
Freescale Semiconductor
Application Note

Document Number: AN3464
Rev. 0, Draft C, 07/2007

Contents

Introduction . 1
1.1 Abstract . 1
1.2 Objective . 2
ColdFire V1 and V2 Overview . 2

2.1 General-Purpose Input/Outputs 3
2.2 Timers . 5
2.3 Inter-Integrated Circuit (IIC). 10
2.4 Analog-to-Digital Converter (ADC) 17
2.5 Interrupt Controller. 21
2.6 Benefits of Our Solution. 29
Conclusion. 29
Hardware and Software Used to Test the Code 30

Migrating Code Between
ColdFire V1 and V2
by: Alfredo Soto

TIC Mexico, RTAC Americas
Daniel Torres
Go to Market, RTAC Americas
1 Introduction
In today’s designs, easily changing a device is important
to provide better performance or to reduce complexity or
power consumption.

It is very common to find an embedded software
development fully programmed in C. Having software
tools such as compilers and integrated development
environments (IDE) that allow you to use a single
language to program different devices is a good start;
however, when migrating between microcontrollers you
also need to learn about the new peripherals,
functionality, and development support.

The new ColdFire® V1 device is a subset of the V2
architecture and gives a new connection point to migrate
your applications when looking for different features.

1.1 Abstract
As part of the Freescale Controller Continuum, this cross
reference guides you through migrating from the

1

2

3
4

© Freescale Semiconductor, Inc., 2007. All rights reserved.

ColdFire V1 and V2 Overview
ColdFire V1 family to the ColdFire V2. Although the V1 architecture is a subset of the V2 architecture,
there are some considerations to keep in mind when migrating from one to another. This application note
covers the initialization of the different common peripherals to allow the reuse of the rest of an application.

1.2 Objective
This document details how to migrate C code of the common peripherals used in the MCF51QE128 to
MCF52210, such as the analog-to-digital converter, timers, serial communications interface, serial
peripheral interface, inter-integrated circuit, and general-purpose input/output. This document also
describes the interrupt processing in both architectures.

Example code is provided for the common peripherals between the MCF51QE128 and the MCF52210;
with this, a C programmer can easily adapt the peripheral initialization from one device to the other and
migrate between a ColdFire V1 and a ColdFire V2 with less effort.

2 ColdFire V1 and V2 Overview
As of June 2007, existing devices in the MCF51QE family have these common peripherals related to the
V2: analog-to-digital converter, timers, serial communication interface, serial peripheral interface,
inter-integrated circuit, and general-purpose input/output. This does not imply V1 and V2 peripheral
modules are the same. This application note describes how to easily migrate between the devices and
applies to future MCF51x and MCF52x peripherals.

The MCF51QE128 and MCF51QE64 are members of the low-cost, low-power, high-performance
Version 1 (V1) ColdFire family of 32-bit microcontroller units (MCUs). All MCUs in the family use the
enhanced V1 ColdFire core and are available with a variety of modules, memory sizes, memory types, and
packages. CPU clock rates on these devices can reach 50.33 MHz. Peripherals operate up to 25.165 MHz.

The ColdFire V1 MCF51QE device-family features up to 128 KB of flash memory, up to 8 KB of RAM,
two analog comparators (ACMP), up to 24 analog-to-digital channels (ADC), two inter-integrated circuit
(IIC) modules, one keyboard interrupt (KBI) module, up to 70 general-purpose input/output (GPIO)
terminals, real-time counter (RTC), two serial communications interface (SCI) modules, two serial
peripheral interface (SPI) ports, three timer/pulse-width modulator (TPM) modules.

The MCF5221x represents a family of highly-integrated 32-bit microcontrollers based on the V2 ColdFire
microarchitecture. Featuring 16 KB of internal SRAM and 128 KB of flash memory, four 32-bit timers
with DMA request capability, a 4-channel DMA controller, two IIC modules, three UARTs, and a queued
SPI, the MCF5221x family is designed for general-purpose industrial control applications. This 32-bit
device is based on the Version 2 (V2) ColdFire reduced instruction set computing (RISC) core with a
multiply-accumulate unit (MAC) and divider providing 76 Dhrystone 2.1 MIPS at a frequency up to
80 MHz from internal flash.

This application note provides explanations and code examples that help migrate between a ColdFire V1
and a V2, allowing a user to initialize the peripherals in the new device and keep the main routines of the
application without changes.
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor2

http://www.freescale.com

ColdFire V1 and V2 Overview
2.1 General-Purpose Input/Outputs
Many of the pins associated with the external interface in both the ColdFire’s V1 MC51FQE128
processors and the ColdFire’s V2 MCF52211 processors may be used for several functions. When not used
for their primary function, many of the pins may be used as general-purpose digital I/O pins. In some cases,
the pin function is set by the operating mode and the alternate pin functions are not supported.

The ColdFire V1 MC51QE family rapid GPIO (RGPIO) module provides a 16-bit general-purpose I/O
module directly connected to the processor’s high-speed 32-bit local platform bus. This connection to the
processor’s high-speed platform bus plus support for single-cycle, zero wait-state data transfers allows the
RGPIO module to provide improved pin performance when compared to more traditional GPIO modules
located on the internal slave peripheral bus.

Many of the pins associated with a device may be used for several functions. Their primary functions are
to provide external interfaces to access off-chip resources. When not used for the primary function, many
of the pins may be used as general-purpose digital I/O (GPIO) pins. The definition of the exact pin
functions and the affected signals is specific to each device. Every GPIO port, including the RGPIO
module, has registers that configure, monitor, and control the port pins.

The key features of this module include:
• 16 bits of high-speed GPIO functionality connected to the processor’s local 32-bit platform bus
• Memory-mapped device connected to the ColdFire core’s local bus

— Support for all access sizes: byte, word, and longword
— All reads and writes complete in a single data phase cycle for zero wait-state response

• Data bits can be accessed directly or via alternate addresses to provide set, clear, and toggle
functions
— Alternate addresses allow set, clear, toggle functions using simple store operations without the

need for read-modify-write references
• Unique data direction and pin enable control registers
• Package pin toggle rates typically 1.5–3.5 times faster than comparable pin mapped onto peripheral

bus

The ColdFire V2 MCF5221x family digital I/O pins are grouped into 8-bit ports. Some ports do not use
all eight bits. Each port has registers that configure, monitor, and control the port pins. The MCF52211
ports module controls the configuration for the following external pins:

• External bus accesses
• Chip selects
• Debug data
• Processor status
• USB
• IIC serial control
• QSPI
• UART transmit/receive
• 32-bit DMA timers
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 3

ColdFire V1 and V2 Overview
The MCF52211 ports includes these distinctive features:
• Control of primary function use on all ports
• Digital I/O support for all ports; registers for:

— Storing output pin data
— Controlling pin data direction
— Reading current pin state
— Setting and clearing output pin data registers

Table 1 shows the MC51QEx rapid GPIO and the MCF5221x GPIO common operating modes.

In Figure 1, the general-purpose I/O modules are configured as outputs. A GPIO pin toggles after a 500 ms
elapsed. The set and clear registers are not used in this code example; in this case, the data register is
directly modified.

