

Freescale Semiconductor Application Note

Document Number: AN3641 Rev. 3, 01/2011

MPC8533E PowerQUICC III **Bring-up Guide**

This document provides recommendations for new designs based on the MPC8533E PowerQUICC III family of integrated host communications processors (collectively referred to throughout this document as MPC8533E):

- **MPC8533E** ٠
- MPC8533 •

This document may also be useful for debugging newly designed systems by highlighting those aspects of a design that merit special attention during initial system startup.

For updates to this document, refer to the website listed on the back cover of this document.

Contents

1.	Introduction
2.	Power 4
3.	Power-on Reset and Reset Configurations
4.	Device Pins 12
5.	Clocks
6.	DDR Interface 46
7.	Debug and Test Interface 47
8.	DMA Interface 48
9.	DUART Interface
10.	Ethernet Management Interface 49
11.	eTSEC Interface 49
12.	I2C Interface 50
13.	JTAG Interface 50
14.	Local Bus Interface 54
15.	PCI Interface 55
16.	PIC Interface 56
17.	SerDes Interface 57
18.	System Control 58
19.	Spare Configuration Pins 58
20.	Power and Ground Signals 59
21.	Documentation History

© 2008, 2009, 2011 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction

This section outlines recommendations to simplify the first phase of design. Before designing a system with a MPC8533E device, it is recommended that the designer be familiar with the available documentation, software, models, and tools.

1.1 MPC8533E Overview

This section provides a high-level overview of MPC8533E features. Figure 1 shows the major functional units within the device.

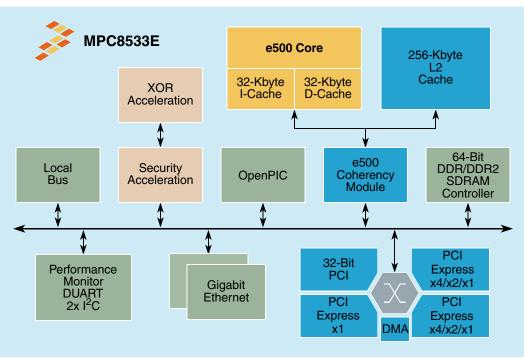


Figure 1. MPC8533E Block Diagram

1.2 References

The following list describes available collateral:

- *MPC8533E PowerQUICC III™ Integrated Host Processor Family Reference Manual* (MPC8533ERM)
- Errata to MPC8533E PowerQUICC[™] III Integrated Host Processor Family Reference Manual (MPC8533ERMAD)
- Device Errata for the MPC8533E PowerQUICC[™] III (MPC8533ECE)
- *MPC8533E PowerQUICC III*[™] Integrated Processor Hardware Specifications (MPC8533EEC)

- PowerQUICCTM DDR2 SDRAM Controller Register Setting Considerations (AN3369)
- Programming the PowerQUICCTM III/PowerQUICC II Pro DDR SDRAM Controller (AN2583)
- Hardware and Layout Design Considerations for DDR Memory Interfaces (AN2582)
- Hardware and Layout Design Considerations for DDR2 SDRAM Memory Interfaces (AN2910)

The following list describes available tools:

- Software
 - Boot sequencer generator tool (I2CBOOTSEQ)
 - UPM Programming tool (LBCUPMIBCG)
- Hardware
 - Development System (MPC8544DS) including schematics, bill of materials, board errata list, User's Guide, and configuration guide

The following list describes available models:

- IBIS
- BSDL
- Flowtherm

1.3 Device Errata

The device errata document MPC8533ECE describes the latest fixes and work arounds for the MPC8533E. The errata document should be thoroughly researched prior to starting a design with the respective MPC8533E device.

1.4 Boot Sequencer Tool

The MPC8533E features the boot sequencer to allow configuration of any memory-mapped register before the completion of power-on reset (POR). The register data to be changed is stored in an I²C EEPROM. The MPC8533E requires a particular data format for register changes as outlined in the MPC8533ERM. The boot sequencer tool (I2CBOOTSEQ) is a C-code file. When compiled and given a sample data file, it will generate the appropriate raw data format as outlined in the MPC8533ERM. The file that is generated is an s-record file that can be used to program the EEPROM.

1.5 UPM Programming Tool

The UPM Programming Tool (LBCUPMIBCG) features a GUI for a user-friendly programming interface. It allows programming of all three of the MPC8533E's UPM machines. The GUI consists of a wave editor, a table editor, and a report generator. The user can edit the waveform directly or the RAM array directly. At the end of programming, the report generator will print out the UPM RAM array that can be used in a C-program.

1.6 Available Training

Our third-party partners are part of an extensive Design Alliance Program. The current training partners can be found on our website under Design Alliance Program at www.freescale.com/alliances.

Training material from past Smart Network Developer's Forums and Freescale Technology Forums are also available. These trainings modules are a valuable resource for understanding the MPC8533E. This material is available at our website listed on the back cover of this document.

1.7 Product Revisions

Table 1 lists the processor version register (PVR) and system version register (SVR) values for the various MPC8533E derivatives of silicon.

Device Number	Device Revision	e500 v2 Core Revision	Processor Version Register Value	System Version Register Value	Note
MPC8533E	1.0	2.1	0x8021_0021	0x803C_0010	With Security
MPC8533	1.0	2.1	0x8021_0021	0x8034_0010	Without Security
MPC8533E	1.1/1.1.1	2.2	0x8021_0022	0x803C_0011	With Security
MPC8533	1.1/1.1.1	2.2	0x8021_0022	0x8034_0011	Without Security

Table 1. MPC8533E PowerQUICC III Product Revisions

2 Power

This section provides design considerations for the power supplies and power sequencing. For information on AC and DC electrical specifications and thermal characteristics, refer to the MPC8533EEC Hardware Specification document.

