
© Freescale Semiconductor, Inc., 2007. All rights reserved.

Freescale Semiconductor
Application Note

AN3458
Rev. 0, 05/2007

Table of ContentsThe XGATE peripheral coprocessor is designed to boost
the performance of an S12X(E) controller by unloading
the main CPU. The XGATE can perform many tasks
performed by the single CPU of previous S12 families.

When it comes to debugging XGATE code, you do not
have the option of using an in-circuit debugger as you
might have for the CPU12X. You rely on the debug
capabilities that are built into each S12X(E)
microcontroller. This application note has an overview of
the debug features built into the hardware. It is intended
for readers who would like to use these features directly
or readers who would like to understand how high-level
debug environments interact with an S12X(E) MCU.

Section 1 introduces the XGATE and its built-in debug
support.

Section 2 describes the S12XDBG module and how to
use it to generate intelligent breakpoints and traces.

Section 3 provides examples of debug scenarios. These
can be used as a starting point to find a setup for your
specific debug need.

1 Introduction to the XGATE 2
1.1 RISC Core . 2
1.2 Stages of Operation. 2
1.3 Memory Map . 4
1.4 Status and Control Registers. 6
1.5 Debug Features . 7

2 Introduction to the S12XDBG Module. 8
2.1 Comparators . 8
2.2 Matches . 9
2.3 State Sequencer . 10
2.4 Tracing. 10

3 Examples . 12
3.1 Software Breakpoints. 12
3.2 Simple Hardware Breakpoints 13
3.3 Breakpoint if a Specific Data Byte Is Written 14
3.4 Breakpoint if a Thread Sequence

Is Executed . 16
3.5 Breakpoint If Threads Are

Executed Out of Order. 18
3.6 Breakpoint on Violations of

Mutual Exclusive Code 20
4 References . 22

Debugging XGATE Code
Debug Features of S12X(E) MCUs
by: Dirk Heisswolf

MCD Design
Munich, Germany

Debugging XGATE Code, Rev. 0

Introduction to the XGATE

Freescale Semiconductor2

1 Introduction to the XGATE
The XGATE is a coprocessor for the S12X(E) CPU that can serve multiple purposes. It can be used as a
DMA controller, it can run driver code for the MCU’s peripherals, it can generate low-latency system
responses, and it can be used for many other applications. Here is a short overview of the main
characteristics of the XGATE and its debug features.

1.1 RISC Core

Figure 1. Programmer’s Model

The XGATE consists of a RISC core that is triggered through interrupts and is powered down when not in
use. On S12X devices, interrupts that are handled by the XGATE cannot be nested. A new interrupt can
be serviced only when the previous interrupt activity has finished. On S12XE devices, one level of
interrupt nesting is possible.

The RISC core has a set of seven general-purpose registers in its register block, a program counter, and a
condition code register (see Figure 1). These registers are mapped to the XGATE’s register space. They
can be read and modified when the XGATE is stopped for debug purposes.

1.2 Stages of Operation
The interaction with the XGATE module can be categorized into three stages:

• Initial configuration
• Actual application
• Debug

1.2.1 Initial Configuration
After a system reset, the XGATE is not ready to execute application code. It remains in a disabled state,
waiting to be configured by the CPU12X. This is the time when the vector base register (XGVBR) and the
initial stack pointer registers1 (XGISP74 and XGISP31) must be set. Also, program code and vector tables,

1. S12XE devices only.

R7

R6

R5

R4

R3

R2

R1

R0 = 0

V C

Register Block Program Counter

Condition
Code

Register

15

15

15

15

15

15

15

15

0

0

0

0

0

0

0

0

1 0

(Data pointer)

PC
15 0

N Z

3 2

(Stack pointer)

Introduction to the XGATE

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 3

which are supposed to reside in RAM, must now be initialized. Enabling the XGATE (setting the XGE bit
in the XGMCTL register) causes the XGATE to proceed to the application stage.

1.2.2 Application
The XGATE performs its work in the application stage. It operates autonomously, except when it detects
a software problem. Then it requests help from the CPU12X.

• Idle/running—When the XGATE becomes enabled after the initial configuration, it starts out in a
low-power idle state, waiting for a service request from a peripheral module or from the CPU12X.
When a service request comes in, it executes its associated thread of code and reenters the idle
state upon completion.