Table 1. MC51QEx Rapid GPIO and the MCF5221x GPIO Common Operating Modes

Attribute ColdFire V1 MCF51QE128 GPIO ColdFire V2 MCF5221x GPIO

Number of pins Up to 70 Up to 56

Input Yes Yes

Output Yes Yes

Direct address access to bits Yes Yes

Access size Byte, word, longword Byte, word, longword

Rapid Single-cycle, zero wait-state data
transfers

No

Slew rate control Yes Yes

Strength control Yes Yes (2 mA–10 mA)

Interrupt request No No
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor4

ColdFire V1 and V2 Overview
Figure 1 shows the GPIO_init functions. Figure 2 shows the code required in both processors to toggle a
pin.

Figure 1. GPIO_init Function

Figure 2. Toggling a GPIO pin

2.2 Timers
The ColdFire V1 MCF51QE device family includes up to three independent timer/PWM (TPM) modules
that support traditional input capture, output compare, or buffered edge-aligned pulse-width modulation
(PWM) on each channel. A control bit in each TPM configures all channels in that timer to operate as
center-aligned PWM functions. In each of these two TPMs, timing functions are based on a separate 16-bit
counter with prescaler and modulo features to control frequency and range (period between overflows) of
the time reference. This timing system is ideally suited for a wide range of control applications, and the

void GPIO_Init(void) {
/* Configure PTE as outputs */
PTEDD |= PTEDD_PTEDD7_MASK;
/* Configure PTE as outputs */
PTED = 0x00; /* Put 0's in PTE port */
}

Figure 1A. Code Snippet for the MC51QEx Processor

void GPIO_init()
{
 /*Configure Port TC as output*/
 MCF_GPIO_DDRTC = 0

| MCF_GPIO_DDRTC_DDRTC0; /* pin TC0 to LED1 */
MCF_GPIO_PORTTC = 0x00; /* clear port TC */

}

Figure 1B. Code Snippet for the MCF5221x Processor

while(1) {
Delay (16000); /* 500mS Delay*/PTED_PTED7 ^= 1; /*Toggle Led*/

}
}

Figure 2A. Code Snippet for the MC51QExx

while (1) {
GPT_delay(153); /* 500mS Delay */
MCF_GPIO_PORTTC ^= 0x01; /* Toggle Led */

}
 }

Figure 2B. Code Snippet for the MCF5221x
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 5

ColdFire V1 and V2 Overview
center-aligned PWM capability on the 3-channel TPM extends the field of applications to motor control
in small appliances.

The bus clock to TPM1, TPM2, and TPM3 can be gated on and off using the TPMx bits in SCGC1. These
bits are set after any reset, which enables the bus clock to this module. To conserve power, these bits can
be cleared to disable the clock to any of these modules when not in use.

The TPM included in the ColdFire V1 MC51QE devices has these features:
• Each TPM may be configured for buffered, center-aligned pulse-width modulation (CPWM) on all

channels
• Clock sources independently selectable per TPM (multiple TPMs device)
• Selectable clock sources (device dependent): bus clock, fixed system clock, external pin
• Clock prescaler taps for divide by 1, 2, 4, 8, 16, 32, 64, or 128
• 16-bit free-running or up/down (CPWM) count operation
• 16-bit modulus register to control counter range
• Timer system enable
• One interrupt per channel plus a terminal count interrupt for each TPM module (multiple TPMs

device)
• Channel features:

— Each channel may be input capture, output compare, or buffered edge-aligned PWM
— Rising-edge, falling-edge, or any-edge input capture trigger
— Set, clear, or toggle output compare action
— Selectable polarity on PWM outputs

The MCF5221x family has one 4-channel general-purpose timer module (GPT). It consists of a 16-bit
counter driven by a 7-stage programmable prescaler.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit
range of the counter. Each of the four timer channels can be configured for input capture, which can
capture the time of a selected transition edge, or for output compare, which can generate output waveforms
and timer software delays. These functions allow simultaneous input waveform measurements and output
waveform generation.

Additionally, channel 3 can be configured as a 16-bit pulse accumulator that can operate as a simple event
counter or as a gated time accumulator. The pulse accumulator uses the GPT channel 3 input/output pin in
event mode or gated time accumulation mode.

Features of the general-purpose timer include:
• Four 16-bit input capture/output compare channels
• 16-bit architecture
• Programmable prescaler
• Pulse-widths variable from microseconds to seconds
• Single 16-bit pulse accumulator
• Toggle-on-overflow feature for pulse-width modulator (PWM) generation
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor6

ColdFire V1 and V2 Overview
• External timer clock input (SYNCA/SYNCB)

Table 2 shows the TPM and GPT common operating modes.

Figure 3 is a code example showing the migration of a C code developed for both timers configured to
generate a 500 ms delay. This example code configures the timers in a simple manner without the use of
interrupt flags. Both timers are configured in output compare mode. Each timer toggles the channel pin
after the timer overflow flag has been set, meaning that the timer has reached the counter modulo value.
Figure 3 shows the main function.

Table 2. TPM and GPT Common Operating Modes

Attribute ColdFire V1 MC51QE TPM ColdFire V2 MCF5221x GPT

16-bit architecture Yes Yes

16-bit free running counter Yes Yes

Programmable prescaler Divides bus clock by 1, 2, 4, 8, 16, 32, 64,
or 128 (25 MHz max clock)

Divides the module clock by 1 or 16
(40 MHz max clock)

Input capture Rising or falling edges Rising or falling edges

Output compare Set, clear, or toggle the channel pin Set, clear, or toggle the channel pin

Number of channels Up to 10 channels Up to 4 channels

Pulse-width modulation capabilities Yes, center- or edge-aligned Toggle-on-overflow feature for
pulse-width modulator (PWM)

generation

External clock support Yes (<0.5 fbus) Yes

Interrupts Channel interrupts on input capture and
output compare, timer overflow

Channel interrupts on input capture and
output compare, timer overflow
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 7

ColdFire V1 and V2 Overview
Figure 3. Timer Code Example

First, you must configure the MCU to disable watchdog timer, to enable the background and reset pin, and
to provide clock to the TPM or GPT modules. The ColdFire V2 MCF5221x family requires the
initialization of the PLL to clock down the bus clock so the GPT timer can produce a 500 ms delay.
Figure 4 and Figure 5 show this code snippet. Figure 4 refers to the V1 QE family and Figure 5 refers to
V2 MCF5221x family

Figure 4. Code Snippet for the MC51QEx Processor, MCU_init Function

void main(void) {
 MCU_Init(); /* Function that initializes the MCU */
 GPIO_Init(); /* Initializes the Ports of the MCU */
 TPWM_configuration(); /* Initializes the TPM module */
 while(1) {
 Delay (16000); /* 500mS Delay*/

PTED_PTED7 ^= 1; /*Toggling a GPIO */
}

}

Figure 3A. Code Snippet for the MC51QEx Processor

void main(void)
{

PLL_init(); /* Configure PLL */

GPIO_init(); /* Configure LEDs on MCF52211EVB*/

GPT_init(); /* Configure timer */

while (1) {
GPT_delay(153); /* 500mS Delay */
MCF_GPIO_PORTTC ^= 0x01; /* togglin GPIO */

}
}

Figure 3B. Code Snippet for the MCF5221x Processor

void MCU_Init(void) {
SOPT1 =(SOPT1_STOPE_MASK | SOPT1_RSTPE_MASK

/* Watchdog disable. Stop Mode Enable. */
| SOPT1_BKGDPE_MASK);

/* Background Pin enable. RESET pin enable */
SCGC1 = SCGC1_TPM1_MASK;

/* Bus Clock to the TPM1 module is enabled */
}

Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor8

ColdFire V1 and V2 Overview
Figure 5. Code Snippet for the MCF5221x Processor, PLL_init Function.