2.1 Power Supplies

The MPC8533E has a core voltage V_{DD} and SerDes voltages SV_{DD} and XV_{DD} that operate at a lower voltage than the I/O voltages BV_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and TV_{DD} . The core voltage, 1.0 V (±5%), is supplied across V_{DD} and GND.

The I/O blocks are supplied with the following:

- 1.8 V (\pm 5%) or 2.5 V (\pm 5%) or 3.3 V (\pm 5%) across BV_{DD} and GND
- 1.8 V (\pm 5%) or 2.5 V (\pm 5%) across GV_{DD} and GND
- 2.5 V (\pm 5%) or 3.3 V (\pm 5%) across LV_{DD} and GND
- 3.3 V (\pm 5%) across OV_{DD} and GND
- 1.0 V (\pm 5%) across SV_{DD} and GND
- + 2.5 V (±5%) or 3.3 V (±5%) across TV_{DD} and GND
- 1.0 V (\pm 5%) across XV_{DD} and GND

Power

Both LV_{DD} and TV_{DD} are used to supply the eTSEC interfaces on the device: LV_{DD} manages eTSEC1, and TV_{DD} manages eTSEC3. For the respective eTSEC, LV_{DD}/TV_{DD} equals the following:

- 3.3 V or 2.5 V for GMII, MII, RMII, TBI, or FIFO modes of operation
- 2.5 V for RGMII or RTBI modes of operation

2.2 Power Consumption

Operating mode power dissipation numbers (typical) are provided in the MPC8533EEC Hardware Specification. Typical and thermal numbers are provided to assist in the thermal design for the device. If the targeted junction temperature (T_J) of the MPC8533E in the system is not one of these two temperatures, a linear extrapolation of these two TYPICAL dissipation values can be used to estimate the power dissipation at the targeted junction temperature.

The maximum assists with the power supply design selection.

2.2.1 Low Power Modes Power Dissipation

A low-power mode estimates provided in Table 2 for applications concerned about minimizing power consumption when the MPC8533E core is not active.

Low Power Modes	Core/CCB Frequency				
Low Power Modes	667/333 MHz	800/400 MHz	1000/400 MHz	1067/533 MHz	
SLEEP	1.50 W	1.55 W	1.55 W	1.6 W	
NAP	1.75 W	1.80 W	1.90 W	2.0 W	
DOZE	2.20 W	2.35 W	2.6 W	2.7 W	

 Table 2. Low-Power Estimates

NOTE

The typical, thermal, and maximum power numbers are based on the power dissipation on the 1.0 V nominal V_{DD} supply only. Typical power dissipation estimates on the peripheral supplies (BV_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , TV_{DD} , and XV_{DD}) are provided in MPC8533EEC.

Power

2.2.2 I/O Power Dissipation

Because I/O usage varies from design to design, power dissipation estimates for the I/O supplies are provided in Table 3.

Interface	Parameters	1.0 V (XV _{DD})	1.8 V (GV _{DD})	2.5 V (B/G/LV _{DD})	3.3 V (B/L/OV _{DD})	Comments
DDR	333 MHz data	—	0.38 W	0.73 W	—	—
	400 MHz data	_	0.46 W	—	_	
	533 MHz data	_	0.60 W	—	_	
PCI Express	x4, 2.5 G-baud	0.36 W	_	—	_	—
PCI	32-bit, 66 MHz	_	_	_	0.07 W	Power per PCI
	32-bit, 33 MHz	_	_	_	0.04 W	port
Local bus	32-bit, 133 MHz	_	_	0.14 W	0.24 W	—
	32-bit, 66 MHz	_	_	0.07 W	0.13 W	
	32-bit, 33 MHz	_	_	0.04 W	0.07 W	
eTSEC	MII	_	_	_	0.01 W	Power per
(10/100/1000 Ethernet)	GMII	_	_	_	0.07 W	eTSEC used
	ТВІ	—	_	—	0.07 W	
	RGMII	_	_	0.04 W	_	
	RTBI	—	—	0.04 W	—	1
eTSEC (packet	8-bit, 200 MHz	_	—	0.11 W	—	Power per FIFO
FIFO)	8-bit, 155 MHz	_	—	0.08 W	—	interface used

Table 3. Estimated I/O Power Dissipation

2.3 Power Sequencing

The device requires its power rails to be applied in a specific sequence in order to ensure proper device operation. Per the MPC8533EEC document, the requirements for power-up are as follows:

- 1. V_{DD} , AV_{DD} , n, BV_{DD} , LV_{DD} , OV_{DD} , SV_{DD} , TV_{DD} , XV_{DD}
- 2. GV_{DD}

All supplies must be at their stable values within 50 ms.

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs.

The purpose of the sequence is to guarantee the state of the DDR signals at reset. In order to guarantee MCKE low during power-up (as should be *attempted* per the JEDEC JESD79-2C specification), the above sequencing for GV_{DD} is required. If there is no concern about any of the DDR signals being in an indeterminate state during power-up, then the sequencing of GV_{DD} is not required.

From a system standpoint, if any of the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os associated with that I/O supply may drive a logic one or zero during power-up, and extra current may be drawn by the device.

2.4 PLL Power Supply Filtering

Each of the PLLs is provided with power through independent power supply pins (AV_{DD}_PLAT, AV_{DD}_CORE, AV_{DD}_PCI, AV_{DD}_LBIU, and AV_{DD}_SRDS respectively). Preferably these voltages will be derived directly from V_{DD} through a low-frequency filter scheme.

While there are a number of ways to reliably provide power to the PLLs, the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 2, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced. This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. If the PCI is run in synchronous mode, no filter is required for AV_{DD} -PCI.

