
Freescale Semiconductor
Application Note

Document Number: AN3577
Rev. 0, 01/2008

Contents

System Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
System Hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Wireless Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 MCU Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 CMX USB Stack – CDC class . . . . . . . . . . . . . . . . . 4
3.2 SMAC Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Software Architecture  . . . . . . . . . . . . . . . . . . . . . . . 7
Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Creating a USB-to-Wireless 
Bridge with the MC1319x/20x and 
ColdFire Processors with USB 
OTG Module
by: Shen Li

Asia & Pacific Operation Microcontroller Division
This document introduces a USB-to-wireless bridge 
application based on Freescale ColdFire processors with 
USB OTG module, such as MCF5222x/5221x device. 

MCF5222x/5221x provides a full-speed USB 
device/OTG module. 

The wireless part of the bridge is based on the 
MC1319x/20x, Freescale’s 2.4 GHz ISM band 
transceiver. In this system, the USB-CDC class device is 
used for USB connection. 

This application note introduces 
• System architecture 
• Hardware connection
• Software design flow. 

Customers can get a concept on how to use the 
MCF5222x/5221x USB function and implement the 
wireless connection for ColdFire microcontroller 
products.

1
2

3

4

© Freescale Semiconductor, Inc., 2008. All rights reserved.



System Introduction
1 System Introduction
Figure 1 shows the system architecture. 

Figure 1. System Architecture

This USB-to-wireless bridge transfers USB data wirelessly back and forth, and it can enable the wireless 
communication of the computers or other embedded systems. This application is based on Freescale’s V2 
ColdFire Microcontroller MCF5222x/5221x, a product that provides a full/low-speed USB OTG module. 
The USB module provides the USB port for the bridge.

This system adopts Freescale’s 2.4 GHz ISM band transceiver MC13192 for wireless connection. 
MC13192 is a short range, low-power transceiver that contains a complete 802.15.4 physical layer (PHY) 
modem supporting star and mesh networking. When combined with the ColdFire MCU, the MC13192 
provides a cost-effective solution for short-range data links and networks. The interface between MCF and 
MC13192 is accomplished utilizing a four-wire serial peripheral interface (SPI) connection. In this 
application, we use SMAC stack instead of the complete 802.15.4 stack for the wireless connection.

2 System Hardware
Figure 2 shows the hardware connection of the USB-to-Wireless bridge.

USB-to-Wireless bridge

USB-to-Wireless bridge

MCF5222x
/5221x RF PHYUSB QSPI

MCF5222x
/5221x RF PHYUSB QSPI

Receive

Send

Receive

Send
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor2



System Software
Figure 2. Hardware Connection

2.1 Wireless Port
MC13192 uses 16 MHz crystal oscillator with warp capability as the reference oscillator for the 
transceiver. At the RF part, the transceiver has a low-noise amplifier, 1.0 mW PA, and differential RF 
inputs and outputs. In the application, chip baluns are used with balanced PCB antenna for the RF signal. 
For more details, please refer to 13192RFC Reference Design Zigbee at www.freescale.com.

2.2 MCU Connection
MCF5222x/5221x connects to the MC13192/20x by QSPI interface and two GPIO pins for control. 
Figure 2 gives the details of the connection. The QSPI bus includes QSPICS, QSPICLK, QSPIDATAO, 
and QSPIDATAI. 

There are four control signals : 
• IRQ# is for the interrupt request from MC13192 to MCU
• RESET is system reset signal. 
• RXTXEN is to enable the receival and transfer functions. 
• ATTN# is the attention signal for MC13192. When it goes low, it transitions MC13192 from 

hibernation or doze mode to idle.

MCF5222x/5221x USB module works on 48 MHz frequency. The 48 MHz clock can be provided by MCU 
clock module or feeded in from USB_ALT_CLK pin. For more information, please refer to M52223EVB 
from www.freescale.com. The USB module contains 16 endpoints, each configured as IN or OUT. 

3 System Software
The USB-to-wireless system software is based on CMX USB device stack and SMAC wireless stack. The 
CMX USB device stack provides the CDC class and communicates with the PC USB host. And the SMAC 
provides a reliable wireless connection between two MC13192s.