The GPIOs are used in this example as a user interface, demonstrating that the time delay generated with
the timers corresponds to approximately 500 ms.

The next step is to configure the timer modules, achieved in the GPT_init functions. To generate a 500 ms
delay, you must use the prescalers. In the case of the V1 QE ColdFire family, the bus clock is divided by
128. For the V2 MCF5221x family, the clock divider is higher than that since the V2 bus clock is running
at a higher frequency. This is shown in Table 6.

Figure 6. Timer Init Function

Because the timers are not configured to generate an interrupt, the main program polls the timer-overflow
flag to verify that the timer has reached to its maximum value. The polling is performed in the delay
function as shown in Figure 7. After the maximum timer module value has been reached, the GPIO pin is
toggled to demonstrate that a 500 ms elapsed, the TOF is cleared, and the timer is disabled. Figure 7 shows
the code snippet.; Figure 7A refers to the V1 QE family and Figure 7B refers to V2 MCF5221x family.

void PLL_init(void) {
 /*Configure PLL with selected frequency*/
 MCF_CLOCK_SYNCR = MCF_CLOCK_SYNCR_PLLMODE

/* PLL in programming mode */
| MCF_CLOCK_SYNCR_CLKSRC
/* PLL output drives system clock */
| MCF_CLOCK_SYNCR_RFD(1)
/* divider PLL / 2 */
| MCF_CLOCK_SYNCR_MFD(3)
/* multiplier PLL x18 */
| MCF_CLOCK_SYNCR_PLLEN;
/* enabling PLL */

}

void TPWM_configuration (void)
{

/* TPM clock source is: Bus rate clock divided by 128 */
TPM1SC = (TPM1SC_PS_MASK | TPM1SC_CLKSA_MASK);

}

Figure 6A. Code Snippet for the MC51QEx Processor

void GPT_init(void)
{

/* timer selected as output compare */
MCF_GPT_GPTIOS |= MCF_GPT_GPTIOS_IOS0;
/* GPT disconnected from output pin logic */
MCF_GPT_GPTCTL1 = 0;

}

Figure 6B. Code Snippet for the MCF5221x Processor
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 9

ColdFire V1 and V2 Overview
Figure 7. Approx. 500 ms Delay Function

2.3 Inter-Integrated Circuit (IIC)
The Coldfire V1, MCF51QE128 has up to two IIC modules. The IIC interface is designed to operate up to
100 kbps, with maximum bus loading and timing. The device is capable of operating at higher baud rates,
up to a maximum of clock/20, with reduced bus loading. The IIC1 module pins, SDA and SCL can be
repositioned under software control using the SOPT2 register, thus adding flexibility to this module.

The ColdFire V2 contains up to two IIC modules. The modules operate up to 100 kbps, with maximum
bus loading and timing. The device can operate at higher baud rates, up to a maximum of the internal bus
clock divided by 20, with reduced bus loading.

Table 3 shows the most important features for both MCU families.

Delay(UINT16 compare) {
 /* The counter counts up to compare value */
 TPM1MOD = compare;
 while (!TPM1SC_TOF);
 /* clear overflow flag */
 TPM1SC_TOF = 0;
}

Figure 7A. Code Snippet for the MC51QEx Processor

void GPT_delay(unsigned int time) {
unsigned int u32longCounter;
/* turn on timer counter */
MCF_GPT_GPTSCR1 = MCF_GPT_GPTSCR1_GPTEN;
/* counter's time */
for(u32longCounter = 0; u32longCounter < time; u32longCounter++) {
/* Stay until timer overflow flag asserted */

while(!(MCF_GPT_GPTFLG2 & MCF_GPT_GPTFLG2_TOF)) ;
 /* clear overflow flag */

MCF_GPT_GPTFLG2 = MCF_GPT_GPTFLG2_TOF;
}
/* turn off timer counter */
MCF_GPT_GPTSCR1 &= (~MCF_GPT_GPTSCR1_GPTEN);

}

Figure 7B. Code Snippet for the MC5221x Processor

Table 3. Features of V1 MC51QE and V2 MCF5221x

IIC Features
V1

MC51QE
V2

MCF5221x

Compatible with IIC bus standard Y Y

Multiple-master operation Y Y

Software-programmable clock frequency Y Y

Software-selectable acknowledge bit Y Y

Interrupt-driven, byte-by-byte data transfer Y Y
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor10

ColdFire V1 and V2 Overview
Figure 8 shows example routines for using the IIC modules on the ColdFire V1 and V2, respectively. The
first code of every code snippet is for the ColdFire V1 MC51QEx family and the second is for the
ColdFire V2 MCF5221x.

The next routines show the IIC initialization. The IIC frequency is set to approximately 400 kHz. If the
IIC bus is busy, a stop condition is sent.

Arbitration-lost interrupt with automatic mode switching from master to
slave

Y Y

Calling address identification interrupt Y Y

START and STOP signal generation/detection Y Y

Repeated START signal generation Y Y

Acknowledge bit generation/detection Y Y

Bus-busy detection Y Y

General call recognition Y Y

10-bit address extension Y N

Table 3. Features of V1 MC51QE and V2 MCF5221x (continued)

IIC Features
V1

MC51QE
V2

MCF5221x
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 11

ColdFire V1 and V2 Overview
Figure 8. Initializing the IIC Module

Figure 9 shows the routine for sending a byte to an IIC device. It writes the specified data byte in the
address specified. The code example was developed to read and write a serial EEPROM memory (part
number 24C04) using the IIC module.

void I2CInit (void) {
unsigned char temp;
IIC1F = 0x22; /* set the frequency near 400 kHz*/
IIC1C1 = 0 | IIC1C1_IICEN; /* start the module */
/* if bit busy set, send a stop condition to slave module */

if(IIC1S & IIC1S_BUSY) {
IIC1C1 = 0; /* clear control register */
IIC1C1 = IIC1C1_IICEN | /* enable module */
IIC1C1_MST; /* send a START condition */
temp = IIC1D; /* dummy read */
IIC1S = 0; /* clear status register */
IIC1C1 = 0; /* clear control register */
IIC1C1= 0 | IIC1C1_IICEN; /* enable the module again */

 }
}

Figure 8A. Code Snippet for Initializing the IIC Module in the V1 MC51QExx Processor

void I2Cinit(void) {
uint8 temp;