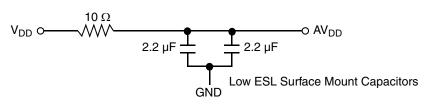


Figure 2. PLL Power Supply Filter Circuit

The AV_{DD}_SRDSn signals provide power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in Figure 3. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDSn balls to ensure it filters out as much noise as possible. The ground connection should be near the AV_{DD}_SRDSn balls. The 0.003- μ F capacitor is closest to the balls, followed by the 1- μ F capacitor, and finally the 1- Ω resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. If the SerDes is not used, a filter for AV_{DD}_SRDS is not required.

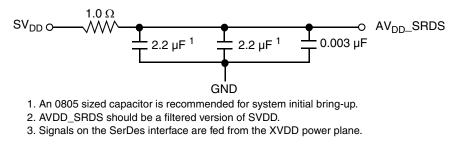


Figure 3. SerDes PLL Power Supply Filter

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits.

These filters are a necessary extension of the PLL circuitry and are to what the device is specified. Any deviation from the recommended filters are done at the customer's risk.

Power

2.5 **Power Supply Decoupling**

The MPC8533E requires a clean, tightly regulated source of power. The system designer should place at least one decoupling capacitor at each V_{DD} and $B/G/L/O/TV_{DD}$ pin of the device. These decoupling capacitors should have a value of 0.01 or 0.1 μ F and receive their power from separate V_{DD} , $B/G/L/O/TV_{DD}$ and GND power planes in the PCB, utilizing short traces to minimize inductance.

In addition, several bulk storage capacitors should be distributed around the PCB to feed the V_{DD} and $B/G/L/O/TV_{DD}$ planes, to enable quick recharging of the smaller chip capacitors.

The capacitors should be placed as close as possible to the processor. The capacitors need to be selected to work well with the power-supply so as to be able to handle the MPC8533E's dynamic load requirements. The customer should work closely with their power-supply vendor to choose for the correct value and type of capacitors for good and clean power.

If the SerDes is used, it requires a clean, tightly-regulated source of power (SV_{DD} and XV_{DD}) to ensure low jitter on transmit and reliable recovery of data in the receiver:

- The board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device.
- There should be a 1- μ F ceramic chip capacitor from each SerDes supply (SV_{DD} and XV_{DD}) to the board ground plane on each side of the device.
- Between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low ESR SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

2.6 Power Supplies Checklist

Table 4 provides a summary power supply checklist for the designer.

ltem	Description	Completed
1	All power supplies have a voltage tolerance no greater than 5% from the nominal value.	
2	eTSEC supplies are chosen according to the mode of operation used.	
3	Power supply selected is based on MAXIMUM power dissipation.	
4	Thermal design is based on TYPICAL power dissipation.	
5	Power-up sequence is less than 50 ms.	
6	Power sequencing is understood and based on whether or not latch-up or garbage data written to DDR is a concern	
7	Recommended PLL filter circuit is applied to AV _{DD} _PLAT, AV _{DD} _CORE, and AV _{DD} _LBIU.	
8	If PCI is used in asynchonous mode, then the recommended PLL filter circuit is applied to AV _{DD} _PCI. However, If the PCI is used in synchronous mode, no filter is required for AV _{DD} _PCI.	
9	If SerDes is used, then the recommended PLL filter circuit is applied to AV_{DD} -SRDS. However, If the SerDes is not used, a filter for AV_{DD} -SRDS is not required	
10	PLL filter circuits are placed as close to the respective AV _{DD} pin as possible.	

Item	Description	Completed
11	Decoupling capacitors of 0.01 or 0.1 μ F are placed at each V _{DD} , B/G/L/O/TV _{DD} pin.	
12	Bulk capacitors are placed on each V _{DD} , B/G/L/O/TV _{DD} plane.	
13	If SerDes is used, the recommended decoupling for S/XV _{DD} is used.	

Table 4. Power Supplies Checklist (continued)

3 Power-on Reset and Reset Configurations

This section discusses reset configurations.

3.1 Configuration and Timing

Various device functions are initialized by sampling certain signals during the assertion of $\overline{\text{HRESET}}$. These power-on reset (POR) inputs are either pulled high or low during this period. While these pins are generally output pins during normal operation, they are treated as inputs while $\overline{\text{HRESET}}$ is asserted. $\overline{\text{HRESET}}$ must be asserted for a minimum on 100 µs. When $\overline{\text{HRESET}}$ de-asserts, the configuration pins are sampled and latched into registers and the pins then take on their normal output circuit characteristics.

Most of the configuration pins have an internally gated 20 k Ω pull-up resistor, enabled only during HRESET. For those configurations in which the default state is desired, no external pull-up is required. Otherwise, a 4.7 k Ω pull-down resistor is recommended to pull the configuration pin to a valid logic low level. In the case where a configuration pin has no default, 4.7 k Ω pull-up or pull-down resistors are recommended for appropriate configuration of the pin.

An alternative to using pull-up and pull-down resistors to configure the POR pins is to use a PLD or similar device which drives the configuration signals to the MPC8533E when $\overrightarrow{\text{HRESET}}$ is asserted. The PLD must begin to drive these signals at least four SYSCLK cycles prior to the de-assertion of $\overrightarrow{\text{HRESET}}$ (PLL configuration inputs must meet a 100 µs set-up time to $\overrightarrow{\text{HRESET}}$), hold their values for at least 2 SYSCLK cycles after the de-assertion of $\overrightarrow{\text{HRESET}}$, and then release the pins to high impedance afterward for normal device operation.

3.2 Configuration Settings

The following table summarizes the customer configurable device settings. Refer to the MPC8533ERM for a more detailed description of each configuration option.