• Software error handling—During code execution a number of conditions are checked, which
could indicate faulty application code. These error conditions are checked on an S12X(E) device:
— Execution of an illegal instruction
— Code execution from register space (address range 0x0000 to 0x0800)
— Opcode/vector fetch from an odd address
— 16-bit load/store accesses to an odd address
— Write accesses to flash memory
— S12X_MPU access violations1

When one of these error conditions occurs, the XGATE stops (even in the middle of an instruction). It
enters a software error state that allows the CPU12X to analyze the failure and to reinitialize the XGATE
module.

1.2.3 Debugging
The XGATE provides two ways to leave the application stage for debug purposes: debug mode and freeze
mode.

Debug mode stops the program execution and provides access to the internal resources of the XGATE’s
RISC core. Section 1.5, “Debug Features,” describes the debug features enabled in this mode. There are
three ways to enter debug mode:

• Manually set the XGDBG through a write access to the XGMCTL register
• Execute a BRK instruction
• Generate a breakpoint through the S12XDBG module

To resume normal operation, the XGDBG bit must be cleared through a write access to the XGMCTL
register.

In freeze mode (BDM active), the XGATE can also be configured (XGFRZ bit set) to seize program
execution whenever the CPU12X enters BDM active mode. This can be helpful for debugging tasks that
involve interaction between the CPU12X and the XGATE.

1. S12XE devices only.

Debugging XGATE Code, Rev. 0

Introduction to the XGATE

Freescale Semiconductor4

1.3 Memory Map
The XGATE is capable of accessing a subset of the MCU’s memory. It has its own memory map, which
contains the full register space, a portion of the chip’s RAM, and a portion of the flash memory. The
XGATE memory map is linear and static. There are no mapping or page registers.

Figure 2 shows the memory map of an S12X(E) device.

Introduction to the XGATE

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 5

Figure 2. S12X(E) Memory Map

0xFFFF Reset vectors

0xC000

0x8000

Unpaged

0x4000

0x1000

0x0000

16K flash window

0x0C00

0x2000

0x0800

8K RAM

4K RAM window

1K EEPROM

2K registers

1K EEPROM window

16K flash

Unpaged
16K flash

2K registers

2K RAM

253*4K paged
RAM

1K EEPROM

255*1K paged
EEPROM

253 *16K paged
flash

16K flash
(PPAGE 0xFD)

8K RAM

External
space

16K flash
(PPAGE 0xFE)

16K flash
(PPAGE 0xFF)

30K flash

2K registers

32K RAM

0xFFFF

0x8000

0x0000

0x0800

0x7F_FFFF

0x00_0000

0x14_0000

0x10_0000

0x00_0800

0x00_1000

0x0F_E000

0x13_FC00

0x40_0000

0x7F_4000

0x7F_8000

0x7F_C000

0x78_0800

0x78_8000

0x0F_8000

Global Memory Map

CPU12X
Memory Map

XGATE
Memory Map

Debugging XGATE Code, Rev. 0

Introduction to the XGATE

Freescale Semiconductor6

1.4 Status and Control Registers
Similar to other peripherals of S12X(E) devices, a register interface controls the XGATE. This set of
registers is mapped to the address range 0x0380 to 0x03AF (in any memory map). To debug XGATE
application code, these registers must be accessed via BDM hardware commands or via monitor code
running on the main CPU.

Figure 3 summarizes the XGATE’s registers and explains their purpose in the three situations:
configuration, running application code, and debugging.

Register
Usage

Initial Configuration Application Debugging

XGMCTL
Module control register

XGE • Enable write access to
XGISP74, XGISP31, and
XGVBR

 • Disable incoming requests —

XGFRZ — — • Suspend XGATE activities while
the CPU12X is in BDM active
mode

 • Synchronize concurrent
XGATE/CPU12X code

XGDBG — — • Manually enter and leave debug
mode

XGSS — — • Execute a single instruction out
of debug mode

XGFACT — • Keep clocks of peripheral
modules running in STOP mode

—

XGSWEF — • Resume operation after a
software error has occurred
(to be cleared by error handler)

—

XGIE — • Disable maskable XGATE
interrupts

—

XGCHID
Channel ID register

—
 • Check the state of the XGATE

(idle or busy)
 • Initiate and terminate threads

XGCHPL
Channel priority level

—
 • Check the priority level of the

current thread
 • Initiate a thread with a certain

priority level

XGISPSEL
XGISPxx select register

 • Map either XGISP74, XGISP31,
or XGVBR to address 0x0386

— —

XGISP74
XGISP31

Initial stack pointer registers

 • Select the stack segment for
each priority level

— —

Figure 3. XGATE Register Usage

Introduction to the XGATE

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 7

1.5 Debug Features
The XGATE module has a number of built-in debug features that are enabled when debug mode is entered
(XGDBG bit set).