ColdFire   
With USB    

USB

MC1319x/20x

RXTXEN

ATTN#

RESET

QSPICS

QSPICLK

QSPIDATAO
QSPIDATAI

IRQ#

USBPC

16MHZ

Balun

Balun

GPIO1
GPIO2

reset

RXTXEN

ATTN#

Reset in

EXT_INT INT

QSPI_CS

QSPI_CLK

QSPI_DATAO
QSPI_DATAI

Receive

Send

SPI_CS

SPI_CLK

SPI_DI

SPI_DO
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor 3



System Software
3.1 CMX USB Stack – CDC class
CMX company provides a free USB stack based on Freescale ColdFire MCF5222x/5221x, and it can be 
downloaded at www.freescale.com. 

The USB stack is maintained by a status machine triggered by the USB interrupt server function 
usb_it_handler() in usb.c. Figure 3 and Figure 4 show the status machine of CMX USB stack.

Figure 3. Control Endpoint Status Machine

EPST_IDLE

EPST_DATA
_RX

_usb_receive
()

EPST_DATA
_TX

_usb_send()

EPST_TX_S
TOP

EPST_DATA_
TX_LAST

usb_receive()

more data

last data received

usb_send()

sent end, need send a Zero pack

more data sent

sent end

sent a Zero pack

After receiving the HandShake

EPST_STATU
S_RX

send_zero_pa
cket( )

Sent HandShake

Setup set command
EPST_STATU

S_TX
ready_ep_rx()
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor4



System Software
Figure 4. None Control Endpoint Status Machine

With the endpoint status machine running, the system transfers data back and forth through MCU’s USB 
port with PC host.

In this application, the MCF5222x/5221x uses the CDC device class to communicate with the PC host. 
The PC host recognizes the MCU as a virtual COM port in the system.

The USB CDC class device provides API function for the application layer:
• USB_INIT() to initiate the USB stack
• CDC_INIT() to initiate the CDC class device
• CDC_LINE_CODING_CHANGED() to indicate that the CDC class communication 

configuration has been changed
• CDC_INPUT_READY() to indicate that data be transferred from the USB module
• CDC_GETCH() to get the data from the USB module
• CDC_PUTCH() to put a data to the USB module for transferring through the USB

Figure 5 is the CDC class device working flow.

EPST_IDLE

EPST_DATA
_RX

_usb_receive
()

EPST_DATA
_TX

EPST_TX_S
TOP

EPST_DATA_
TX_LAST

usb_receive()

more data last data received

usb_send()

sent end, need send a Zero pack

more data sent

sent end

sent a Zero pack

If sent buff empty
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor 5



System Software
Figure 5. CDC Class Device Working Flow

Refer to AN3492 (USB and Using the CMX USB) for more details on CMX USB stack.

3.2 SMAC Stack 
SMAC (simple media access controller) is a simple ANSI C based code stack available as sample source 
code, which can be used to develop proprietary RF transceiver applications using the MC1319x. The 
SMAC works with any HCS08 MCU and ColdFire with an SPI. SMAC for ColdFire MCF5213 stack can 
be downloaded at www.freescale.com. The available stack is for ColdFire MCF5213, but it can be easily 
ported to MCF5222x/5221x products because they are the same at architecture and QSPI module. The 
users only need to change registers and assign GPIO for ATTN# and RXTXEN signal.

SMAC provides the application layer a set of API functions:
• MCPSDataRequest to send data through wireless 
• MLMERXEnableRequest to enable receival function
• MLMERXDisableRequest to disable receival function
• MLMEHibernateRequest to place the MC13192 into hibernate mode
• MLMEDozeRequest to place the MC13192 into doze mode
• MLMEWakeRequest to bring MC13192 out of low power mode
• MLMESetChannelRequest to set the actual frequency the MC13192 transmits and receives on
• MLMEEnergyDetect to start an energy detection and return the energy value 
• MLMELinkQuality to return the link quality from the last received packet
• MLMEMC13192FEGainAdjust to adjust the energy by tuning the AGC of MC13192
• MLMEMC13192PAOutputAdjust to adjust the output power of the transmitter
• MLMEMC13192SoftReset to perform the soft-reset of the MC13192 
• MLMESetMC13192TmrPrescale to change the rate on which the MC13192 timers operate
•  MLMEMC13192XtalAdjust to adjust the MC13192 reference clock by a trim value