/* I2C pins configuration */
MCF_GPIO_PQSPAR = 0 | MCF_GPIO_PQSPAR_PQSPAR3(2)

| MCF_GPIO_PQSPAR_PQSPAR2(2);

/* set the frequency near 400 kHz, see MCF5213RM table for details */

MCF_I2C0_I2FDR = MCF_I2C_I2FDR_IC(0x32);
MCF_I2C0_I2CR = 0 | MCF_I2C_I2CR_IEN; /* start the module */

/* if bit busy set, send a stop condition to slave module */
if(MCF_I2C0_I2SR & MCF_I2C_I2SR_IBB) {

MCF_I2C0_I2CR = 0; /* clear control register */
MCF_I2C0_I2CR = MCF_I2C_I2CR_IEN | /* enable module */

MCF_I2C_I2CR_MSTA /* send a START condition*/
temp = MCF_I2C0_I2DR; /* dummy read */

MCF_I2C0_I2SR = 0; /* clear status register */
MCF_I2C0_I2CR = 0; /* clear control register */

/* enable the module again */
MCF_I2C0_I2CR = 0 | MCF_I2C_I2CR_IEN;

 }
}

Figure 8B. Code Snippet for Initializing the IIC Module in the V2 MCF5221x
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor12

ColdFire V1 and V2 Overview
voidI2CSendByte(unsigned char data, unsigned char address, unsigned char id)
{
 unsigned char Temp;
 IIC1C1 |= IIC1C1_TX;/* setting in Tx mode */
 /* generates start condition */
 IIC1C1 |= IIC1C1_MST;
 IIC1D = id; /* set device ID to write */
 /* wait until one byte transfer completion */
 while(!(IIC1S & IIC1S_IICIF));

/* clear the completion transfer flag */
 IIC1S &= ~IIC1S_IICIF;
 IIC1D = address; /* memory address */
 /* wait until one byte transfer completion */
 while(!(IIC1S & IIC1S_IICIF));
 /* clear the completion transfer flag */
 IIC1S &= ~IIC1S_IICIF;
 IIC1D = data; /* memory data */
 /* wait until one byte transfer completion */
 while(!(IIC1S & IIC1S_IICIF));
 /* clear the completion transfer flag */
 IIC1S &= ~IIC1S_IICIF;
 /* generates stop condition */
 IIC1C1 &= ~IIC1C1_MST;
}

Figure 9A. Code Snippet Showing How to Send a Byte Over the IIC Bus Using the MC51QEx Processor
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 13

ColdFire V1 and V2 Overview
Figure 9. Sending a Byte Over the IIC Bus

 void I2CSendByte(uint8 data, uint8 address, uint8 id)
{
 MCF_I2C0_I2CR |= MCF_I2C_I2CR_MTX; /* setting in Tx mode */

 /* generates start condition */

 MCF_I2C0_I2CR |= MCF_I2C_I2CR_MSTA;

 MCF_I2C0_I2DR = id; /* set decide ID to write */

 /* wait until one byte transfer completion */

 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 /* clear the completion transfer flag */

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF;

 MCF_I2C0_I2DR = address;/* memory address */

 /* wait until one byte transfer completion */

 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 /* clear the completion transfer flag */

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF;

 MCF_I2C0_I2DR = data;/* memory data */

 /* wait until one byte transfer completion */

 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 /* clear the completion transfer flag */

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF;
 /* generates stop condition */
 MCF_I2C0_I2CR &= ~MCF_I2C_I2CR_MSTA;
}

 Figure 9B. Code Snippet Showing How to Send a Byte Over the IIC Bus Using the MCF5221x Processor
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor14

ColdFire V1 and V2 Overview
Figure 10 shows the function used to receive a byte. First, it writes the address of the data to read and then
it receives the data from the slave device.

unsigned char I2CReceiveByte(unsigned char address, unsigned char id) {
unsigned char data;
IIC1C1 |= IIC1C1_TX; /* setting in Tx mode */
IIC1C1 |= IIC1C1_MST; /* send start condition */
IIC1D = id; /* device ID to write */

/*Wait until one byte transfer completion */
while(!(IIC1S & IIC1S_IICIF));
IIC1C1 &= ~IIC1S_IICIF; /* clear the completion transfer flag */
IIC1D = address; /* memory address */

/* wait until one byte transfer completion */
while(!(IIC1S & IIC1S_IICIF)); /* clear the completion transfer flag */
IIC1S &= ~IIC1S_IICIF;
IIC1C1 |= IIC1C1_RSTA; /* resend start */
IIC1D = id | 0X01; /* device id to read */
 /* wait until one byte transfer completion */
while(!(IIC1S & IIC1S_IICIF));
IIC1S &= ~IIC1S_IICIF;
IIC1C1 &= ~IIC1C1_TX; /* setting in Rx mode */
IIC1C1 |= IIC1C1_TXAK; /* send NO ACK */
data = IIC1D; /* dummy read */
/* wait until one byte transfer completion */
while(!(IIC1S & IIC1S_IICIF));
/* clear the completion transfer flag */
IIC1C1 &= ~IIC1S_IICIF;
data = IIC1D; /* read data received */
/* wait until one byte transfer completion */
while(!(IIC1S & IIC1S_IICIF));
IIC1S &= ~IIC1S_IICIF; /* clear the completion transfer flag */
IIC1C1 &= ~IIC1C1_MST; /* generates stop condition */
return data; /* send the received data */
}

Figure 10A. Code Snippet Showing How to Receive a Byte Over the IIC Bus Using the MC51QEx Processor
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 15

ColdFire V1 and V2 Overview
Figure 10. Receiving a Byte Over the IIC Bus

 uint8 I2CReceiveByte(uint8 address, uint8 id)
{
 uint8 data;
 MCF_I2C0_I2CR |= MCF_I2C_I2CR_MTX; /* setting in Tx mode */

 MCF_I2C0_I2CR |= MCF_I2C_I2CR_MSTA; /* send start condition */

 MCF_I2C0_I2DR = id; /* device ID to write */

 /* wait until one byte transfer completion */
 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF; /* clear the transfer flag */

 MCF_I2C0_I2DR = address; /* memory address */

 /* wait until one byte transfer completion */

 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF; /* clear the transfer flag */
 MCF_I2C0_I2CR |= MCF_I2C_I2CR_RSTA; /* resend start */

 MCF_I2C0_I2DR = id | 0x01; /* device id to read */

 /* wait until one byte transfer completion */
 while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

 MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF; /* clear the transfer flag */

 MCF_I2C0_I2CR &= ~MCF_I2C_I2CR_MTX; /* setting in Rx mode */

 MCF_I2C0_I2CR |= MCF_I2C_I2CR_TXAK; /* send NO ACK */

 data = MCF_I2C0_I2DR; /* dummy read */
/* wait until one byte transfer completion */
while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF; /* clear the transfer flag */

data = MCF_I2C0_I2DR;/* read data received */
/* wait until one byte transfer completion */
while(!(MCF_I2C0_I2SR & MCF_I2C_I2SR_IIF));

MCF_I2C0_I2SR &= ~MCF_I2C_I2SR_IIF; /* clear the transfer flag */
MCF_I2C0_I2CR &= ~MCF_I2C_I2CR_MSTA; /* generates stop condition */

return data; /* send the received data */

}

Figure 10B. Code Snippet Showing How to Receive a Byte Over the IIC Bus Using the MCF5221x Processor
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor16

ColdFire V1 and V2 Overview
2.4 Analog-to-Digital Converter (ADC)
Table 4 shows the main features of the ADC modules for the ColdFire V1 and V2.