1.5.1 Manually Starting and Terminating Threads
In debug mode, threads can be started by writing a non-zero value to the channel ID register (XGCHID).
This has the same effect as if the equivalent request of the peripheral module or CPU12X would have been
received by a running application. The execution of the thread begins when debug mode is left.

On S12XE devices, the priority of a thread can be set by writing to the XGCHID and the XGCHPL register
simultaneously.

To terminate a thread in debug mode, 0x00 must be written to the XGCHID register. This has the same
effect as a RTS instruction being executed by the XGATE’s RISC core.

XGVBR
Vector base register

 • Select the vector table — —

XGIF
Channel interrupt flags

—
 • Poll and clear channel interrupt

flags
—

XGSWT
Software triggers

—
 • Trigger XGATE requests or

CPU12X interrupts by software
—

XGSEM
Semaphores

—
 • Synchronize concurrent

XGATE/CPU12X code
—

XGCCR
Condition code register

— —
 • Read and modify condition code

bits

XGPC
Program counter

— —

 • Determine the current program
counter

 • Jump to a different location in
the program

XGR1
XGR2
XGR3
XGR4
XGR5
XGR6
XGR7

General-purpose
registers

— —
 • Read and modify register

content

Register
Usage

Initial Configuration Application Debugging

Figure 3. XGATE Register Usage (continued)

Debugging XGATE Code, Rev. 0

Introduction to the S12XDBG Module

Freescale Semiconductor8

1.5.2 Single Stepping
If a thread is active (XGCHID ≠ 0x00) in debug mode, a single instruction can be executed by writing a 1
to the XGSS bit. Debug mode is temporarily left while the execution takes place.

1.5.3 Manipulating RISC Core Registers
When the XGATE is in debug mode, the program counter (PC), the condition code register (CCR), and all
general-purpose registers (R1 to R7) are mapped into the module’s register space. These registers can then
be read or written by the CPU12X or by BDM hardware commands.

2 Introduction to the S12XDBG Module
The S12XDBG module provides two important features for debugging XGATE code: intelligent
breakpoints and a trace buffer to record bus transactions. The next sections explain how to operate this
module.

2.1 Comparators
The S12XDBG module has four comparators (A, B, C, and D) to monitor bus transactions of the XGATE
and the CPU12X. Each comparator can be assigned to either one of the cores. The comparators check for
different properties of a bus transaction. The data bus can be monitored by comparators A and C only. The
data size can be monitored by comparators B and D only (Figure 4).

Figure 4. Comparators of the S12XDBG module

2.1.1 Tagged and Forced Comparator Outputs
The output of each comparator can be processed on two ways: it can be used directly (forced triggers) or
passed to the XGATE or CPU12X as instruction tag (tagged triggers). These tags are fed into the
instruction queue of the core (Figure 5). When the instruction is about to be executed, the tag is passed
back.

Abus ≡ Aconst or Abus ≥ Aconst optional opt.

Global address Data R/W 8/16 Bit

Comparator A

Abus ≡ Aconst or Abus ≤ Aconst opt.opt. Comparator B

Abus ≡ Aconst or Abus ≥ Aconst optional opt. Comparator C

Abus ≡ Aconst or Abus ≤ Aconst opt.opt. Comparator D

XGATE

CPU12X

Introduction to the S12XDBG Module

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 9

Figure 5. Tagged vs. Forced Comparator Outputs

This detour through the XGATE or CPU12X core makes it possible to generate a comparator hit
immediately before a selected instruction becomes executed. The use of direct output generates
comparator hits when the opcode of a selected instruction is fetched.

This example illustrates the difference between the two types of comparator outputs (Figure 6). The
program code contains a loop that performs eight iterations. The comparator is set to the first instruction
after the loop. Running this code generates eight forced comparator hits (due to opcode prefetching of the
BNE instruction), but only one tagged comparator is hit.

