
Freescale Semiconductor
Application Note

Document Number: AN3564
Rev. 1, 03/2011

Contents

Introduction . 1
1.1 Constraints . 2
USB Module Overview . 2
Stack Structure . 2

3.1 Main program structure . 2
Customize Application . 6

4.1 Declaration of endpoints . 6
4.2 Sending and receiving data 9
USB Application Start-up. 10
USB to Communication Peripherals Bridge (SPI, IIC,...)10

6.1 Application description. 10
6.2 Application configuration . 10
6.3 Bridge Protocol . 11
6.4 How the stack is used . 13

Customize the USB Application
Using the MC9S08JM
In-depth Understanding of the Freescale USB Stack for
MC9S08JM Devices
by: Derek Liu, José Ruiz, Eduardo Viramontes

China system and applications team and RTAC Americas
1 Introduction
USB Stack

The MC9S08JM devices are members of the Freescale
FlexisTM series of microcontrollers. The Flexis series
includes 8-bit and 32-bit microcontrollers that share
pin-to-pin compatibility, one development tool, and
same peripherals. Flexis develops a co nnection point on
the Freescale Controller Continuum where 8-bit and
32-bit compatibility becomes reality.

The 8-bit MC9S08JM series MCUs are full-speed USB
2.0 devices with on-chip transceiver. They provide
best-in-class USB module performance, system
integration, and software support. The USB module on
the MC9S08JM family MCU has seven endpoints and
256 bytes RAM.

USB-enabled devices require software to allow
communication transactions between a device and host.
Although the USB module incorporates several parts of
the USB protocol like physical signaling and several data

1

2
3

4

5
6

© Freescale Semiconductor, Inc., 2007, 2011. All rights reserved.

USB Module Overview
filters, software needs to control these layers. This is a USB stack. It takes care of transactions like USB
module configuration, USB enumeration, transaction type configuration, handling endpoints, and sending
and receiving data. The stack allows the user code simple operation after configuration has been done,
allowing for faster application development.

The following document describes the software structure of the Freescale USB stack for MC9S08JM
devices, explains how to configure it, and guides the user in quickly developing USB applications. To get
the most out of this document, you should have a basic understanding of the USB protocol.

1.1 Constraints
This document and the stack software cover the basics of transfering information with the MC9S08JM
USB module. No information on higher level transfers like bulk, interrupt, or isochronous transfers +
covered other than endpoint configuration.

2 USB Module Overview
JM60/32/16/8 devices have seven endpoints that can be used to build seven communication pipes between
the USB host and the device.

Endpoint 0 is bidirectional (IN and OUT), and it is mainly used for control transfer. Endpoint 0 is required
for all USB devices.

Endpoints 1 to 6 are unidirectional. They can only be configured to do IN or OUT direction
communication at a given time.

Endpoints 5 and 6 are double-buffered, which can also be called a ping-pong buffered. One buffer can be
operated by the MCU, while the other is doing communication with host, controlled by the serial interface
engine (SIE). With this kind of endpoint, the communication efficiency is improved because the MCU
waiting time is shortened.

The types of communnication transfers supported by the module are: control, bulk, isochronous, and
interrupt transfers.

For an in-depth description of the USB module, consult application note titled USB Device Development
with the MC9S08JM60 (Document AN3560),USB device development with JM60/16.

3 Stack Structure

3.1 Main program structure
This section describes the software structure with flow diagrams.
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor2

Stack Structure
3.1.1 System initialization

This code initializes the USB module so it is ready to connect to a USB host. The initialized components
are:

• Bus clock (set to 24 MHz)

• Pull-up resistor

• Voltage regulator

• Endpoints

Figure 3-1. Initialization routine

The firmware sets the RESET bit in the USBCTL0 register to reset the USB module and resets all registers
to their default values.