Configuration Type	Functional Pins	Comments
Device	DMA_DACK[0:1]	Refer to Table 7 for POR and Reset Configurations
CCB Clock PLL Ratio	LA[28:31]	There is no default value for this PLL ratio; these signals must be pulled to the desired value. Refer to Section 5.1, "System PLL Ratio."
e500 Core PLL Ratio	LBCTL, LALE, LGPL2/LOE/LSDRAS	There is no default value for this PLL ratio; these signals must be pulled to the desired value. Refer to Section 5.2, "e500 Core PLL Ratio."

Table 5. I	User C	onfigura	tion O	ptions
------------	--------	----------	--------	--------

Configuration Type	Functional Pins	Comments
SEC Frequency Ratio	LWE[0]	Default: SEC in 3:1 (CCB CLK:SEC CLK). Refer to Section 5.3, "Security Controller PLL Ratio."
Boot ROM Location	TSEC1_TXD[6:4]	Default: Local Bus GPCM (32-bit ROM)
Host/Agent	LWE[1:3]/LBS[1:3]	Default: MPC8533E acts as the host processor/root complex on all interfaces.
I/O Port Selection	TSEC3_TXD[6:4]	Default: All three PCI Express ports active
CPU Boot	LA27	Default: e500 core is allowed to boot without waiting for configuration by an external master.
Boot Sequencer	LGPL3/LSDCAS, LGPL5	Default: Boot sequencer is disabled. No I ² C ROM is accessed.
DDR SDRAM Type	LGPL[0:1]	Default: DDR controller is configured for DDR2.
eTSEC1 Serial	TSEC1_TXD[2]	Default: eTSEC1 Ethernet interface uses parallel interface according to POR config inputs of eTSEC1 width and eTSEC1 protocol.
eTSEC3 Serial	TSEC3_TXD[2]	Default: eTSEC3 Ethernet interface uses parallel interface according to POR config inputs of eTSEC3 width and eTSEC3 protocol.
eTSEC1 Width	TSEC1_TX_ER	Default: eTSEC1 interface operates in standard width TBI, GMII, MII, o 8-bit FIFO mode.
eTSEC3 Width	TSEC3_TX_ER	Default: eTSEC3 Ethernet interface operates in standard TBI, GMII, MI or 8-bit FIFO mode.
eTSEC1 Protocol	TSEC1_TXD[0:1]	Default: The eTSEC1 controller operates using the TBI protocol (or RTE if configured in reduced mode).
eTSEC3 Protocol	TSEC3_TXD[0:1]	Default: The eTSEC3 controller operates using the TBI protocol (or RTE if configured in reduced mode).
PCI Clock Select	PCI1_GNT[4]	Default: Synchronous mode. SYSCLK is used as the clock for the PCI interface.
PCI Speed	PCI1_GNT[3]	Default: PCI frequency above 33 MHz.
PCI I/O Impedance	PCI1_GNT[1]	Default: 42 Ω I/O drivers are used on the PCI interface.
PCI Arbiter	PCI1_GNT[2]	Default: The on-chip PCI arbiter is enabled.
Memory Debug	MSRCID[0]	Default: Debug information from the DDR SDRAM controller is driven o the MSRCID and MDVAL signals.
DDR Debug	MSRCID[1]	Default: Debug information is not driven on ECC pins. ECC pins functio in their normal mode.
General Purpose POR	LAD[0:31]	There is no default value for this general purpose POR.

Table 5. User Configuration Options (continued)

3.3 Internal Test Modes

Several pins double as test mode enables. These test modes are for internal use only, and if enabled during reset may result in the MPC8533E not coming out of reset. Table 6 lists these pins and how they should be addressed during the reset sequence.

Pin Group	Pins	Guideline for Reset
DDR	TEST_IN	Connect directly to ground
	TEST_OUT	This pin may be left floating.
Debug	TRIG_OUT/READY/ QUIESCE	Because these pins have an internal pull-up enabled only at reset, they may be left floating if unconnected. Otherwise, they may need to be
	MSRCID[2]	driven high (that is, by a PLD) if the device to which they are connected does not release to high impedance during reset.
	MSRCID[3]	
	MSRCID[4	

Table 6. Internal Test Mode Pins

Table 6. Internal Test Mode Pins (continued)

Pin Group	Pins	Guideline for Reset
Design For Test	LSSD_MODE	These pins must be pulled to OV_{DD} via a 100 Ω -1 k Ω resistor.
	L1_TSTCLK	
	L2_TSTCLK	
	TEST_SEL	
eTSEC	EC_MDC	Since these pins have an internal pull-up enabled only at reset, they may
	TSEC1_TXD[7]	be left floating if unconnected. Otherwise, they may need to be driven high (that is, by a PLD) if the device to which they are connected does
	TSEC1_TXD[3]	not release to high impedance during reset.
	TSEC3_TXD[7]	
Power Management	ASLEEP	
System Control	HRESET_REQ	

3.4 Reset Checklist

Table 7 provides a summary MPC8533E POR and reset checklist for the designer.

Table 7. Checklist for POR and Reset Configurations

Item	Description	Completed
1	HRESET is asserted for a minimum of 100 μ s.	
2	SRESET is asserted for a minimum of 3 SYSCLKs.	
3	DMA_DACK[0:1]—For proper state of these signals during reset, these pins can be left without any pulldowns, thus relying on the internal pullup to get the values to the require 2'b11.However, if there is any device on the net which might pull down the value of the net at reset, then a pullup is needed.	
4	Configuration pins are either appropriately tied-off with a 4.7 k Ω resistor, or driven by an external device (meeting their required setup and hold times).	
5	PLL configurations are defined and meet the required set-up and hold times.	
6	Internal test mode pins are guaranteed not to be low during reset.	

4 Device Pins

This section discusses the recommended test points and provides a device pin map.

4.1 Recommended Test Points

For easier debug, it is recommended that the test points on the board include the following pins:

- CLK_OUT (This helps to verify the CCB clock.)
- TRIG_OUT (This helps to verify the end of the reset sequence.)
- ASLEEP (This helps to verify the end of the reset sequence.)