The ADC in the ColdFIre V1 MC51QExx family can perform an analog-to-digital conversion on any of
the software selectable channels. In 12-bit and 10-bit mode, the selected channel voltage is converted by
a successive approximation algorithm into a 12-bit digital result. In 8-bit mode, the selected channel
voltage is converted by a successive approximation algorithm into a 9-bit digital result.

When the conversion is completed, the result is placed in the data registers (ADCRH and ADCRL). In
10-bit mode, the result is rounded to 10 bits and placed in the data registers (ADCRH and ADCRL). In
8-bit mode, the result is rounded to eight bits and placed in ADCRL. The conversion complete flag
(COCO) is then set and an interrupt is generated if the conversion complete interrupt has been enabled
(AIEN = 1). The ADC module can automatically compare the result of a conversion with the contents of
its compare registers. The compare function is enabled by setting the ACFE bit and operates in conjunction
with any of the conversion modes and configurations.

The MCF5221x ADC’s conversion process is initiated by a sync signal from one of two input pins
(SYNCx) or by writing 1 to a STARTn bit in the control register. Starting a single conversion actually
begins a sequence of conversions or a scan of up to eight single-ended or differential samples one at a time
in sequential scan mode.

Scan sequence is determined by defining eight sample slots in ADC listing (ADLST1/2) registers,
processed in order SAMPLE0–7 during sequential scan, or in order SAMPLE0–3 by converter A and in
order SAMPLE4–7 by converter B in parallel scan. SAMPLE slots may be disabled using the SDIS
register. The following pairs of analog inputs can be configured as a differential pair: AN0–1, AN2–3,
AN4–5, and AN6–7. When configured as a differential pair, a reference to either member of the differential
pair by a sample slot results in a differential measurement using that differential pair.

The ADC can be configured to perform a single scan and halt, perform a scan when triggered, or perform
the scan sequence repeatedly until manually stopped. The single scan (once mode) differs from the
triggered mode only in that SYNC input signals must be re-armed after each using a once mode scan, and
subsequent SYNC inputs are ignored until the SYNC input is re-armed. This arming can occur anytime
after the SYNC pulse occurs, even while the scan it initiated remains in process.

Optional interrupts can be generated at the end of a scan sequence. Interrupts are available to indicate the
scan ended, that a sample was out of range, or at several different zero crossing conditions. Out-of-range
is determined by the high and low limit registers.

Table 4. Features of the ADC Modules for the ColdFire V1 and V2

ADC Feature V1 V2

Resolution 12-bit 12-bit

Channels 24 8

Conversion time 2.5 µs 1.125 µs

Automatic compare function Y N

Internal temperature sensor Y N

Internal bandgap reference channel Y N
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 17

ColdFire V1 and V2 Overview
Figure 11 shows an example of the ADC usage for the ColdFire V1. The MCU_init disables the watchdog
timer and the STOP mode, and enables the background debug pin and the RESET pin.

The GPIO_init function initializes the GPIO Port E module to be able to display the quantized analog data
in the LED as a binary number.

The KBI_init configures the keyboard interrupts as an external interrupt to be triggered when one of the
push buttons connected to the pins are pressed. At that moment, the ADC initialized the sampling process.
The MCU waits until the ADC complete conversion flag has been set, acknowledging that a sample value
is ready to be read out from the ADC data register. Then the ADC conversion complete flag is cleared and
ADC is disabled, this occurs at the KBI_ISR function. At the ADC_ISR function, the data read is then
passed to the GPIO Port E data register to be displayed in the eight LED array located on the evaluation
board.

Operation in stop mode Y N

Fully functional from 3.6 V to 1.8 V Y N

Simultaneous sampling of two channels N Y

Single or continuous conversion Y Y

Optional interrupts on conversion complete, zero crossing (sign change), or
under/over low/high limit

N Y

Automatic compare with interrupt for less-than, or greater-than or equal-to,
programmable value.

Y N

Ability to sequentially scan and store up to 8 measurements N Y

Signed or unsigned result N Y

Input clock selectable from up to four sources Y N

Single ended or differential inputs for all input pins with support for an
arbitrary mix of input types

N Y

Table 4. Features of the ADC Modules for the ColdFire V1 and V2 (continued)

ADC Feature V1 V2
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor18

ColdFire V1 and V2 Overview
void main(void) {
MCU_Init(); /* Function that initializes the MCU */
KBI_configuration(); /*Function that initializes the KBI module*/
ADC_Init(); /*Function that initializes the ADC module*/
asm(move.w #2200, SR); /*Interrupts enable*/
while(1);

}
void MCU_Init(void) {
SOPT1 = 0x23; /* Watchdog disable. Stop mode enable.Background Pin enable.RESET pin enable */
SCGC1 = 0x10; /* Bus Clock to the ADC module is enable */
SCGC2 = 0x18; /* Bus Clock to the KBI and ACMP module is enable */

}
void GPIO_Init(void) {
PTEDD = 0xFF; /* Configure PTE port as outputs */
PTED = 0x00; /* Put 0's in PTE port */
}
void KBI_configuration(void) {
KBI2SC = 0x06; /* KBI interrupt request enabled. Detects edges only */
KBI2PE = 0xF0; /* PTD4, PTD5, PTD6 and PTD7 enabled as Keyboard interrupts */
KBI2ES = 0x00; /* Pins detects falling edge and low level (Pull-up) */

}
void ADC_Init (void) {
ADCSC1 = 0x00; /* Enable ADC interrupt */

/* Interrupt disable. One conversion and channel 0 active */
ADCSC2 = 0x00; /* Software trigger selected */
ADCCFG = 0x30; /* Input clock/2. Long Sample time configuration. 8-bit conversion */
APCTL1 = 0x00; /* ADC0 pin disable */

}
void interrupt VectorNumber_Vkeyboard KBI_ISR(void) {
 KBI2SC_KBACK = 1; /* Clear KBI interrupt flag */
 APCTL1_ADPC0 = 1; /* Select the channel for ADC input */
 ADCSC1_AIEN = 1;
}
void interrupt VectorNumber_Vadc ADC_ISR(void) {
 PTED = ADCRL; /* Move the acquired ADC value to PTE port */
}
}

Figure 11A. Code Snippet Showing How to Take a Sample from the V1 MC51QE ADC
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 19

ColdFire V1 and V2 Overview
Void main(void) {

ADC_Init();

EnableInterrupts;

for(;;) ;/* Infinite loop */

}

void ADC_Start(void) {

unsigned int i;