Figure 6. Behavior of Tagged and Direct Comparator Outputs

Tagged triggers are used for setting breakpoints before an instruction boundary. Forced triggers are used
for setting breakpoints on data accesses.

2.2 Matches
The comparator outputs of the S12XDBG module (direct and tagged) are fed into a match logic (Figure 7).
This match logic provides the option to combine two comparator outputs to perform address range
checking. In most of the examples in Section 3, “Examples,” the comparator outputs (A to D) map to the
match outputs (1 to 4).

Abus ≡ Aconst or Ahigh ≥ Abus ≥ Alow

XGATE
or

CPU12X

Memory

Comparator

Tagged trigger

Forced trigger

Tag

To back of instruction queue

From front of instruction queue

Opcode
fetches

LDL R1, #$08

LOOP: NOP

SUBL R1, #$01

BNE LOOP

END: NOP Comparator checks
for address END

8x

8 forced triggers (due to opcode prefetches of the BNE instruction

1 tagged trigger

Debugging XGATE Code, Rev. 0

Introduction to the S12XDBG Module

Freescale Semiconductor10

Figure 7. Match Events

2.3 State Sequencer
The outputs of the match logic control a finite state machine called the state sequencer (Figure 8). The state
sequencer has five states: an initial disarmed state (state0), three intermediate states with configurable
transitions (state1 to state 3), and a final state that can trigger a breakpoint or invoke the trace buffer.

Figure 8. State Sequencer Diagram

A breakpoint can be set up by configuring a transition from state1 to the final state. Complex breakpoint
conditions can be achieved by multiple transitions between state1, state2, and state3 followed by a
transition to final state.

2.4 Tracing
The S12XDBG module contains an internal trace buffer that can record program flow and data transfers
of the XGATE and the CPU12X.

Abus ≡ Aconst or Abus ≥ Aconst optional opt.

Global address Data R/W 8/16 Bit

Comparator A

Abus ≡ Aconst or Abus ≤ Aconst opt.opt.Comparator B

Match
control

Match0

Match1

Abus ≡ Aconst or Abus ≥ Aconst optional opt.Comparator C

Abus ≡ Aconst or Abus ≤ Aconst opt.opt.Comparator D

Match
Control

Match2

Match3

State1

Final state State3

ARM = 1

Session complete
(disarm)

State2
 State0

(disarmed)
ARM = 0

ARM = 0

ARM = 0

= Programmable state transitions
(triggered by a combination of Match0 to Match3)

Breakpoint or
trace trigger

Introduction to the S12XDBG Module

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 11

2.4.1 Trace Modes
The trace buffer of the S12XDBG module can record up to 128 entries. Four trace modes allow efficient
use of the buffer capacity (Figure 9).

• Normal mode—Normal mode produces a trace of the program flow. To save trace buffer entries,
only changes of the linear flow (conditional branches, indexed jumps, and interrupts) are
recorded. By matching this trace against the program memory, the complete program flow can be
reconstructed.

• Loop1 mode—Loop1 mode works exactly like normal mode with one exception, it ignores
recurring entries resulting from conditional branches. This mode reduces trace buffer entries
when executing loops.
Tracing a loop that does not contain conditional branch instructions inside its body, results in a
single trace buffer entry. However, tracing the same loop in normal mode generates one entry per
loop iteration.

• Detail mode—Detailed mode generates a trace of data transfers (no opcode fetches).
• Pure PC mode— Pure PC also traces the program flow. Unlike normal or loop1 mode, a trace

buffer entry is generated for every instruction.

Trace Mode Type of Bus Transaction

Any executed
instruction

Any change of flow
instruction

First change of flow
instruction of a loop

 Any data transfer

Normal Mode Νο Yes Yes Νο

Loop1 Mode Νο Νο Yes Νο

Detail Mode Νο Νο Νο Yes

Pure PC Mode Yes Νο Νο Νο

Figure 9. Trace Modes

Debugging XGATE Code, Rev. 0

Examples

Freescale Semiconductor12

2.4.2 Trace Alignment
The alignment of the trace can be adjusted relative to an event generated by the state sequencer. S12XDBG
module offers three options (Figure 10).

Figure 10. Trace Alignment

• Begin trigger alignment—The trace begins when the state sequencer enters the final state. The
S12XDBG module keeps the cores running until the trace buffer is full, then it executes a
breakpoint.