The firmware finishes the initialization of USB RAM, mainly buffer descriptor (BD) registers, especially
for the endpoint 0. The BD register for endpoint 0 OUT is set. The EPAD register is set to point the
endpoint buffer in USB RAM. The BC register is set to 8 for receiving the data packet with length of 8.
The status and control register is set for receiving DATA0 packet (DTS =1, OWN = 1, DATA0/1 = 0).

Endpoint 0 is enabled, and the USB module is configured to enable the pull-up resistor, regulator, and PHY
(Physical) according to the system hardware design.

The USB module and the USB interrupt are enabled. The USB device state is set to ATTACHED. If the
USB is self-powered, the USB device state should be set to POWERED. The firmware can change to
ATTACHED after detecting the USB device has been attached to the bus.
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 3

Stack Structure
3.1.2 Main loop

The main loop calls the initialization function and then polls the USB stack for status changes. In this stage,
you can monitor a reception flag to know when the reception buffer has been filled.

Figure 3-2. Main loop

3.1.3 USB interrupt subroutine

The following flow chart describes the USB interrupt subroutine. The USB ISR (interrup subroutine)
manages USB events and some of the status changes (the other ones are managed by the USB status check
in the main loop). The USB interrupt flags are checked one by one. If one interrupt flag is set and it is
enabled, the ISR jumps to the associated function.

Start

System initialization

USB status check

Other tasks

Main Loop
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor4

Stack Structure
Figure 3-3. USB interrupt subroutine

USB ISR Entry

Resume from
STOP3? Clear LPRESF bit

Resume interrupt
flag = 1 ?

Call
USB_WakeFrom_Suspend

(MCU in work mode)

Reset interrupt
flag = 1?

Call the
USB_Bus_Reset_Handler

routine

SOF frame
interrupt flag = 1?

Call USB_SOF_Handler
routine

STALL interrupt
flag = 1?

Call USB_Stall_Handler
routine

Error interrupt
flag = 1?

Call USB_Error_Handler
routine

Sleep interrupt
flag = 1?

Clear Sleep flag
And enter into suspend mode

TOKDNEF
interrupt flag = 1?

Call USB_CtrlEP_Handler
routine

Resume is
Enabled?

Reset interupt
 is Enabled?

SOF interrupt
is Enabled?

STALL interrrupt
 is Enabled?

Error interrupt
 is Enabled?

Suspend mode
 is Enabled?

Transaction
 is Enabled?

Return

N

Y Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N N

N

N

N

N

N

N

Y

Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 5

Customize Application
4 Customize Application
The following section describes what you need to do to get your USB application running.

4.1 Declaration of endpoints
This is the critical step in customizing your application. When you declare an endpoint, you define if it is
IN or OUT, the transfer types it supports (isochronous, interrupts, bulk), what endpoints work in what way,
how much data each endpoint holds, etc.

4.1.1 USB descriptors

All USB devices have a hierarchy of descriptors that describe the device to the host with the following type
of information:

• What the device is

• Who made it

• What version of USB it supports

• How many ways can it be configured

• The number of endpoints and their types etc.

The most common USB descriptors are:

• Device descriptor

• Configuration descriptor

• String descriptor

• Endpoint descriptor

• Interface descriptor

Each one of these provides a small description of the behavior of the device.

The descriptor entries are in file Usb_Description.c.

To customize the device, all these descriptors must be changed according to the new application.

See the Usb_Description.c file that shows the purpose of each table entry.

4.1.2 Pipes

USB communication is based on pipes (logical channels). Pipes are connections started by the HOST to a
logical entity on the device named endpoint.

Each pipe (the connection to the endpoint) can be OUT (from Host to Device) or IN (from Device to Host).
IN and OUT transactions are always from the point of view of the host, so OUT is always a data transfer
from host to device and IN is always a data transfer from device to host.
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor6

Customize Application
4.1.3 USB memory access

The USB RAM memory has a 256-bytes bank shared with the USB SIE. For more information, check the
application note titled USB Device Development with the MC9S08JM60 (document AN3560). This bank
starts at address 0x1860. That is, address 0x1860 (for the core) is exactly 0x00 address for the SIE. This
shared memory holds all the endpoints information. The endpoint configuration process involves writing
all the endpoints data for your application to this memory space.