MCF_ADC_CTRL1 |= MCF_ADC_CTRL1_START0; /* request conversion*/

/* wait until result is ready for both converters */
while((MCF_ADC_ADSTAT & MCF_ADC_CTRL1_EOSIE0)== 0)

i = MCF_ADC_ADRSLT(0); /* read converter A and B */

MCF_ADC_ADSTAT = MCF_ADC_CTRL1_EOSIE0; /* clear ADC flag */

}

/* Setup Module
* It enables all channels. SO the order would be chan0-to chan7; */

void ADC_Init()
{

MCF_GPIO_PANPAR = ALL_ADC; /* all pins in ADC mode */

MCF_ADC_CTRL1 = MCF_ADC_CTRL1_SMODE(5); /*triggered parallel*/

/* ADC clock 5 MHz and both ADC convertions are at the same time */
MCF_ADC_CTRL2 = 0

| MCF_ADC_CTRL2_SIMULT
| MCF_ADC_CTRL2_DIV(2);

MCF_ADC_ADLST1 = 0 | MCF_ADC_ADLST1_SAMPLE0(0)
| MCF_ADC_ADLST1_SAMPLE1(1)
| MCF_ADC_ADLST1_SAMPLE2(2)
| MCF_ADC_ADLST1_SAMPLE3(3);

MCF_ADC_ADLST2 = 0 | MCF_ADC_ADLST2_SAMPLE4(4)
| MCF_ADC_ADLST2_SAMPLE5(5)
| MCF_ADC_ADLST2_SAMPLE6(6)
| MCF_ADC_ADLST2_SAMPLE7(7);

MCF_ADC_ADSDIS = ALL_ENABLED;
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor20

ColdFire V1 and V2 Overview
Figure 11. Taking a Sample from the ADC

2.5 Interrupt Controller
The ColdFire processor architecture defines a 3-bit interrupt priority mask field in the processor’s status
register (SR[I]). This field and the associated hardware support seven levels of interrupt requests with the
processor providing automatic nesting capabilities. The levels are defined in descending numeric order
with 7 > 6 ... > 1. Level 7 interrupts are treated as non-maskable, edge-sensitive requests. Levels 6–1 are
maskable, level-sensitive requests. The SR[I] field defines the processor’s current interrupt level. The
processor continuously compares the encoded IRQ level from CF1_INTC against SR[I]. Interrupt requests
are inhibited for all levels less than or equal to the current level, except the edge-sensitive Level 7 request,
which cannot be masked.

Exception processing for ColdFire processors is streamlined for performance and includes all actions from
the detection of the fault condition to the initiation of fetch for the first handler instruction. Exception
processing is comprised of four major steps.

1. The processor makes an internal copy of the status register (SR) and enters supervisor mode.
2. The processor determines the exception vector number.
3. The processor saves the current context by creating an exception stack frame on the system stack.
4. The processor calculates the address of the first instruction of the exception handler.

The ColdFire V1 MCF51QE interrupt controller includes:
• Memory-mapped off-platform slave module

— 64-byte space located at top end of memory: 0xFF_FFC0–0xFF_FFFF
— Programming model accessed via the peripheral bus
— Encoded interrupt level and vector sent directly to processor core

• Support of 30 peripheral I/O interrupt requests plus seven software (one per level) interrupt
requests

• Fixed association between interrupt request source and level plus priority
— 30 I/O requests assigned across seven available levels and nine priorities per level
— Exactly matches HCS08 interrupt request priorities

MCF_ADC_POWER = DEFAULT_DELAY;

/* wait until module is powered-up */
while(MCF_ADC_POWER & MCF_ADC_POWER_PSTS0);

/* wait until module is powered-up */
while(MCF_ADC_POWER & MCF_ADC_POWER_PSTS1);

}
__declspec(interrupt:0) void SW1Isr() {
/*clear the EPORT interrupt flag*/
MCF_EPORT_EPFR |= MCF_EPORT_EPFR_EPF5;

ADC_Start(); /* Acquired the ADC value */

}

Figure 11B. Code Snippet Showing How to Take a Sample from the V1 MCF5221x ADC
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 21

ColdFire V1 and V2 Overview
— Up to two requests can be remapped to the highest maskable level + priority
• Unique vector number for each interrupt source

— ColdFire vector number = 62 + HCS08 vector number
— ColdFire vector number = 64 + Interrupt source number (0, 1, 2,..., 29)
— Details on IRQ and vector assignments are device-specific

• Support for service routine interrupt acknowledge (software IACK) read cycles for improved
system performance

• Combinatorial path provides wake-up signal from wait and sleep modes

The general features of the ColdFire V2 MCF5221x interrupt controller include:
• 57 interrupt sources

— 50 fully-programmable interrupt sources
— 7 fixed-level interrupt sources

• Each of the 57 sources has a unique interrupt control register (ICRnx) to define the
software-assigned levels and priorities within the level

• Unique vector number for each interrupt source
• Ability to mask any individual interrupt source, plus global mask-all capability
• Supports hardware and software interrupt acknowledge cycles
• Wake-up signal from low-power stop modes

The 50 fully-programmable and seven fixed-level interrupt sources for the interrupt controller on the
MCF5221x manage the complete set of interrupt sources from all of the modules on the device.

Table 5 shows the MC51QEx and the MCF5221x GPIO interrupt controller module common
characteristics and features.

Table 5. MC51QEx/MCF5221x GPIO Interrupt Controller Module Common Features

Attribute ColdFire V1 MC51QE TPM ColdFire V2 MCF5221x GPT

Exception vector table 103, 4-byte entries, located at lower end
of memory at reset, relocatable with the
VBR

256, 4-byte entries, located at lower end
of memory at reset, relocatable with the
VBR

More on vectors 64 for CPU + 39 for device specific, reset
at lowest address

64 for CPU + 192 for device specific,
reset at lowest address

Exception stack frame 8-byte frame: F/V, SR, PC;
General-purpose registers (An, Dn) must
be saved/restored by the ISR

The first longword of the exception stack
frame, pointed to by SP, contains the
16-bit format/vector word (F/V) and
the 16-bit status register, and the second
long word contains the 32-bit program
counter address.

Interrupt levels 7= f(SR[I]) with automatic hardware
support for nesting

Same

Non-maskable IRQ support Yes, with Level 7 interrupts Same
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor22

ColdFire V1 and V2 Overview
Figure 12 and Figure 13 show how the interrupt request level works. In the example we activate two
programmable interrupt timers (PIT) to generate a periodical interrupt. The SW1 and SW2 buttons of the
M52211EVB are also configured.

Each of these interrupt sources have a different interrupt level. At the beginning of the program, PIT0 has
an interrupt level of 2 and a priority of 3 and the PIT1 has an interrupt level of 3 and a priority of 2. SW1
is connected to IRQ1 and SW2 to IRQ5, so they have interrupt levels of 1 and 5, respectively. The interrupt
service routines (ISR) of the PITs have a delay cycle inside of them, and they indicate when the ISR begins
and when it ends. The ISR of SW1 inverts the interrupt level and priority of the PITs, and the SW2 restores
the initial values of those values.