- SENSEVDD (This helps to verify power plane VDD.)
- SENSEVSS (This helps to verify ground plane VSS.)
- HRESET_REQ (This helps to verify proper boot sequencer functions and reset requests.)

4.2 Pin Map

Figure 4 provides a top view of the device's pin map. Figure 5–Figure 8 provide detailed quadrant views.

	A	В	с	D	E	F	G	н	J	К	L	М	Ν	Р	R	т	U	v	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	
1	(gv _{DD}	MDQS [5]	MDQ [32]	MDQ [46]	MDQ [47]	MDQ [34]	GND	MDQ [56]	MDQ [57]	GND	gv _{DD}	MDQ [62]	MDQ [58]	MDQ [59]	TSEC1_ GTX_ CLK	TSEC1_ TXD [0]	TSEC1_ TXD [2]	NC	SD2_ IMP_CAL _TX	SGND_ SRDS2	SV _{DD} SRDS2	SD2_RX [2]	SD2_RX [2]	SGND_ SRDS2	AGND_ SRDS2	AV _{DD} SRDS2	SD2_ PLL_ TPA	1
2	MDQ [44]	MDQ [40]	MDM [5]	MDQS [5]	GV _{DD}	MDQ [42]	MDQ [43]	MDQ [35]	MDQ [60]	MDQ [61]	MDM [7]	MDQS [7]	GND	MDQS [7]	MDQ [63]	EC GTX CLK125	TSEC1_ TXD [1]	TSEC1_ TXD_ [3]	NC	SGND_ SRDS2	SD2_RX [3]	SD2_RX [3]	SGND_ SRDS2	SV _{DD} SRDS2	SD2_ REF_ CLK	SD2_ REF_ CLK	SV _{DD} SRDS2	SGND_ SRDS2	2
3	GND	MDQ [45]	MDQ [41]	MCS [0]	GND	MDQ [33]	GV _{DD}	MDQ [38]	MDQ [52]	GV _{DD}	MDM [6]	MDQS [6]	MDQ [50]	MDQ [51]	GV _{DD}	TSEC1_ TX_ER	LV _{DD}	TSEC1_ TXD [4]	NC		TEMP_ CATHODE	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SD2_ PLL_ TPD	SD2_ IMP_CAL _RX	3
4	MBA [0]	MWE	MCS [2]	GV _{DD}	MDQ [36]	GND	MDM [4]	GND	MDQ [39]	MDQ [53]	MDQ [49]	MDQS [6]	MDQ [54]	MDQ [55]	LV _{DD} [1]	TSEC1_ CRS	TSEC1_ TX_EN	GND	NC	XGND_ SRDS2	XGND_ SRDS2	SD2_TX [2]	SD2_TX [2]	XGND_ SRDS2	XGND_ SRDS2	SD2 TST_ CIK	SD2_ TST_ CLK	XGND_ SRDS2	4
5	MA [10]	MBA [1]	MRAS	GND	MODT [0]	GVDD	MDQ [37]	GVDD	MDQS [4]	MDQS [4]	MDQ [48]	GND	GVDD	GND	TSEC1_ COL	TSEC1_ TXD [7]	TSEC1_ TXD	TSEC1_ TXD [5]	NC	SD2_TX [3]	SD2_TX [3]	TRIG OUT/READ	TRIG_ IN	MSRCID [4]	OV _{DD} [12]	XV _{DD} SRDS2	XV _{DD} SRDS2		5
6	TEST_ OUT	NC	GND	GV _{DD}	MODT [2]	MODT [3]	MCS [3]	MCS [1]	МСК [2]	MCK [2]	NC	TSEC3_ TXD [0]	TSEC3_ TX_EN	TSEC3_ TXD [1]	TSEC3_ TXD_ [2]	TSEC1_ RXD	GND	TSEC1_ TX_CLK	NC	XV _{DD} SRDS2	XV _{DD} SRDS2	MSRCID [3]	OV _{DD} [5]	PCI1_ REQ	PCI1_ GNT	UART_ CTS [1]	PCI1_ IDSEL	UART_ SIN [1]	6
7	GND	MA [0]	GV _{DD}	NC	MCAS	MA [13]	GVDD	MODT [1]	NC	GND	TSEC3_ TXD [3]	TSEC3_ TXD [7]	TSEC3_ TXD [6]	TSEC3_ TXD [5]	TSEC3_ GTX_ CLK	TSEC1_ RXD [1]	TSEC1_ RX_DV	TSEC1_ RX_CLK	NC	MSRCID	DDONE	OV _{DD}		GND	PCI1_ GNT [4]	UART_ SOUT [1]	UART_ SIN		7
8	MCK [3]	<u>МСК</u> [3]	MA [2]	GND	S GV _{DD}		MA [1]	МСК [5]	MCK [5]	GND	TSEC3_ TX_ER	TSEC3_ TXD [4]	TV _{DD}	TSEC3_ RX_DV	TSEC3_ RXD [3]	TSEC1_ RXD	TSEC1_ RXD	NC	NC	MDVAL				PCI1_ AD_ [30]	PCI1_ AD_ [31]	PCI1_ AD [29]	UART_ RTS	UART_ CTS	8
9	MCK [0]	<u>МСК</u> [0]	GV _{DD}	MA [4]	MA [8]	MA [7]	GV _{DD}	MCKE [3]	NC	NC	TSEC3_ CRS	TSEC3_ COL	TSEC3_ RXD [1]	TSEC3_ RX_CLK	TSEC1_ RX_ER	TSEC1_ RXD [4]	TSEC1_ RXD	NC	MSRCID [1]	EC_MDIO	MSRCID [2]	PCI1_ AD [26]	PCI1_ AD [25]	OV _{DD} [7]	PCI1_ AD [24]	PCI1_ REQ [4]	UART_ RTS [1]	GND	9
10	MA [3]	GND	MA [5]	NC	MA [14]	MA [15]	MCKE [2]	MCKE [0]	GV _{DD}	MCKE [1]	TSEC3_ TX_CLK	GND	TSEC3_ RXD [2]	TSEC3_ RXD [0]	TV _{DD}	TSEC1_ RXD [5]	TSEC1_ RXD	NC	SENSE-	GND		OV _{DD} [3]	PCI1_ C_BE	PCI1_ AD_ [23]	PCI1_ AD_ [22]	OV _{DD} [14]	PCI1_ REQ [3]	PCI1_ REQ [2]	10
11	MA [6]	GV _{DD}	MECC [3]	MA [12]	GV _{DD}	MECC [2]	GV _{DD}	MCK [1]	MCK [1]	GND	TSEC3_ RXD [4]	TSEC3_ RXD [5]	TSEC3_ RXD [6]	TSEC3_ RXD [7]	TSEC3_ RX_ER	NC	NC	NC	SENSE-	DMA_ DDONE	DMA_ DREQ	PCI1_ AD [20]	PCI1_ AD [21]	OV _{DD} [8]	PCI1_ AD_ [16]	GND	PCI1_ GNT [3]	PCI1_ GNT [2]	11
12	MA [11]	MA [9]	GND	MECC [7]	GND	NC	MECC [0]	GVDD	GND	GV _{DD}	GND	NC	V _{DD}	NC	V _{DD}	NC	V _{DD}	NC	NC	DMA DACK [1]	CKSTP_OUT	PCI1_ AD_ [19]	PCI1_ AD [18]	PCI1_ FRAME	PCI1_ C_BE [2]	PCI1_ AD [17]	PCI1_ AD [27]	PCI1_ AD [28]	12
13	TEST_ IN	MBA [2]	MECC [6]	MDQS [8]	MDQS [8]	MDM [8]	GND	<u>МСК</u> [4]	MCK [4]	NC	NC	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	NC	NC	DMA DACK	PCI1_ STOP	OV _{DD} [4]	PCI1_ DEVSEL	PCI1_ TRDY	OV _{DD}	PCI1_ IRDY	IIC2 SCL	TEST_ SEL	13