The access to this shared memory is managed by semaphores. This means that the access to the USB
buffers is fully controlled. To coordinate the USB buffers, a user buffer (outside shared memory) for each
endpoint must be implemented to prevent illegal access to this locations during SIE operation.

To efficiently manage USB endpoint communications, the USB module implements a buffer descriptor
table (BDT). This BDT provide status and control information for each active endpoint.

The first 32 entries in the USB RAM contain the BDT values of all endpoints or reserved. The BDT table
contains the size of the next transaction (IN or OUT), the offset of the endpoint buffer in the USB RAM,
and the synchronization bit (Data0 or Data1). The BDT entries in the stack code are C language structures
and access to BDT is through these structures.

The SIE can only access the shared RAM in 16-byte mode. Each endpoint buffer must be 16-byte aligned
even if the buffer size is only 8 bytes. For example, the first two buffers are regularly for the Endpoint 0
(EP0) IN and OUT and the first 32 bytes are for the BDT table, so EP0 IN starts in 0x20 (SIE) or 0x1880
(Core). EP0 OUT starts at 0x30 (SIE) or 0x1890 (Core). The same principle applies for each user endpoint.
If EP1 is 8 or 16 bytes length, its buffer starts at 0x40 (SIE) or 0x18A0 (core) and EP2 starts at 0x50 (SIE)
or 0x18B0 (core).

The base address declaration of the endpoints’ buffers must be right shifted two times and stored in the
BDT offset register called EPx_Set.Addr (where x is the number of endpoint).

For example, the EP1 buffer starts at 0x40 of the SIE (0x18A0 Core).

1. First, declare the Endpoint buffers
/* User Buffer for Enpoint 1 (User space) */
byte EP1_Buffer[EP_MAX_SIZE];
/* Endpoint 1 buffer (Shared space) */
byte EP1_BDT_Buffer[EP_MAX_SIZE] @0x18A0;

2. Next, Initialize the Base address in the BDT structure
SIE address = EP1_Set.Addr = (0x40) >>2 = 0x10
/* Size of next transaction (this field is updated in each transaction)*/
EP1_Set.Cnt = 0x00;
/* Base address of Endpoint buffer */
EP1_Set.Addr = 0x10;
/* Semaphores for buffer access and sync signals */

 EP1_Set.Stat._byte = _SIE|_DATA0|_DTS;

4.1.4 Enabling endpoints

To enable each endpoint, write the direction and handshake configuration.
EPCTLx= EP_IN|HSHK_EN; in case of IN Endpoint and handshake enabled
EPCTLx= EP_OUT|HSHK_EN; in case of OUT Endpoint and handshake enabled
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 7

Customize Application
4.1.5 Enumeration process

The enumeration process is the set of operations that occur immediately after the host has detected a device
has been connected to the USB bus and has (by hardware) determined the communication speed.
Enumeration consists in the host asking the device (the MC9S08JM in this case) for its configuration and
assigning a specific address. Configuration from the device point of view is to send the host information
on all endpoints, buffer sizes, and types of tranfers (interrupt, bulk, and so on.). This enables the host to
communicate with the device in an expected manner. All communications in this stage occur through
endpoint 0, also known as the control endpoint.

Stack code is prepared to manage the enumeration process so that if the endpoint has been properly
configured, stack code takes care of the complete process. This uses no more code than calling the
initialization routine Initialize_USBModule() and polling the Check_USBBus_Status() in the infinite loop
of the main program to assure proper refreshing of the USB communications status.

The USB communication status in the stack follows a state machine that runs from first detection of
physical connection to a configured state in which the device can be used. The following image describes
this state machine.

Figure 4-4. USB Communication state machine

The function Check_USBBus_Status() with interrupt driven events refresh the status as shown in the
image. This means the USB device can be used when it is in the CONFIGURED state. Values for the status
are refreshed in the variable Usb_Device_State.