• End trigger alignment—The trace buffer behaves as a FIFO in this case. Tracing begins
immediately when the S12XDBG module is armed. When the trace buffer is full, the most recent
entry replaces the oldest one. When final state is reached a breakpoint is executed immediately.
The trigger event appears at the end of the trace.

• Mid-trigger alignment—Mid-trigger alignment is a combination of the other two alignment
methods. The trace buffer behaves like a FIFO, but, when final state is reached, all cores run until
half the buffer is filled with new entries. Then a breakpoint is executed. The trigger event appears
in the middle of the trace.

3 Examples
The following sections show a number of debug scenarios that can be performed with the S12XDBG
module. Each example comes with a detailed setup of the debug module that may be used as template for
further debug challenges.

3.1 Software Breakpoints
Because XGATE code is usually executed from RAM, software, breakpoints are the simplest debug
method. All that needs to be done is to write a BRK instruction (0x0000) to the desired address location.
As soon as this BRK becomes executed, the XGATE enters debug mode and the S12XDBG module
transitions to final state. In debug mode, the program counter of the XGATE (XGPC) shows the address
of the breakpoint. Before continuing program execution, the BRK instruction must be replaced by the
original opcode. Software breakpoints work even if the S12XDBG module is disabled. Their main
advantage is that they can be set in nearly unlimited number.

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.Instr.Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.
Program Flow

Match Match Match MatchMatch

Transition to
Final State

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.

Begin-Trigger
Alignment

Mid-Trigger
Alignment

End-Trigger
Alignment

Trace Buffer Content:

X Breakpoint

X Breakpoint

X Breakpoint

Examples

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 13

3.2 Simple Hardware Breakpoints

Figure 11. S12XDBG Configuration

When executing code from flash memory, hardware breakpoints are the method of choice. Figure 11
shows how to set four hardware breakpoints (BRK1 to BRK3). The four comparators of the S12XDBG
module are configured to check the breakpoint addresses against the address bus (Abus) of the XGATE.
The tagged comparator outputs are directly mapped to the four outputs of the match logic (match0 to
match3). The setup of the state sequencer causes a transition to final state as soon as any of the four match
events occurs.

Figure 12 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x02
0 0 1 0

DBGSCR2
SC3 SC2 SC1 SC0

0x00
0 0 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x00
0 0 0 0

Figure 12. S12XDBG Register Setup

Abus ≡ BKP1

Global address

Comparator A

Abus ≡ BKP2Comparator B

Match0

Match1

Abus ≡ BKP3Comparator C

Abus ≡ BKP4Comparator D

Match2

Match3

State1
Final
StateMatch0

Match1
Match2
Match3

Debugging XGATE Code, Rev. 0

Examples

Freescale Semiconductor14

3.3 Breakpoint if a Specific Data Byte Is Written
In the next example, two breakpoints are set. Each one triggers when a certain data byte is written
(Figure 13). A byte in the memory map can be written by accessing the byte directly or by performing a
word access to the preceeding address location. Therefore, comparators A and C are needed to check the
two byte addresses (Abyte1 and Abyte2) and comparators B and D are required to check for word accesses
to the preceeding addresses (Abyte1–1 and Abyte2–1). The forced trigger of each comparator is mapped to
the associated match output (match0 to 3). The state sequencer again is configured to transition to final
state when any of the four match events occurs.

C
om

pa
ra

to
r

A
(C

O
M

R
V

 =
 0

)

DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGAAH 0 0 0 0 0 0 0 0x00

DBGAAM
BKP1 BKP1

DBGAAL

DBGADH 0 0 0 0 0 0 0 0 0x00
DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00

DBGADLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

B
(C

O
M

R
V

 =
 1

) DBGBCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGBAH 0 0 0 0 0 0 0 0x00
DBGBAM

BKP2 BKP2
DBGBAL

C
om

pa
ra

to
r

C
(C

O
M

R
V

 =
 2

)

DBGCCTL
NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGCAH 0 0 0 0 0 0 0 0x00
DBGCAM

BKP3 BKP3
DBGCAL

DBGCDH 0 0 0 0 0 0 0 0 0x00
DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00

DBGCDLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

D
(C

O
M

R
V

 =
 3

) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGDAH 0 0 0 0 0 0 0 0x00
DBGDAM

BKP4 BKP4
DBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 12. S12XDBG Register Setup (continued)

Examples

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 15

Figure 13. S12XDBG Configuration

The generated breakpoint may not stop the XGATE at the instruction that performed the write access. The
XGATE may stop up to two instructions later.