Put status to 
EPST_DATA_RX

USB interrupt
Receive from PC

_sub_receive()usb_receive

Move data from 
BDT buff to user 

cdc_getch

usb_send
usb_send

EPST_DATA_TX
USB interrupt

Indicate sent out
cdc_putch

Return to Idle
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor6



System Software
• MCPSDataIndication to be called at receiving data, and to be filled by user application 

The most important functions are MCPSDataIndication() and MCPSDataRequest(). 
• MCPSDataIndication is a callback function called in the interrupt server function of MC13192. In 

this function, user is required to write his own code to do further actions on the received data.
• MCPSDataRequest() is used to send user data out through wireless. It is a block function and it 

won’t return until the sending action completes.

For more information about SMAC of Freescale, refer to the Simple Media Access Controller User Guide, 
which can be downloaded from www.freescale.com.

3.3 Software Architecture
The USB-to-wireless system software flow is shown in Figure 6

.

Figure 6. System Software Flow

The bridge software transfers data between USB and wireless. In the software flow chart, the program 
steps into infinity loop after initializing progress. In the loop, the program checks the USB data. If the USB 
data is available, the USB data is transferred to wireless port. When the wireless port received data from 
external, MC13192 raises an interrupt. In the interrupt server, SMAC callback function is called and the 
data is transferred to USB port. The whole flow is maintained by a status machine.

3.3.1 Initiation Progress

Here is the initialization progress code
…
hw_init(); /*initiate hardware*/
usb_init((2<<3) | 2, 0); /*USB stack initialization, USB irq is level 2, priority = 2. */
cdc_init(); /*USB CDC class initiation*/
PortInit(); /*QSPI init*/

Init progress

Infinity loop

Transfer data 
to RF

Usb has data 
to transfer?

RF interrupt

SMAC 
callback

Transfer data
to USB
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor 7



System Software
MC13192Init(); /* MC13192 init*/
PLMESetTrxStateRequest(IDLE_MODE); /*Init SMAC TX/RX status to IDLE*/
MLMESetChannelRequest(channel);  /*Set RF channel*/
MLMEMC13192PAOutputAdjust(power_level); /* set RF power level*/
tx_pkt1.pu8Data = tx1_data_buffer;
rx_pkt1.pu8Data = rx1_data_buffer;
app_status = APP_RECV;
MLMERXEnableRequest(&rx_pkt1,0); /* start receive, timeout disable*/
…

3.3.2 System status machine

In this application, the main data flow is maintained by a status machine. Figure 7 shows the machine.

Figure 7. System Status Machine

After receiving USB data, the system enters APP_SEND status and calls RF_Send() to send out the data 
by wireless port. After that, it enters WAIT_ACK status to wait for the acknowledge signal sent by peer 
end wireless receiver. At the same time, a timer in MC13192 is started. If no acknowledge signal has been 
received before the timer times out, the system resends the data. If the system receives the acknowledge 
signal, the system enters APP_RECV status. If the system resends the data for the maximum times and has 
not received the acknowledge signal, it enters APP_RECV status.

The status machine code in USB-to-wireless direction is demonstrated as follows.
while(1)

APP_IDLE

Has data to send

APP_RECV

APP_SEND
RF_Send()

Send faild

Receive ACK Received Data,
Put to USB

SEND_ACK

WAIT_ACK

TIME_OUT

Resend,Retry++

Retry>max

Received ACK
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor8



System Software
{
if (cdc_input_ready())
{

c=(UINT8)cdc_getch();
uart_putch((hcc_u8)c);
app_status = APP_SEND;