POWERED

ATTACHED

DEFAULT

ADDRESS
PENDING

CONFIGURED

SUSPEND

ADDRESSED

Connect to USB
bus

Receive reset
signal

Set
AddressSet Address

Finished

Set
Configuration

Suspend

Resume

System
start

Disconnected USB
bus
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor8

Customize Application
4.2 Sending and receiving data
After endpoints have been properly configured, send and receive functions can be used to communicate
with the host device. Check the status of the communications before calling any code to know if the USB
module has been enumerated by the host. As mentioned earlier, the Usb_Device_State variable holds the
current state of USB communications. Check_USBBus_Status() and others called by interrupts to update
the status. Data should only be sent when Usb_Device_State holds the value CONFIGURED because this
means the USB host has recognized the USB device configuration.

4.2.1 How to send data

Only endpoints configured as IN are capable of sending data (everything is named from the host side, so
an IN endpoint sends data into the host). The way the USB stack sends data is by writing data into the
endpoint buffer, defining the number of datum being sent, and granting the serial interface engine control
of that particular endpoint buffer. Next time it receives an IN token, it sends the data and generates an
interrupt when the transaction is finished. This is summarized in the following way:

• Write data to the endpoint buffer being used: EPx_Buffer[n] (where x is the endpoint number and
n is the array size).

• Call the IN endpoint API function: void EndPoint_IN(UINT8 u8Endp,UINT8 u8EPSize). The
arguments are: u8Endp is the endpoint number, the file USB_User_API.h holds the definitions for
these endpoint numbers, and u8EPSize is the number of bytes sent.

— Use the following macros to send in the u8Endp argument:

– EP0 for endpoint 0

– EP1 for endpoint 1

– EP2 for endpoint 2

– EP3 for endpoint 3

– EP4 for endpoint 4

This process works on any endpoint, one to four, that has been configured as an IN endpoint.

4.2.2 How to read received data

The USB stack has been written to use interrupts. When an endpoint has been configured as an OUT
endpoint and data is sent to it, an interrupt is generated and the stack refreshes a flag that tells the user API
there is data ready in the endpoint. The function CheckEndPointOUT(UINT8 u8Endp) returns a 1 when
there is data in the endpoint and 0 if there is no data available. As before, u8Endp is the endpoint number
and the definitions in USB_User_API.h should be used.

This process works on any endpoint, one to four, that has been configured as OUT endpoint.
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 9

USB Application Start-up
5 USB Application Start-up
1. Configure the endpoints.

a) Write the BDT table for each endpoint needed.

b) Determine the transaction type.

c) Determine your vendor and product IDs.

d) Write the endpoint descriptors in Usb_description.c. For more information on endpoint
descriptors, consult the USB Standard revision 2.0 on www.usb.org.

2. Check Usb_Device_State for the CONFIGURED state.

3. If USB has been enumerated (is configured), start checking OUT endpoints for data or sending data
through IN endpoints.

6 USB to Communication Peripherals Bridge (SPI, IIC,
and SCI)

6.1 Application description
A communications bridge is an application that takes input from one communications port and sends it
through another. In this case, a bridge is used to connect data from the USB to one of three selected
peripherals available in the MC9S08JM:

• Serial peripheral interface (SPI),

• Inter-integrated circuit communication (IIC)

• Serial communications interface (SCI).

To add flexibility to the application, a protocol has been defined to allow configuration of the selected
peripherals. To simplify this configuration capability, only the most important parts of the MC9S08JM
peripherals are available (for example, the configuration options for the SCI module where selected to act
like a Windows® COM port). All three modules are initialy configured to specific values so that, if
required, data can be sent through the bridges without any configuration.

A Windows GUI connected through Windows WinUSB drivers provides the user with the ability of
configurating the MC9S08JM peripherals and sending and receiving data through the bridges.