Figure 14 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x02
0 0 1 0

DBGSCR2
SC3 SC2 SC1 SC0

0x00
0 0 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x00
0 0 0 0

C
om

pa
ra

to
r

A
(C

O
M

R
V

 =
 0

)

DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x07
0 0 0 0 1 1 1

DBGAAH 0 0 0 0 0 0 0 0x00
DBGAAM

Abyte1 Abyte1DBGAAL

DBGADH 0 0 0 0 0 0 0 0 0x00
DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00
DBGADLM 0 0 0 0 0 0 0 0 0x00

Figure 14. S12XDBG Register Configuration

Abus ≡ Abyte1 W

Global Address R/W 8/16 Bit

Comparator A

Abus ≡ Abyte1 -1 16 BitWComparator B

Match0

Match1

Abus ≡ Abyte2 WComparator C

Abus ≡ Abyte2 -1 16 BitWComparator D

Match2

Match3

State1 Final
StateMatch0

Match1
Match2
Match3

Debugging XGATE Code, Rev. 0

Examples

Freescale Semiconductor16

3.4 Breakpoint if a Thread Sequence Is Executed
In the next example, a breakpoint must be generated immediately after three XGATE threads (X, Y, and Z)
are executed in a sequence (Figure 15). For this purpose, comparators B, C, and D are set to the RTS
instructions of the three threads. Comparator C monitors thread X, comparator D checks for the execution
of thread Y, and comparator B is associated with thread Z (Figure 16). The tagged comparator outputs
trigger the corresponding match events. The state sequencer is configured to expect a sequence of match2,
match3, and match1 to enter final state.

Figure 15. Breakpoint Condition

C
om

pa
ra

to
r

B
(C

O
M

R
V

 =
 1

) DBGBCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x87
1 0 0 0 0 1 1 1

DBGBAH 0 0 0 0 0 0 0 0x00

DBGBAM
Abyte1-1 Abyte1-1

DBGBAL

C
om

pa
ra

to
r

C
(C

O
M

R
V

 =
 2

)

DBGCCTL
NDB TAG BRK RW RWE SRC COMPE

0x07
0 0 0 0 1 1 1

DBGCAH 0 0 0 0 0 0 0 0x00

DBGCAM
Abyte2 Abyte2DBGCAL

DBGCDH 0 0 0 0 0 0 0 0 0x00

DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00
DBGCDLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

D
(C

O
M

R
V

 =
 3

) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x87
1 0 0 0 0 1 1 1

DBGDAH 0 0 0 0 0 0 0 0x00

DBGDAM
Abyte2-1 Abyte2-1

DBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 14. S12XDBG Register Configuration (continued)

Instr. Instr.

Instr. Instr. Instr. Instr.

Instr.Instr.
Program Flow

Match2

Match3

Thread Y

Thread X

Instr. Instr. Instr. Instr.

Match1

Thread Z
X Breakpoint

State2 State3 Final
State Sequencer

State1

Examples

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 17

Figure 16. S12XDBG Configuration

Figure 17 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x03
0 0 1 1

DBGSCR2
SC3 SC2 SC1 SC0

0x04
0 1 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x08
1 0 0 0

C
om

pa
ra

to
r

A
(C

O
M

R
V

 =
 0

)

DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x00
0 0 0 0 0 0 0

DBGAAH 0 0 0 0 0 0 0 0x00
DBGAAM 0 0 0 0 0 0 0 0 0x00

DBGAAL 0 0 0 0 0 0 0 0 0x00

DBGADH 0 0 0 0 0 0 0 0 0x00
DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00

DBGADLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

B
(C

O
M

R
V

 =
 1

) DBGBCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGBAH 0 0 0 0 0 0 0 0x00
DBGBAM

AThread Z AThread ZDBGBAL

Figure 17. S12XDBG Register Setup

Global Address

Abus ≡ AThread ZComparator B Match1

Abus ≡ AThread XComparator C

Abus ≡ AThread YComparator D

Match2

Match3

State1
Final
State

Match1
State2 State3

Match2 Match3

Thread YThread X BreakpointThread Z

Debugging XGATE Code, Rev. 0

Examples

Freescale Semiconductor18

3.5 Breakpoint If Threads Are Executed Out of Order
In the next example, two XGATE threads (thread X and thread Y) are expected to execute in an alternating
order (Figure 18). A breakpoint is generated as soon as the order of execution is violated. For this setup
comparators A and D are configured to both look at the beginning of thread X. Comparator B checks for
the execution of thread Y. The tagged comparator outputs are mapped to the corresponding match events.
The state sequencer is configured to reach final state whenever two consecutive match events of the same
kind (match0/3 or match1) occur.

