
Freescale Semiconductor
Application Note

Document Number: AN3477
Rev. 0, 06/2007

Contents

Introduction . 1
Typical RS08 MCU Schedules . 2
Restrictions on Traditional RS08 Schedulers 3
Making Interrupt Priorities Variable 3

4.1 Data Structure . 4
4.2 Scheduling Operation . 4
4.3 Changing Interrupts Priorities in Program 5

ppendix A
he Scheduler Code . 6

Using RS08 Microcontrollers
with Variable Interrupt Priorities
Program Association of RS08 Microcontrollers
by: Kenny Ji

Asia and Pacific Operation Microcontroller Division
1 Introduction
Freescale Semiconductor’s RS08 family of
microcontrollers (MCUs) uses a reduced version of the
HCS08 central processor unit (CPU). The RS08 MCUs
are targeted for small embedded applications.

The interrupt mechanism in RS08 MCUs does not
interrupt the normal flow of instructions; instead, it
wakes up the RS08 MCUs from wait and stop modes. In
run mode, interrupt events must be polled by the CPU.

This application note describes a shortcut for using
variable priority interrupts in RS08 MCUs.

1
2
3
4

A
T

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Typical RS08 MCU Schedules
2 Typical RS08 MCU Schedules
Because an RS08 does not implement an HCS08 style interrupt handler, interrupts must be managed in
software by checking if interrupts are present. A polling mode must be used in an RS08 MCUs’ core. In
run mode, the main loop checks the system interrupt pending (SIP1) register. When an interrupt is detected,
the corresponding bit in SIP1 is set, by which the scheduler can dispatch its interrupt service routine (ISR).
In wait and stop mode, the main loop is activated when an enabled interrupt is detected. Immediately after
wakeup, the main loop checks the SIP1 register for the interrupt detected and then dispatches its ISR.

As shown in Figure 1, point A shows that an interrupt is detected in run mode. Then, the corresponding
ISR is launched. After executing the ISR at B, the program returns to the beginning of main loop at point
C. When the scheduler has completed all tasks, it enters wait or stop mode for saving power at point D.
When an interrupt is activated in wait or stop mode, the scheduler wakes up. After the interrupt source in
SIP1 is checked, the ISR is dispatched at point E. After the ISR executes at point F, the program returns to
the beginning of the main loop at point G.

Figure 1. RS08 Schedule Work Flow

After ISR execution, the program returns to the beginning of the main loop because the ISR being executed
must be the highest priority one among all the detected interrupts. In this case, the high priority interrupt
is detected prior to low priority interrupt. Therefore, the rule of RS08 scheduler is:

• Sort all available interrupts in reverse. The interrupt with the highest priority is detected first.
• Add a branch instruction at the end of interrupt service routine. The branch brings the program to

the beginning of the scheduler.

Example 1 shows a typical schedule code in RS08 MCUs. There are five interrupts under software control.
When an interrupt is detected in the main loop idle, the schedule executes the corresponding interrupt
service routine (ISR). The polling order is in MTIM, ACMP, KBI, RTI, and LVD. Any ISR associated with
low priority must be executed after high priority ISRs are completed. For example, RTI ISR is executed
after MTIM, ACMP, and KBI ISRs are completed. If an ACMP interrupt occurs right after KBI ISR is

Running Wait/Stop ISR

Background

ISR

Time Direction

A. Interrupt detected in run mode

B. Executing ISR

C. Return To The Beginning Of Main Loop

E. Interrupt detected in wait or stop modes

D. Go to Wait or Stop

F. Executing ISR

G. Return To The Beginning Of Main Loop

Running Wait/Stop ISRRunning Wait/Stop ISR

Background

ISR

Time DirectionTime Direction

A. Interrupt detected in run mode

B. Executing ISR

C. Return To The Beginning Of Main Loop

E. Interrupt detected in wait or stop modes

D. Go to Wait or Stop

F. Executing ISR

G. Return To The Beginning Of Main Loop
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor2

Restrictions on Traditional RS08 Schedulers
completed, the program continues executing ACMP ISR instead of RTI ISR. The RTI interrupt is pended
until the ACMP ISR returns and no other higher priority interrupt occurs.

Example 1. RS08 Typical Schedule

_Startup:
MOV #HIGH_6_13(SIP1), PAGESEL

; Polled interrupt code
idle: wait

BRSET SIP1_MTIM, MAP_ADDR_6(SIP1), mtim_ISR
BRSET SIP1_ACMP, MAP_ADDR_6(SIP1), acmp_ISR
BRSET SIP1_KBI, MAP_ADDR_6(SIP1), kbi_ISR
BRSET SIP1_RTI, MAP_ADDR_6(SIP1), rti_ISR
BRSET SIP1_LVD, MAP_ADDR_6(SIP1), lvd_ISR

; feed watchdog
feed_watchdog

; check other interrupts
BRA idle

mtim_ISR: <code>
BRA idle

acmp_ISR: <code>
BRA idle

kbi_ISR: <code>
BRA idle

rti_ISR: <code>
BRA idle

lvd_ISR: <code>
BRA idle

3 Restrictions on Traditional RS08 Schedulers
After the pending is sorted, you cannot change the polling order. In some applications, you may want to
change the order of polling; the traditional RS08 scheduler can restrict the user program. In Example 1, if
polling to KBI interrupts occurs before that of RTI, RTI ISR cannot be processed before the KBI ISR is
completed.