The program shows how a higher priority interrupt request is asserted even when a ISR of a lower priority
is running, and how the processor returns from the higher priority ISR to finish the lower priority ISR.
When the program begins, the PIT0’s ISR begins and if the PIT1 interrupt request is asserted, the PIT1’s
ISR will interrupt the PIT0’s ISR. This happens until you press the SW1 button, which swaps the interrupt
level of the PITs, then the PIT1’s ISR is interrupted by PIT0’s ISR.

The two external interrupts serve as configuration modifiers only. SW1 inverts the initial parameters of
interrupt level and priority between PIT0 and PIT1. SW2 restores the initial parameters of the program.
Both ISRs stop and restart the PITs to change the interrupt level. This is performed to ensure that the PITs
do not generate an interrupt request twice, after the interrupt level is changed.

Core-enforced IRQ sensitivity Level 7 is edge sensitive, else level
sensitive

Same

INTC vectoring Fixed priorities and vector assignments,
plus any two IRQs can be remapped as
the highest priority level 6 requests

Same

Software IACK Yes Yes

Exit instruction from ISR RTE RTE

Table 5. MC51QEx/MCF5221x GPIO Interrupt Controller Module Common Features (continued)

Attribute ColdFire V1 MC51QE TPM ColdFire V2 MCF5221x GPT
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 23

ColdFire V1 and V2 Overview
void main(void) {
MCU_Init(); /* Function that initializes the MCU */
KBI_configuration(); /* Function that initializes the KBI module */
EnableInterrupts; /* enable interrupts */
Timer3(); /* Init Timer 3 */
Timer2(); /* Init Timer 2 */
INTC_PL6P7 = 16; /* Remapped High priority Isr for Push button*/

 for(;;) {
 } /* loop forever */
}

void MCU_Init(void) {
SOPT1 = (SOPT1_STOPE_MASK | SOPT1_RSTPE_MASK |

SOPT1_BKGDPE_MASK); /* Watchdog disable. Stop Mode Enable. Background Pin enable.
RESET pin enable */
SCGC1 = (SCGC1_TPM3_MASK|SCGC1_TPM2_MASK);

/* Bus Clock to the TPM1 and TPM2 modules are enabled */
SCGC2 = SCGC2_KBI_MASK; /* Bus Clock to the KBI module is enabled */

}
void KBI_configuration(void) {
KBI2SC = (KBI1SC_KBIE_MASK|KBI1SC_KBACK_MASK;
/* KBI interrupt request enabled. Detects edges only */
KBI2PE = (KBI2PE_KBIPE4_MASK|KBI2PE_KBIPE5_MASK;

/* PTA2 and PTA3 pins enabled as Keyboard interrupts */
KBI2ES = 0x00; /* Pins detects rising edge and high level (Pull-down) */

}
}
void Timer3 (void) {
TPM3SC = (TPM3SC_CLKSA_MASK|TPM3SC_PS_MASK|

/* TPM source clock to preescaler input = Bus rate clock */
TPM3SC_TOIE_MASK);/*TPM clock sourc divided by 128 */

TPM3MOD = 2442;
TPM3C1SC = 0x50;
TPM3C1V = 0x0000;

}
void Timer2 (void) {
TPM2SC = (TPM2SC_CLKSA_MASK|TPM2SC_PS_MASK|

/*TPM source clock to prescaler input = Bus rate clock */
TPM2SC_TOIE_MASK); /* TPM clock source divided by 128 */
TPM2MOD = 1221;
TPM2C1SC = 0x50;
TPM2C1V = 0x0000;
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor24

ColdFire V1 and V2 Overview
void interrupt VectorNumber_Vtpm3ch TPM3_ISR(void) {
UINT16 delay;
UINT8 dummy;
for (delay = 0; delay < 1221; delay++) { }
PTED_PTED2 ^= 1;
dummy = TPM3C1V;
TPM3C1SC_CH1F; /* Clears timer flag */

TPM3C1SC_CH1F = 0;
}

void interrupt VectorNumber_Vtpm2ch1 TPM2_ISR(void) {
UINT16 delay3;
UINT8 dummy;
for (delay3 = 0; delay3 < 0xFF; delay3++) { }
PTED_PTED3 ^= 1;
dummy = TPM2C1V;
 TPM2C1SC_CH1F; /* Clears timer flag */
TPM2C1SC_CH1F = 0;

}

Figure 12. Code Snippet Showing How to Configure the Interrupt Controller, Configure the Timers, and
Adjust Interrupt Levels and Priorities
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 25

ColdFire V1 and V2 Overview
void main(void) {

MCU_Init(); /* Initializes the MCU*/
EnableInterrupts(); /* Enable Interrupts*/
IntConfig(PIT0_VECTOR,PIT0_INT_LVL,PIT0_INT_PRI ,PIT0Isr);
IntConfig(PIT1_VECTOR,PIT1_INT_LVL,PIT1_INT_PRI ,PIT1Isr);
PIT_Init(PIT0, PRESCALER, PIT0_MODULE);
PIT_Init(PIT1, PRESCALER, PIT1_MODULE);
while(1); // Idle

}

void MCU_Init(void) {
mcf5xxx_startup(); /*Stand Alone initialization*/

}

void EnableInterrupts(void) {
asm { move.w SR,D0; andi.l #0xF8FF,D0; move.w D0,SR; }
mcf5xxx_set_handler ((64 + 7), SW2Isr); /*set handler to IRQ7*/
mcf5xxx_set_handler ((64 + 5), SW1Isr); /*set handler to IRQ5*/

 }

void IntConfig(uint8 vector, uint8 level, uint8 priority, void (*handler) (void)) {

/*configures the interrupt level and priority for the vector*/
MCF_INTC0_ICR(vector)=(MCF_INTC_ICR_IP(priority)

|MCF_INTC_ICR_IL(level));

/*masks the interrupt vector to allow the interrupt request*/
if (vector < 32){

/*if the interrupt vector is smaller than 32 writes to IMRL*/
MCF_INTC0_IMRL &= ~(0x00000001<<vector);

}
else if (vector < 64){

/*if the interrupt vector is between 32 and 64 writes to IMRH*/
MCF_INTC0_IMRH &= ~(0x00000001<<vector-32);.

}

/*set the handler function of the interrupt*/
mcf5xxx_set_handler ((64 + vector), handler);
}
void PIT_Init(uint8 pit, uint8 prescaler, uint16 module) {
/*define preescaler*/
MCF_PIT_PCSR(pit) =(MCF_PIT_PCSR_PRE(prescaler)

 |MCF_PIT_PCSR_PIE
/*reset counter when write to PMR*/
|MCF_PIT_PCSR_OVW
/*reload module value when counter reaches 0*/
|MCF_PIT_PCSR_RLD
/*enable PIT*/
|MCF_PIT_PCSR_EN);
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor26

ColdFire V1 and V2 Overview
/*write module to PMR*/
MCF_PIT_PMR(pit) = MCF_PIT_PMR_PM(module);

}

***/
/*PITInterrupts*/
/* PITx = PIT0 or PIT1
/*Programmable Interrupt Timer x Interrupt Service
Routine *
* this function needs to be pointed on the vector.s file) */
**/
 __declspec(interrupt:0) void PITxIsr()
{

uint16 delay; /*iterator for first cycle*/
uint16 delay2; /*iterator for second cycle*/