6.2 Application configuration
The USB module has been configured to work as a vendor specific device. The WinUSB drivers use a
specific vendor ID with which the PC drivers are able to communicate. This configuration is written in the
Usb_Descriptor.c file. Four endpoints are used (besides Endpoint 0, USB protocol already required this).
All endpoints are bulk transfer based; two are 16-bytes long and two are 32-bytes long. Endpoint 1 is an
OUT endpoint. Commands from the host are sent to the MC9S08JM through this pipe. Endpoint 2 is an
IN endpoint. Status replies to commands are sent to the host from this endpoint. Endpoints 3 and 4 are the
32 byte data pipes. Endpoint 3 receives data from the host and sends it to the configured peripheral.
Endpoint 4 takes data from the peripherals and sends it to the host.
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor10

http://www.usb.org

USB to Communication Peripherals Bridge (SPI, IIC, and SCI)
6.3 Bridge protocol
A protocol configures the MC9S08JM peripherals. This allows the application operational flexibility. The
data format in the command and status pipes is:

| 1 byte: peripheral ID | 1 byte: command | 14 bytes: data | Eqn. 6-1

Because this application example uses three communications peripherals, three different IDs are used:

• 0x03 for SPI

• 0x04 for IIC

• 0x05 for SCI

The following tables describe the commands that are used.

Table 6-1. SPI – Host to device

Pipe Command Description Data

Endpoint 3 0x00 Data transfer to SPI bus Application data (up to 31 bytes)

Endpoint 1 0x01 Defines the baud rate for transmission of SPI
port. Baud rate is limited to the device capability
to generate the required baud rate. Any baud
rate that cannot be exactly generated is
generated to the closest attainable value. In
SPI baud rate is the frequency of the serial
clock.

2 bytes
Byte 1 – Baud rate prescaler divisor. Where
maximum value is 7, and prescaler value
equals Byte 1 value + 1. Check Table SPI Baud
Rate Prescales Divisor of the MC9S08JM60
data sheet.
Byte 2 – Baud rate divisor. Check Table SPI
Baud Rate Divisor of the MC9S08JM60 data
sheet.
Formula:
Baud rate = Bus rate (24 Mhz)/(Byte 1 * Byte 2)

Endpoint 1 0x02 8 or 16 bit transmission 1 byte, 0 for 8 bits, 1 for 16 bits

Endpoint 1 0x03 Master or slave 1 byte, 0 for master, 1 for slave

Endpoint 1 0x04 Full-duplex or half-duplex (in SPI half duplex
also means 1 wire to transmit and receive)

1 byte, 0 for full-duplex, 1 for half-duplex/1 wire

Endpoint 1 0x05 Clock phase 1 byte, 0 first edge on serial clock occurs at the
middle of the first cycle of a data transfer
1 first edge on serial clock occurs at the start
of the first cycle of a data transfer

Endpoint 1 0x06 Clock polarity 1 byte, 0 active-high SPI clock (idles low), 1
active-low SPI clock (idles high)

Endpoint 1 0x07 Shifter direction or significant bit transfer start 1 byte, 0 for most significant bit first, 1 for least
significant bit first
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 11

USB to Communication Peripherals Bridge (SPI, IIC, and SCI)
Table 6-2. Device to host

Pipe Command Description Data

Endpoint 4 0x00 Data transfer from SPI bus Application data (up to 31 bytes)

Endpoint 2 0x01 Baud rate ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x02 8 or 16 bit transmission ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x03 Master or slave configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x04 Full duplex or half duplex configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x05 Clock phase configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x06 Clock polarity configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x07 Shifter direction or significant bit transfer start
configuration ACK

0xFF – configuration accepted
0x00 – configuration not accepted

Table 6-3. IIC – Host to device

Pipe Command Description Data

Endpoint 3 0x00 Data transfer to IIC bus Application data (up to 31 bytes)

Endpoint 1 0x01 Baud rate configuration 2 bytes:
Byte 1 – Baud rate multiplier, where:
0 -> multiply by 1
1 -> multiply by 2
2 -> multiply by 4
Byte 2 – Baud rate divider, where table IIC
Divider and Hold Values of the MC9S08JM60
data sheet defines the divider values and the
formula for these values is:
Baud rate = bus rate (24 MHz)/(multiplier *
divider)

Endpoint 1 0x02 Master slave configuration 0x00 for Slave
0x01 for Master

Endpoint 1 0x03 Slave address configuration – If master, this is
the address where data is transferred. If slave,
this is the address configured as a slave
address in the IIC module.