4 Making Interrupt Priorities Variable
In this section, an advanced scheduler is introduced to deal with the restriction described in Section 3,
“Restrictions on Traditional RS08 Schedulers”. You can schedule the program easily with a simple
scheduler and a set of macros.
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor 3

Making Interrupt Priorities Variable
4.1 Data Structure
The simple scheduler uses a small data array as a priority table in RAM. There are three bytes in each cell.
The first byte is used for interrupt masks. The latter two are used to store ISR high and low addresses,
respectively. The high priority ISRs are allocated in low address, while the low ones are allocated in high
address.

Figure 2. Priority Table Association

Figure 2 shows that the mask is the bit that indicates the pending interrupt in SIP1 register. In 9RS08KA2,
the MTIM pending interrupt indicator is the bit 2 in SIP1. Then, 0x04 must be put in the mask byte before
entering normal schedule. The high ISR stands for the high 6-bit address of the corresponding ISR, while
the low ISR stands for the low 8-bit address. After a certain interrupt is detected, the schedule executes the
associated ISR, whose address is fetched from these two bytes.

The number of priorities used is named MaxISR, which is also the maximum index of priority table.

4.2 Scheduling Operation
Initialize the priority table before entering normal operation. Immediately after initialization, the scheduler
enters a loop in which it executes every ISR whose interrupt is detected. This behavior is similar to that of
a traditional RS08 scheduler. The traditional scheduler uses fixed instructions to detect the interrupt and
jumps to a fixed address in opcode. However, the scheduler detects the interrupt with mask and executes
its ISR with a routine address stored in RAM. This significant difference makes the scheduler flexible
enough to meet a variable environment. You can change the priority by changing masks and addresses
stored in priority table in RAM. Figure 3 shows a typical work flow of the scheduler.

Mask1st Priority

14-bit ISR AddressPriority Mask

High ISR Addr Low ISR Addr

Mask High ISR Addr Low ISR Addr

Mask High ISR Addr Low ISR Addr

Mask High ISR Addr Low ISR Addr

Mask High ISR Addr Low ISR Addr

MAX ISR

Nth Priority

2nd Priority

Priority Table

MaskMask1st Priority

14-bit ISR AddressPriority Mask

High ISR AddrHigh ISR Addr Low ISR AddrLow ISR Addr

MaskMask High ISR AddrHigh ISR Addr Low ISR AddrLow ISR Addr

MaskMask High ISR AddrHigh ISR Addr Low ISR AddrLow ISR Addr

MaskMask High ISR AddrHigh ISR Addr Low ISR AddrLow ISR Addr

MaskMask High ISR AddrHigh ISR Addr Low ISR AddrLow ISR Addr

MAX ISR

Nth Priority

2nd Priority

Priority Table
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor4

Making Interrupt Priorities Variable
Figure 3. Scheduler Operation

4.3 Changing Interrupts Priorities in Program
As mentioned in the previous section, the scheduler uses RAM instead of fixed instructions. You can
change interrupt priorities in the program. A macro, INT_PLUG, simplifies the code, so you can change
the interrupt priorities conveniently. Table 1 shows the definition of INT_PLUG:

Table 1. Int_Plug Definition

Int_Plug MACRO
 MOV #\1,PriorityTable + 3 * \3 + 0
 MOV #HIGH(\2), PriorityTable + 3 * \3 + 1
 MOV #LOW(\2), PriorityTable + 3 * \3 + 2
 ENDM

There are three parameters in this macro. The first indicates the interrupt mask used in SIP1. The second
stands for the 14-bit address of the ISR. The third shows the new priority of this interrupt. The new priority
must be between 0 to MaxISR −1.

For example, LVD and RTI’s ISR are the first and second priority interrupts as shown below.