/*clear PTCx*/
MCF_GPIO_CLRTC &= ~(MCF_GPIO_CLRTC_CLRTCx);

/*delay cycle*/
for (delay = 0; delay < 0xFFFF; delay++) {

for (delay2 = 0; delay2 < 0x0FF; delay2++) {
}

/ }

/*restarts the counter by writing to PMR*/
MCF_PITx_PMR = MCF_PIT_PMR_PM(PITx_MODULE);

/*clear PITx interrupt flag*/
MCF_PITx_PCSR |= MCF_PIT_PCSR_PIF;

/*set PTCx*/
MCF_GPIO_SETTC |= MCF_GPIO_SETTC_SETTCx;

}

Figure 13. Code Snippet Showing How to Configure the Interrupt Controller and SR to Receive Interrupt
Request from Peripheral Modules, PITInit: Configures the Programmable Interrupt Timers
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 27

ColdFire V1 and V2 Overview
void interrupt VectorNumber_Vkeyboard KBI_ISR(void){
/* Check PTA2 or PTA3 was pressed and store the value on button variable*/
button = (UINT8) (((PTDD)&0x30)>>4);
TPM3SC_TOIE = 0; //Clear timers flags
TPM2SC_TOIE = 0;
KBI2SC_KBACK = 1; /* Clear KBI flag */
switch (button) {
case (1):
PTED_PTED0 ^= 1 /* Turn PTC0 on */
INTC_PL6P6 = 24; /* set Level and priority for Timer 3*/
break;

case (2):
PTED_PTED1 ^= 1; /* Turn PTC1 on */
INTC_PL6P6 = 7; /* Return normal Level and priority*/
break;
}

}

Figure 14. Keyboard Isr (PTD4 or PTD5): Push Button Interrupt Service Routine (Push Button Located on
the EVBQE128 Starter Kit Configured by Software as External Interrupt)

__declspec(interrupt:0) void SWxIsr()
{

/*stops the PIT0, clears the PIF and resets the counter*/
MCF_PIT0_PCSR &= ~(MCF_PIT_PCSR_EN);

MCF_PIT0_PMR = MCF_PIT_PMR_PM(PIT0_MODULE);

/*stops the PIT1, clears the PIF and resets the counter*/
MCF_PIT1_PCSR &= ~(MCF_PIT_PCSR_EN);

MCF_PIT1_PMR = MCF_PIT_PMR_PM(PIT1_MODULE);

/*swaps the interrupt level and priority*/

 IntConfig(PIT0_VECTOR,PIT1_INT_LVL,PIT1_INT_PRI,PIT0Isr);

 IntConfig(PIT1_VECTOR,PIT0_INT_LVL,PIT0_INT_PRI,PIT1Isr);

/*clear the EPORT interrupt flag*/
MCF_EPORT_EPFR |= MCF_EPORT_EPFR_EPF1;

/*restarts the PIT0-1*/
MCF_PIT0_PCSR |= MCF_PIT_PCSR_EN;

MCF_PIT1_PCSR |= MCF_PIT_PCSR_EN;

}

Figure 15. SWxIsr (SW1 or SW2): SWx Push Button Interrupt Service Routine (Push Button Located on the
52211EVB Connected to IRQ5 and IRQ1 Pin, in the Edge Port Module)
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor28

Conclusion
The interrupt controller is easy to configure. The only detail that needs to be considered is the
configuration of the status register. Only two or three registers configure the interrupt requests of a specific
vector. It must have a record of the interrupt level and priority from all the interrupts used because they
can generate problems if they are entering ISRs without an order.

2.6 Benefits of Our Solution
With the addition of the low-end ColdFire V1 family to the 32-bit portfolio, the opportunity to migrate
from high-performance 8-bit microcontrollers to low/mid-performance 32-bit processors is possible. The
V1 product family enables the applications where performance, flexibility, and scalability are constraints,
and allows the possibility to access Freescale’s existing 32-bit portfolio.

It is important to consider a set of devices that provides a logical and natural migration path when
designing systems that trend to a higher integration and complexity. Freescale offers a set of devices that
targets this migration, enabling hardware designers to offer multiple configurations and performance
levels of their products with one hardware and board design. Embedded software engineers found the same
issues when developing software platforms for this type of scalable systems. Software re-investment and
design cycle time is drastically reduced because devices with peripheral and tool compatibility makes the
transition between low-end 32-bit and mid-end 32-bit devices fast and simple.

When switching between devices and architectures normally the software developer enters into a heavy
learning curve about software development, peripherals availability, software and hardware tools, and
architecture differences. By providing low-level drivers initialization and code examples; this document
reduces the effort of moving from a ColdFire V1 to a ColdFire V2 device.

The code snippets provided in this application note are intended help you initialize the common
peripherals to provide quicker migration between the ColdFire V1 and the ColdFire V2 processors. By
doing this, you should be able to keep the main application working independently from the device
selected. This document provides tips on migrating between this two architectures. From this information
and these examples, you can modify the code to suit your needs. From S08 to V1, from V1 to V2; step by
step, user applications can evolve among Freescale’s portfolio.

3 Conclusion
This document describes the similarities and differences between the low-end ColdFire V1 MC51QExx
and the V2 MCF5221 families. The V1 MC51QExx family is an ideal bridge for programmers who are
looking for an entry-point to the 32-bit architecture because it preserves the easy-to-use experience of 8-bit
architecture. The MCF5221x family of microcontrollers have all the benefits, performance, and set of
peripherals used in mid-end 32-bit processors. This document shows how to migrate existing C code for
the ColdFire V1 MC51QExx peripherals to the V2 MCF5221xx family processors.

If you have questions about your application, contact our support team.
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 29

Hardware and Software Used to Test the Code
4 Hardware and Software Used to Test the Code
Find the newest software updates and configuration files for the MCF52211 on the Freescale
Semiconductor web page: www.freescale.com.

• This application note considers the MC51QExx family and MCF5221x family devices.
• For more information on peripheral modules, refer to MCF5221x and MC51QExxColdFire

Integrated Microcontroller Reference Manual, rev 1 at www.freescale.com
• All code examples for the V2 ColdFire board was developed in the CodeWarrior™ tool for

ColdFire V6.4. The V1 code examples were developed on CodeWarrior for Microcontrollers V6.0.
• All firmware was tested with the EVBQE128 Starter Kit and the M52211EVB, rev A.

Download the source files from www.freescale.com.
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor30

THIS PAGE IS INTENTIONALLY BLANK
Migrating Code Between ColdFire V1 and V2, Rev. 0, Draft C

Freescale Semiconductor 31

Document Number: AN3464
Rev. 0, Draft C
07/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Abstract
	1.2 Objective

	2 ColdFire V1 and V2 Overview
	2.1 General-Purpose Input/Outputs
	2.2 Timers
	2.3 Inter-Integrated Circuit (IIC)
	2.4 Analog-to-Digital Converter (ADC)
	2.5 Interrupt Controller
	2.6 Benefits of Our Solution

	3 Conclusion
	4 Hardware and Software Used to Test the Code