Figure 18. Breakpoint Condition

C
om

pa
ra

to
r

C
(C

O
M

R
V

 =
 2

)

DBGCCTL
NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGCAH 0 0 0 0 0 0 0 0x00

DBGCAM
AThread X AThread XDBGCAL

DBGCDH 0 0 0 0 0 0 0 0 0x00
DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00

DBGCDLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

D
(C

O
M

R
V

 =
 3

) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGDAH 0 0 0 0 0 0 0 0x00
DBGDAM

AThread Y AThread YDBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 17. S12XDBG Register Setup (continued)

Instr. Instr.

Instr. Instr. Instr. Instr.

Instr. Instr. Instr. Instr.Instr.Instr.

Instr. Instr. Instr. Instr. Instr.

Program Flow

Match0

X Breakpoint

Match1

Match0

Match1 Match1

Thread X

Thread Y

Thread X

Thread Y
Match3 Match3

State2State1 State3 Final
State Sequencer

State3State2

Examples

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 19

Figure 19. S12XDBG Configuration

Figure 20 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x04
0 0 0 0 01 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x00
00 00

DBGSCR1
SC3 SC2 SC1 SC0

0x06
0 1 1 0

DBGSCR2
SC3 SC2 SC1 SC0

0x07
0 1 1 1

DBGSCR3
SC3 SC2 SC1 SC0

0x0B
1 0 1 1

C
om

pa
ra

to
r

A
(C

O
M

R
V

 =
 0

)

DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGAAH 0 0 0 0 0 0 0 0x00
DBGAAM

AThread X AThread XDBGAAL

DBGADH 0 0 0 0 0 0 0 0 0x00
DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00

DBGADLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

B
(C

O
M

R
V

 =
 1

) DBGBCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGBAH 0 0 0 0 0 0 0 0x00
DBGBAM

AThread Y AThread YDBGBAL

Figure 20. S12XDBG Register Setup

Abus ≡ AThread XComparator A

Abus ≡ AThread YComparator B

Match0

Match1

State1

M
at

ch
0

M
at

ch
1

State3
Final
State

Match0

Match1

Match
3

State2

Match
1

Abus ≡ AThread XComparator D Match3

Thread Y

Thread X

Breakpoint

Debugging XGATE Code, Rev. 0

Examples

Freescale Semiconductor20

3.6 Breakpoint on Violations of Mutual Exclusive Code
In this scenario, two concurrent threads run on the XGATE and the CPU12X (Figure 21). Both threads
share a system resource. Each has a critical code sequence in which it expects to have exclusive access to
this system resource. To debug a concurrency problem, a breakpoint must be generated as soon as both
cores execute their critical code sequence simultaneously.

Figure 21. Breakpoint Condition

To setup this type of breakpoint, comparators A and B are configured to perform a range check on the
critical code sequence of the CPU12X (Figure 22). A match0 event occurs for every instruction that the
CPU12X executes within this range. The entry and exit of the XGATE’s critical code sequence are detected
by comparator D (points to the instruction before the sequence) and C (points to the end of the sequence).
The state sequencer tracks the state of the XGATE. Every time the XGATE enters its critical code
sequence, the FSM transitions to state3. Every time the critical sequence is left, the FSM leaves state3 as
well. While the state sequencer remains in state3, it needs to pay attention to match0 events. Because this
is the indicator that both cores execute their critical code simultaneously, a transition to final state must
occur in this case.