14	GND	MDQ [27]	GVDD	MECC [1]	GV _{DD}	MECC [5]	MECC [4]	GVDD	GND	GVDD	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	NC	NC	PCI1_ AD [15]	PCI1_ C_BE [1]	PCI1_ PAR	PCI1_ SERR		PCI1_ PERR	GND	IIC2_ SDA	AV _{DD} CORE	14
15	MDQ [26]	MDQ [31]	GND	GV _{DD}	GND	GV _{DD}	GND	MDIC [0]	GND	MDIC [1]	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	NC	NC	PCI1_ AD [9]	PCI1_ AD [11]	PCI1_ AD [12]	PCI1_ AD [13]	OV _{DD} [10]	PCI1_ AD [14]	RTC	HRESET_ REQ	UDE	15
16	MDQ [30]	MDQS [3]	MDQ [19]	MDQ [23]	MDQ [18]	GND	LCS [4]	LCS5/ DMA_ DREQ2	LCS6/ DMA_ DACK2	LA [28]	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	NC	NC	OV _{DD} [1]	PCI1_ AD_ [0]	PCI1_ AD [8]	GND	PCI1_ AD [10]	CLK OUT	IRQ [5]	HRESET	SYSCLK	16
17	MDQS [3]	MDM [3]	GVDD	GND	MDQS [2]	MDQ [22]	LA [31]	LA [30]	GND	LA [29]	LCKE	V _{DD}	GND	V _{DD}	GND	V _{DD}	GND	NC	NC	NC	GND	PCI1_ AD [2]	PCI1_ AD [5]	PCI1_ C_BE	L2_ TSTCLK	IRQ [1]	IRQ [4]	ASLEEP	17
18	MDQ [25]	MDQ [24]	MDQS [2]	MDM [2]	GV _{DD}	MDQ [21]	GND	LGPL3/ LSDCAS	BVDD	LCS [0]	LCS7/ DMA_ DDONE2	GND	V _{DD}	GND	V _{DD}	GND	V _{DD}	NC	NC	NC	NC	PCI1_ AD [1]	OV _{DD} [6]	GND	PCI1_ AD_ [6]	PCI1_ AD_ [7]	MCP	AV _{DD} PLAT	18
19	MDQ [29]	MDQ [28]	NC	MDQ [17]	MDQ [16]	MDQ [20]	LCS [1]	LCS [2]	BVDD	LGPL5	LA [27]	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	IRQ [8]	PCI1_ AD [3]	PCI1_ AD [4]	IRQ [3]	SRESET	LSSD_ MODE	19
20	MDQ [11]	MDQ [10]	GND	GV _{DD}	GND	BVDD	LGPL2 /LOE/ LSDRAS	LCS [3]	LGPL0/ LSDA10	LGPL1/ LSDWE	LGPL4 /LGTA/ LUPWAIT LPBSE	XGND_ SRDS	SD1_TX [1]	XV _{DD} SRDS	SD1_TX [3]	XV _{DD} SRDS	SD1_TX [4]	XGND_ SRDS	SD1_TX [6]	XV _{DD} SRDS	SD2_TX [0]	NC	L1_ TSTCLK	OV _{DD} [11]	GPIN [7]	OV _{DD} [15]	IRQ[9] DMA_ DREQ3	AV _{DD} PCI1	20
21	MDQ [15]	MDQ [14]	GV _{DD}	MDQ [3]	MDQ [7]	GND	LAD [31]	LWE3/ LBS3/ LSDDOM	BVDD	GND	LAD [1]	XV _{DD} SRDS	SD1_TX [1]	XGND_ SRDS	SD1_TX [3]	XGND_ SRDS	SD1_TX [4]	XV _{DD} _ SRDS	SD1_TX [6]	XGND_ SRDS	SD2_TX [0]		GND	IRQ [2]	GPIN [3]	GPOUT [4]	IIC1_ SCL	IIC1_ SDA	21
22	MDQS [1]	MDQS [1]	MDQ [2]	MDQ [6]	GVDD	EE LAD [29]	LAD [30]		LINES LIBSO/ LISDDOM	LAD [0]	LAD [2]	SD1_TX [0]	XGND_ SRDS	SD1_TX [2]	XV _{DD} SRDS	SD1_ TST_ CLK	XGND_ SRDS	SD1_TX [5]	XV _{DD} SRDS	SD1_TX [7]	XGND_ SRDS2		IRQ [7]	GPIN [4]	OV _{DD} [13]	GPOUT [0]	IRQ [0]	TRST	22
23	MDQ [9]	MDM [1]	MDQS [0]	GND	LAD [27]	BVDD	LAD [28]	LWE2/ LBS2/ LSDDOM	BVDD	LAD [3]	BVDD	SD1_TX [0]	XV _{DD} SRDS	SD1_TX [2]	XGND_ SRDS	SD1_ TST_ CLK	XV _{DD_} SRDS	SD1_TX [5]	XGND_ SRDS	SD1_TX [7]	XV _{DD} SRDS2	NC	IRQ [6]	GPIN [2]	GND	GPIN [5]	GND	GPOUT [1]	23
24	MDQ [8]	MDQ [13]	GVDD	MDQS [0]	LAD [24]	LAD [23]	LAD [26]	LCLK [0]	LCLK [1]	LAD [4]	LAD [5]	XGND_ SRDS	NC	SGND_ SRDS	SV _{DD_} SRDS	SV _{DD} SRDS	SGND_ SRDS	SGND_ SRDS	SV _{DD} SRDS	SV _{DD} SRDS	SGND_ SRDS	SGND_ SRDS	SGND_ SRDS	SGND_ SRDS2	IRQ[11] DMA_ DDONE3	OV _{DD} [16]	GPIN [1]	GPIN [0]	24
25	MDQ [12]	MDQ [5]	MDM [0]	MDQ [4]	LDP [3]	LAD [19]	GND	LCLK [2]	LBCTL	LAD [7]	LAD [6]	NC	SV _{DD} SRDS	SD1_RX [1]	SGND_ SRDS	SD1_RX [3]	SV _{DD_} SRDS	NC	SGND_ SRDS	SD1_RX [4]	SV _{DD_} SRDS	SD1_RX [6]	SGND_ SRDS2	SD2_RX [0]	SGND_ SRDS2	GPOUT [5]	GPIN [6]	GPOUT [3]	25
26	MDQ [0]	MDQ [1]	LAD [25]	GND	LAD [22]	LAD [18]	LAD [16]	BVDD	LALE	LDP [0]	GND	SD1_ IMP_CAL _RX	SGND_ SRDS	SD1_RX [1]	SV _{DD} SRDS	SD1_RX [3]	SGND_ SRDS	SD1_ PLL_ TPA	SV _{DD} SRDS	SD1_RX [4]	SGND_ SRDS	SD1_RX [6]	SV _{DD_} SRDS2	SD2_RX [0]	SV _{DD} SRDS2	GPOUT [7]	GPOUT [6]	PCI1_ CLK	26
27	GND	LDP [2]	GND	LSYNC_	LAD [21]	GND	LAD [15]	LAD [14]	GND	LAD [11]	LAD [9]	SV _{DD} SRDS	SD1_RX [0]	SGND_ SRDS	SD1_RX [2]	SV _{DD} SRDS	SD1_ REF_ CLK	AGND_ SRDS	NC	SV _{DD} SRDS	SD1_RX [5]	SGND_ SRDS	SD1_RX [7]	SV _{DD} SRDS	IRQ[10] DMA_ DACK3	OV _{DD} [17]	GPOUT [2]	TMS	27
28	MVREF	GND	AV _{DD} _ LBIU	LSYNC_ OUT	LAD [20]	LAD [17]	LDP [1]	LAD [13]	LAD [12]	LAD [10]	LAD [8]	SGND_ SRDS	SD1_RX [0]	SV _{DD} SRDS	SD1_RX [2]	SGND_ SRDS	SD1_ REF_ CLK	SD1_ PLL_ TPD	AV _{DD} SRDS	SGND_ SRDS	SD1_RX [5]	SV _{DD} SRDS	SD1_RX [7]	SGND_ SRDS	SD1_ IMP_CAL _TX	TDO	тск	TDI	28
	A	В	С	D	E	F	G	Н	J	К	L	М	N	Р	R	Т	U	V	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	
									F	igu	re 4	. MF	PC8	533	E Pi	n M	ap ⁻	Гор	Vie	w									