Example 2. Initialize Interrupt Priority

Int_Plug mSIP1_LVD, lvd_ISR, 0 ; plug the 1st interrupt
Int_Plug mSIP1_RTI, rti_ISR, 1 ; plug the 2nd interrupt

You can write the following code to swap their priorities:

Example 3. Change Interrupt Priority

Int_Plug mSIP1_LVD, lvd_ISR, 1 ; plug the 1st interrupt
Int_Plug mSIP1_RTI, rti_ISR, 0 ; plug the 2nd interrupt

0x01 LVD ISR Address

0x02 RTI ISR Address

0x10 KBI ISR Address

0x08 ACMP ISR Address

0x04 MTIM ISR Address

SIP = 0x18

Priority Table

Scheduler

KBI_ISR:
<code>
...
BRA schedule

Executing KBI ISR

Detecting Interrupt

0x010x01 LVD ISR Address

0x020x02 RTI ISR Address

0x100x10 KBI ISR Address

0x080x08 ACMP ISR Address

0x040x04 MTIM ISR Address

SIP = 0x18

Priority Table

Scheduler

KBI_ISR:
<code>
...
BRA schedule

Executing KBI ISR

Detecting Interrupt
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor 5

Making Interrupt Priorities Variable
Then, the RTI interrupt occurs prior to the LVD from the next schedule.

NOTE
Whatever priorities are set, make sure the write operation does not exceed
the priority table. Otherwise, there might be a fatal error leading to reset.

Appendix A
The Scheduler Code
The code is implemented in 9RS08KA2 with five interrupts available.

Table 2. The List of Scheduler Code

;***
;* This stationary serves as the framework for a user application. *
;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HC08" program *
;* directory. *
;***

; Include derivative-specific definitions
 INCLUDE 'derivative.inc'
;
; export symbols
;
 XDEF _Startup
 ABSENTRY _Startup

;***
;* The macros defined below are used by the scheduler
;***

; MaxISR indicating the maximum number of interrupts or ISRs
MaxISR equ 5

; Int_Plug plugs a special interrupt to a certain interrupt priority
Int_Plug MACRO
 MOV #\1,PriorityTable + 3 * \3 + 0
 MOV #HIGH(\2), PriorityTable + 3 * \3 + 1
 MOV #LOW(\2), PriorityTable + 3 * \3 + 2
 ENDM

;
; variable/data section
;
 ORG RAMStart ; Insert your data definition here
ExampleVar: DS.B 1

;***
; Priority Table includes interrupt priority and subroutine address
; every 3 bytes includes one set of information, the format shows below
;
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor6

Making Interrupt Priorities Variable
; byte #0 : priority
; byte #1 : high 6-bit address of ISR
; byte #2 : low 8-bit address of ISR
;
;***

PriorityTable:
 DS 3 * MaxISR

;
; code section
;
 ORG ROMStart

; Variable Priority Interrupt System

_Startup:
 MOV #HIGH_6_13(SIP1), PAGESEL

; Interrupt Priority Initialization

PriorityTable_Init:

 LDX #PriorityTable ;

 Int_Plug mSIP1_LVD, lvd_ISR, 0 ; plug the 1st interrupt
 Int_Plug mSIP1_RTI, rti_ISR, 1 ; plug the 2nd interrupt
 Int_Plug mSIP1_KBI, kbi_ISR, 2 ; plug the 3rd interrupt
 Int_Plug mSIP1_ACMP,acmp_ISR, 3 ; plug the 4th interrup
 Int_Plug mSIP1_MTIM,mtim_ISR, 4 ; plug the 5th interrupt

mainLoop:
 feed_watchdog

 LDA MAP_ADDR_6(SIP1) ; SIP1 -> A

 BEQ mainLoop ;

 LDX #PriorityTable

Next:
 LDA ,X ; (bitmask) -> X

 AND MAP_ADDR_6(SIP1) ; bitmask & SIP1 -> A

 BNE Dispatch ; goto dispatch

 LDA #3 ; 3 -> A , 2 cycle

 ADD X ; X + 3 -> A , 3 cycle

 TAX ; X + 3 -> X , 2 cycle

 BRA Next ; next loop

 BRA mainLoop ; it can not be reached normally

Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor 7

Dispatch:

 INCX ; X++

 LDA ,X ; High address -> A

 SHA ; High address -> SPCs

 INCX ; X++

 LDA ,X ; Low address -> A

 SLA ; Low address -> SPC

 RTS ; goto subroutine

 BRA mainLoop ; it can not be reached normally

mtim_ISR:
 BRA mainLoop

acmp_ISR:
 BRA mainLoop

kbi_ISR:
 BRA mainLoop

rti_ISR:
 BRA mainLoop

lvd_ISR:
 BRA mainLoop

;**
;* Startup Vector *
;**
 ORG 0x3FFD

 JMP _Startup ; Reset

THIS PAGE IS INTENTIONALLY BLANK
Using RS08 Microcontrollers with Variable Interrupt Priorities, Rev. 0

Freescale Semiconductor 9

Document Number: AN3477
Rev. 0
06/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Typical RS08 MCU Schedules
	3 Restrictions on Traditional RS08 Schedulers
	4 Making Interrupt Priorities Variable
	4.1 Data Structure
	4.2 Scheduling Operation
	4.3 Changing Interrupts Priorities in Program