}
switch(app_status)
{

case APP_IDLE:
app_status = APP_RECV;
break;

case APP_RECV:
break;

case APP_SEND:
if(RF_Send((unsigned char)c,0)!= SUCCESS)

app_status = APP_SEND; //retry
break;

case SEND_ACK:
//these line are only for delay 
i++;
MCF_GPIO_PORTTC = (UINT8)(MCF_GPIO_PORTTC ^ MCF_GPIO_PORTTC_PORTTC0);
if(i>= 1000)
{

RF_Send('a', 1);
i = 0;

}
break;

case WAIT_ACK:
break;

case TIME_OUT:
if(RetryNo< MAX_RETRY)
{

app_status = APP_SEND;
RetryNo++;

}
else //give up

app_status = APP_RECV;
MLMERXEnableRequest(&rx_pkt1,0); //start as reciever.

break;
default:

break;
}

}

UINT8 RF_Send(unsigned char c, unsigned char is_ACK)
{

UINT8 temp;
temp = PLMESetTrxStateRequest(IDLE_MODE);
if(temp != SUCCESS)

return temp;
app_status = APP_IDLE;
if(is_ACK == 0)
{

tx_pkt1.pu8Data[0] = c;
tx_pkt1.pu8Data[1] = 0;
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor 9



System Software
tx_pkt1.u8DataLength = 2;
temp = MCPSDataRequest(&tx_pkt1);
if(temp == SUCCESS)
{

//PLMESetTrxStateRequest(IDLE_MODE);
temp = MLMERXEnableRequest(&rx_pkt1,0x2000); //back to reciever.
app_status = WAIT_ACK;//APP_RECV;//

}
}
else
{

tx_pkt1.pu8Data[0] = 'A';
tx_pkt1.pu8Data[1] = 'C';
tx_pkt1.pu8Data[2] = 'K';
tx_pkt1.pu8Data[3] = 0;
tx_pkt1.u8DataLength = 4;
app_status = APP_RECV;
temp = MCPSDataRequest(&tx_pkt1);

}
PLMESetTrxStateRequest(RX_MODE);
return temp;

}

For the data from wireless-to-USB, the process is different. When MC13192 receives the data from 
external device, it raises an interrupt to the MCF5222x/5221x. The interrupt server function is executed. 
As shown in Figure 7, the system enters SEND_ACK, forwards the received data to USB module, sends 
the acknowledge signal back, and then returns APP_RECV status. Following is the callback function for 
data receival interrupt.
void MCPSDataIndication(tRxPacket *rx_pkt)
{

unsigned char i;
if(rx_pkt->u8Status == SUCCESS)
{

if(rx_pkt->pu8Data[0] == 'A' && rx_pkt->pu8Data[1] == 'C' && rx_pkt->pu8Data[2] == 
'K')
{

if(app_status ==  WAIT_ACK)
{

app_status = APP_RECV;
}
MLMERXEnableRequest(&rx_pkt1,0); //receiver.

}
else/*Packet received*/
{

for(i=0;i<rx_pkt->u8DataLength;i++)
cdc_putch((rx_pkt->pu8Data)[i]);
app_status = SEND_ACK;
return;

}
}
else if(rx_pkt->u8Status == TIMEOUT)
app_status = TIME_OUT;

}

Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor10



Conclusion
4 Conclusion

With free software CMX USB stack and SMAC stack, a reliable USB-to-wireless bridge can be easily 
realized on Freescale ColdFire MCF5222x/5221x with MC13192/20x. With this bridge, you can easily 
enable the PC or any wireless connection of the embedded system. This application source code can be 
downloaded at www.freescale.com.
Creating a USB-to-Wireless Bridge with the MC1319x/20x and ColdFire Processors with USB OTG Module, Rev. 0

Freescale Semiconductor 11



Document Number: AN3577
Rev. 0
01/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality 
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free 
counterparts. For further information, see http://www.freescale.com or contact your 
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to 
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 System Introduction
	2 System Hardware
	2.1 Wireless Port
	2.2 MCU Connection

	3 System Software
	3.1 CMX USB Stack - CDC class
	3.2 SMAC Stack
	3.3 Software Architecture
	3.3.1 Initiation Progress
	3.3.2 System status machine


	4 Conclusion