	A	В	С	D	E	F	G	Н	J	К	L	М	Ν	Ρ	<u>_</u> _
1		GV _{DD}	MDQS [5]	MDQ [32]	MDQ [46]	MDQ [47]	MDQ [34]	GND	MDQ [56]	MDQ [57]	GND	GV _{DD}	MDQ [62]	MDQ [58]	
2	MDQ [44]	MDQ [40]	MDM [5]	MDQS [5]	GV _{DD}	MDQ [42]	MDQ [43]	MDQ [35]	MDQ [60]	MDQ [61]	MDM [7]	MDQS [7]	GND	MDQS [7])
3	GND	MDQ [45]	MDQ [41]	MCS [0]	GND	MDQ [33]	GV _{DD}	MDQ [38]	MDQ [52]	GV _{DD}	MDM [6]	MDQS [6]	MDQ [50]	MDQ [51])
4	MBA [0]	MWE	MCS [2]	GV _{DD}	MDQ [36]	GND	MDM [4]	GND	MDQ [39]	MDQ [53]	MDQ [49]	MDQS [6]	MDQ [54]	MDQ [55]	
5	MA [10]	MBA [1]	MRAS	GND	MODT [0]	GV _{DD}	MDQ [37]	GV _{DD}	MDQS [4]	MDQS [4]	MDQ [48]	GND	GV _{DD}	GND)
6	TEST_ OUT	NC	GND	GV _{DD}	MODT [2]	MODT [3]	MCS [3]	MCS [1]	МСК [2]	<u>МСК</u> [2]	NC	TSEC3_ TXD [0]	TSEC3_ TX_EN	TSEC3_ TXD [1]	
7	GND	MA [0]	GV _{DD}	NC	MCAS	MA [13]	GV _{DD}	MODT [1]	NC	GND	TSEC3_ TXD [3]	TSEC3_ TXD [7]	TSEC3_ TXD [6]	TSEC3_ TXD [5]	
8	MCK [3]	<u>МСК</u> [3]	MA [2]	GND	GV _{DD}	GND	MA [1]	MCK [5]	<u>МСК</u> [5]	GND	TSEC3_ TX_ER	TSEC3_ TXD [4]	TV _{DD} [1]	TSEC3_ RX_DV)
9	MCK [0]	MCK [0]	GV _{DD}	MA [4]	MA [8]	MA [7]	GV _{DD}	MCKE [3]	NC	NC	TSEC3_ CRS	TSEC3_ COL	TSEC3_ RXD [1]	TSEC3_ RX_CLK	
10	MA [3]	GND	MA [5]	NC	MA [14]	MA [15]	MCKE [2]	MCKE [0]	GV _{DD}	MCKE [1]	TSEC3_ TX_CLK	GND	TSEC3_ RXD [2]	TSEC3_ RXD [0])
11	MA [6]	GV _{DD}	MECC [3]	MA [12]	GV _{DD}	MECC [2]	GV _{DD}	MCK [1]	МСК [1]	GND	TSEC3_ RXD [4]	TSEC3_ RXD [5]	TSEC3_ RXD [6]	TSEC3_ RXD [7])
12	MA [11]	MA [9]	GND	MECC [7]	GND	NC	MECC [0]	GV _{DD}	GND	GV _{DD}	GND	NC	V _{DD}	NC	
13	TEST_ IN	MBA [2]	MECC [6]	MDQS [8]	MDQS [8]	MDM [8]	GND	MCK [4]	MCK [4]	NC	NC	V _{DD}	GND	V _{DD})
14	GND	MDQ [27]	GV _{DD}	MECC [1]	GV _{DD}	MECC [5]	MECC [4]	gv _{DD}	GND	GV _{DD}	V _{DD}	GND	V _{DD}	GND)
7	2						DET	AIL A							

