trace buffer behaves as a FIFO in this case. Tracing begins 
immediately when the S12XDBG module is armed. When the trace buffer is full, the most recent 
entry replaces the oldest one. When final state is reached a breakpoint is executed immediately. 
The trigger event appears at the end of the trace.

• Mid-trigger alignment—Mid-trigger alignment is a combination of the other two alignment 
methods. The trace buffer behaves like a FIFO, but, when final state is reached, all cores run until 
half the buffer is filled with new entries. Then a breakpoint is executed. The trigger event appears 
in the middle of the trace.

3 Examples
The following sections show a number of debug scenarios that can be performed with the S12XDBG 
module. Each example comes with a detailed setup of the debug module that may be used as template for 
further debug challenges.

3.1 Software Breakpoints
Because XGATE code is usually executed from RAM, software, breakpoints are the simplest debug 
method. All that needs to be done is to write a BRK instruction (0x0000) to the desired address location. 
As soon as this BRK becomes executed, the XGATE enters debug mode and the S12XDBG module 
transitions to final state. In debug mode, the program counter of the XGATE (XGPC) shows the address 
of the breakpoint. Before continuing program execution, the BRK instruction must be replaced by the 
original opcode. Software breakpoints work even if the S12XDBG module is disabled. Their main 
advantage is that they can be set in nearly unlimited number.
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3.2 Simple Hardware Breakpoints

Figure 11. S12XDBG Configuration

When executing code from flash memory, hardware breakpoints are the method of choice. Figure 11 
shows how to set four hardware breakpoints (BRK1 to BRK3). The four comparators of the S12XDBG 
module are configured to check the breakpoint addresses against the address bus (Abus) of the XGATE. 
The tagged comparator outputs are directly mapped to the four outputs of the match logic (match0 to 
match3). The setup of the state sequencer causes a transition to final state as soon as any of the four match 
events occurs.

Figure 12 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x02
0 0 1 0

DBGSCR2
SC3 SC2 SC1 SC0

0x00
0 0 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x00
0 0 0 0

Figure 12. S12XDBG Register Setup

Abus ≡ BKP1

Global address

Comparator A

Abus ≡ BKP2Comparator B

Match0

Match1

Abus ≡ BKP3Comparator C

Abus ≡ BKP4Comparator D

Match2

Match3

State1
Final
StateMatch0

Match1
Match2
Match3
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3.3 Breakpoint if a Specific Data Byte Is Written
In the next example, two breakpoints are set. Each one triggers when a certain data byte is written 
(Figure 13). A byte in the memory map can be written by accessing the byte directly or by performing a 
word access to the preceeding address location. Therefore, comparators A and C are needed to check the 
two byte addresses (Abyte1 and Abyte2) and comparators B and D are required to check for word accesses 
to the preceeding addresses (Abyte1–1 and Abyte2–1). The forced trigger of each comparator is mapped to 
the associated match output (match0 to 3). The state sequencer again is configured to transition to final 
state when any of the four match events occurs. 
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NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGCAH 0 0 0 0 0 0 0 0x00
DBGCAM

BKP3 BKP3
DBGCAL

DBGCDH 0 0 0 0 0 0 0 0 0x00
DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00

DBGCDLM 0 0 0 0 0 0 0 0 0x00
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) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
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DBGDAH 0 0 0 0 0 0 0 0x00
DBGDAM

BKP4 BKP4
DBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 12. S12XDBG Register Setup (continued)
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Figure 13. S12XDBG Configuration

The generated breakpoint may not stop the XGATE at the instruction that performed the write access. The 
XGATE may stop up to two instructions later.

Figure 14 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x02
0 0 1 0

DBGSCR2
SC3 SC2 SC1 SC0

0x00
0 0 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x00
0 0 0 0
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DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x07
0 0 0 0 1 1 1

DBGAAH 0 0 0 0 0 0 0 0x00
DBGAAM

Abyte1 Abyte1DBGAAL

DBGADH 0 0 0 0 0 0 0 0 0x00
DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00
DBGADLM 0 0 0 0 0 0 0 0 0x00

Figure 14. S12XDBG Register Configuration
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Comparator A
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Abus ≡ Abyte2 -1 16 BitWComparator D
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Match3

State1 Final
StateMatch0

Match1
Match2
Match3
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3.4 Breakpoint if a Thread Sequence Is Executed
In the next example, a breakpoint must be generated immediately after three XGATE threads (X, Y, and Z) 
are executed in a sequence (Figure 15). For this purpose, comparators B, C, and D are set to the RTS 
instructions of the three threads. Comparator C monitors thread X, comparator D checks for the execution 
of thread Y, and comparator B is associated with thread Z (Figure 16). The tagged comparator outputs 
trigger the corresponding match events. The state sequencer is configured to expect a sequence of match2, 
match3, and match1 to enter final state.

Figure 15. Breakpoint Condition
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Figure 14. S12XDBG Register Configuration (continued)
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Figure 16. S12XDBG Configuration

Figure 17 shows the register setup for this configuration. Relevant register bits are highlighted.
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Figure 17. S12XDBG Register Setup
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3.5 Breakpoint If Threads Are Executed Out of Order
In the next example, two XGATE threads (thread X and thread Y) are expected to execute in an alternating 
order (Figure 18). A breakpoint is generated as soon as the order of execution is violated. For this setup 
comparators A and D are configured to both look at the beginning of thread X. Comparator B checks for 
the execution of thread Y. The tagged comparator outputs are mapped to the corresponding match events. 
The state sequencer is configured to reach final state whenever two consecutive match events of the same 
kind (match0/3 or match1) occur.

Figure 18. Breakpoint Condition
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Figure 17. S12XDBG Register Setup (continued)
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Figure 19. S12XDBG Configuration

Figure 20 shows the register setup for this configuration. Relevant register bits are highlighted.
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Figure 20. S12XDBG Register Setup
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3.6 Breakpoint on Violations of Mutual Exclusive Code
In this scenario, two concurrent threads run on the XGATE and the CPU12X (Figure 21). Both threads 
share a system resource. Each has a critical code sequence in which it expects to have exclusive access to 
this system resource. To debug a concurrency problem, a breakpoint must be generated as soon as both 
cores execute their critical code sequence simultaneously.

Figure 21. Breakpoint Condition

To setup this type of breakpoint, comparators A and B are configured to perform a range check on the 
critical code sequence of the CPU12X (Figure 22). A match0 event occurs for every instruction that the 
CPU12X executes within this range. The entry and exit of the XGATE’s critical code sequence are detected 
by comparator D (points to the instruction before the sequence) and C (points to the end of the sequence). 
The state sequencer tracks the state of the XGATE. Every time the XGATE enters its critical code 
sequence, the FSM transitions to state3. Every time the critical sequence is left, the FSM leaves state3 as 
well. While the state sequencer remains in state3, it needs to pay attention to match0 events. Because this 
is the indicator that both cores execute their critical code simultaneously, a transition to final state must 
occur in this case.
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Figure 20. S12XDBG Register Setup (continued)
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Figure 22. S12XDBG Configuration

Figure 23 shows the register setup for this configuration. Relevant register bits are highlighted.
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Figure 23. S12XDBG Register Setup
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4 References
1. MC9S12XEP100 Data sheet, Freescale Semiconductor Inc., 2005.
2. MC9S12XDP512 Data sheet, Freescale Semiconductor Inc., 2005.
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Figure 23. S12XDBG Register Setup (continued)
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