Byte 1 – 0 for 7 bit addres, 1 for 10 bit address.
Byte 2 – 7 bit address or low part of 10 bit
address.
Byte 3 – Highest three bits of 10 bit address
(shifted to the right of the byte)
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor12

USB to Communication Peripherals Bridge (SPI, IIC, and SCI)
The PC GUI provided with this application note selects configuration and sends and receives data.

6.4 How the stack is used
This application uses the functions EndPoint_IN(UINT8 u8Endp,UINT8 u8EPSize) and
CheckEndPointOUT(UINT8 u8Endp) to use the stack. Explained in the application configuration, the
endpoints are used as vendor specific endpoints. The USB stack user functions are part of the
USB_User_API.c file. These functions are managed by the Protocol_Handler.c file that communicates
with the bridge.c file. The application is layered, making it easy to port or change it. The layer model is
shown in Figure 5.

Table 6-4. Device to host

Pipe Command Description Data

Endpoint 4 0x00 Data transfer from IIC bus Application data (up to 31 bytes)

Endpoint 2 0x01 Baud rate configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x02 Master slave configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x03 Slave address configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Table 6-5. SCI – Host to device

Pipe Command Description Data

Endpoint 3 0x00 Data transfer to SCI port Application data (up to 31 bytes)

Endpoint 1 0x01 Baud rate configuration 2 Bytes
Byte 1 – High part of baud rate divider, where
maximum value is 31.
Byte 2 – Low part of baud rate divider.
Formula:
Baud rate = Bus rate (24 MHz) / (16 * baud rate
divider)

Endpoint 1 0x03 Parity configuration 0x00 – None
0x01 – Odd
0x02 – Even

Table 6-6. Device to host

Pipe Command Description Data

Endpoint 4 0x00 Data transfer from SCI port Application data (up to 31 bytes)

Endpoint 2 0x01 Baud rate configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted

Endpoint 2 0x03 Parity configuration ACK 0xFF – configuration accepted
0x00 – configuration not accepted
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 13

USB to Communication Peripherals Bridge (SPI, IIC, and SCI)
Figure 6-5. Application layer model

As can be seen, this model makes it easy to add functionality to a user application. The layers labeled as
bridge and protocol handler can be any other application level code that uses the USB code. The SPI, IIC,
or SCI layers can be changed for any other hardware level drivers like an analog-to-digital converter, a
PWM output, or even a display.

USB User API

Bridge

USB Descriptor
USB EP0
 Handler

USB Driver

Protocol Handler

SPI Driver IIC Driver SCI Driver
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor14

THIS PAGE IS INTENTIONALLY BLANK
Customize the USB Application Using the MC9S08JM, Rev. 1

Freescale Semiconductor 15

Document Number: AN3564
Rev. 1
03/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007, 2011. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Constraints

	2 USB Module Overview
	3 Stack Structure
	3.1 Main program structure
	3.1.1 System initialization
	3.1.2 Main loop
	3.1.3 USB interrupt subroutine

	4 Customize Application
	4.1 Declaration of endpoints
	4.1.1 USB descriptors
	4.1.2 Pipes
	4.1.3 USB memory access
	4.1.4 Enabling endpoints
	4.1.5 Enumeration process

	4.2 Sending and receiving data
	4.2.1 How to send data
	4.2.2 How to read received data

	5 USB Application Start-up
	6 USB to Communication Peripherals Bridge (SPI, IIC, and SCI)
	6.1 Application description
	6.2 Application configuration
	6.3 Bridge protocol
	6.4 How the stack is used