C
om

pa
ra

to
r

C
(C

O
M

R
V

 =
 2

)

DBGCCTL
NDB TAG BRK RW RWE SRC COMPE

0x00
0 0 0 0 0 0 0

DBGCAH 0 0 0 0 0 0 0 0x00

DBGCAM 0 0 0 0 0 0 0 0 0x00

DBGCAL 0 0 0 0 0 0 0 0 0x00

DBGCDH 0 0 0 0 0 0 0 0 0x00
DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00

DBGCDLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

D
(C

O
M

R
V

 =
 3

) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGDAH 0 0 0 0 0 0 0 0x00
DBGDAM

AThread X AThread XDBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 20. S12XDBG Register Setup (continued)

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.Instr.Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.
XGATE Program Flow

Match3 Match3

Match0 Match0

Match2

Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr. Instr.Instr.Instr. Instr. Instr. Instr. Instr. Instr. Instr.
CPU12X Program Flow

X Breakpoint

X Breakpoint

Instr. Instr. Instr. Instr.

Instr. Instr. Instr. Instr.

Mutex Code
Mutex Code

Mutex Code
Mutex Code

State2State1 State3 Final
State Sequencer

State3

Examples

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 21

Figure 22. S12XDBG Configuration

Figure 23 shows the register setup for this configuration. Relevant register bits are highlighted.

Name Bit 7 6 5 4 3 2 1 Bit 0

DBGC1
ARM TRIG XGSBPE BDM DBGBRK COMRV

0x0C
0 0 0 0 11 —

DBGTCR
TSOURCE TRANGE TRCMOD TALIGN

0x00
00 00 00 00

DBGC2
CDCM ABCM

0x01
00 01

DBGSCR1
SC3 SC2 SC1 SC0

0x0B
1 0 1 1

DBGSCR2
SC3 SC2 SC1 SC0

0x04
0 1 0 0

DBGSCR3
SC3 SC2 SC1 SC0

0x09
1 0 0 1

C
om

pa
ra

to
r

A
(C

O
M

R
V

 =
 0

)

DBGACTL
NDB TAG BRK RW RWE SRC COMPE

0x21
0 1 0 0 0 0 1

DBGAAH

Acpu12x_mutex_startDBGAAM Acpu12x_mutex_start

DBGAAL

DBGADH 0 0 0 0 0 0 0 0 0x00

DBGADL 0 0 0 0 0 0 0 0 0x00

DBGADHM 0 0 0 0 0 0 0 0 0x00

DBGADLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

B
(C

O
M

R
V

 =
 1

) DBGBCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x01
0 0 0 0 0 0 0 1

DBGBAH

Acpu12x_mutex_endDBGBAM Acpu12x_mutex_end

DBGBAL

Figure 23. S12XDBG Register Setup

Abus ≥ Acpu12x_mutex_start

Global Address

Comparator A

Abus ≤ Acpu12x_mutex_endComparator B

Abus ≡ Axgate_mutex_endComparator C

Abus ≡ Axgate_mutex_startComparator D

Match2

Match3

State2 Match0

Match3

Match3

Match0

Final
StateState3

State1

Match2

Mutex CodeRegular Code Breakpoint

Debugging XGATE Code, Rev. 0

References

Freescale Semiconductor22

4 References
1. MC9S12XEP100 Data sheet, Freescale Semiconductor Inc., 2005.
2. MC9S12XDP512 Data sheet, Freescale Semiconductor Inc., 2005.

C
om

pa
ra

to
r

C
(C

O
M

R
V

 =
 2

)

DBGCCTL
NDB TAG BRK RW RWE SRC COMPE

0x23
0 1 0 0 0 1 1

DBGCAH 0 0 0 0 0 0 0 0x00

DBGCAM
Axgate_mutex_end Axgate_mutex_endDBGCAL

DBGCDH 0 0 0 0 0 0 0 0 0x00
DBGCDL 0 0 0 0 0 0 0 0 0x00

DBGCDHM 0 0 0 0 0 0 0 0 0x00

DBGCDLM 0 0 0 0 0 0 0 0 0x00

C
om

pa
ra

to
r

D
(C

O
M

R
V

 =
 3

) DBGDCTL
SZE SZ TAG BRK RW RWE SRC COMPE

0x23
0 0 1 0 0 0 1 1

DBGDAH 0 0 0 0 0 0 0 0x00
DBGDAM

Axgate_mutex_start-2 Axgate_mutex_start-2DBGDAL

Name Bit 7 6 5 4 3 2 1 Bit 0

Figure 23. S12XDBG Register Setup (continued)

References

Debugging XGATE Code, Rev. 0

Freescale Semiconductor 23

THIS PAGE IS INTENTIONALLY BLANK

AN3458
Rev. 0, 05/2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