Figure 5. MPC8533E Pin Map Detail A

Device Pins

.∕∟	R	т	U	V	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	
V	MDQ [59]	TSEC1_ GTX_ CLK	TSEC1_ TXD [0]	TSEC1_ TXD [2]	NC	SD2_ IMP_CAL _TX	SGND_ SRDS2	SV _{DD} _ SRDS2	SD2_RX [2]	SD2_RX [2]	SGND_ SRDS2	AGND_ SRDS2	AV _{DD_} SRDS2	SD2_ PLL_ TPA	1
	MDQ [63]	EC_ GTX_ CLK125	TSEC1_ TXD [1]	TSEC1_ TXD [3]	NC	SGND_ SRDS2	SD2_RX [3]	SD2_RX [3]	SGND_ SRDS2	SV _{DD} _ SRDS2	SD2_ REF_ CLK	SD2_ REF_ CLK	SV _{DD} _ SRDS2	SGND_ SRDS2	2
	GV _{DD}	TSEC1_ TX_ER	LV _{DD} [2]	TSEC1_ TXD [4]	NC	TEMP_ ANODE	TEMP_ CATHODE	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SGND_ SRDS2	SD2_ PLL_ TPD	SD2_ IMP_CAL _RX	3
	LV _{DD} [1]	TSEC1_ CRS	TSEC1_ TX_EN	GND	NC	XGND_ SRDS2	XGND_ SRDS2	SD2_TX [2]	SD2_TX [2]	XGND_ SRDS2	XGND_ SRDS2	SD2_ TST_ CLK	SD2_ TST_ CLK	XGND_ SRDS2	4
	TSEC1_ COL	TSEC1_ TXD [7]	TSEC1_ TXD [6]	TSEC1_ TXD [5]	NC	SD2_TX [3]	SD2_TX [3]	TRIG_ OUT/READY /QUIESCE	TRIG_ IN	MSRCID [4]	OV _{DD} [12]	XV _{DD} _ SRDS2	XV _{DD} _ SRDS2	CKSTP_ IN	5
	TSEC3_ TXD [2]	TSEC1_ RXD [0]	GND	TSEC1_ TX_CLK	NC	XV _{DD_} SRDS2	XV _{DD} _ SRDS2	MSRCID [3]	OV _{DD} [5]	PCI1_ REQ [1]	PCI1_ GNT [0]	UART_ CTS [1]	PCI1_ IDSEL	UART_ SIN [1]	6
	TSEC3_ GTX_ CLK	TSEC1_ RXD [1]	TSEC1_ RX_DV	TSEC1_ RX_CLK	NC	MSRCID [0]	DMA_ DDONE [0]	OV _{DD} [2]	EC_ MDC	GND	PCI1_ GNT [4]	UART_ SOUT [1]	UART_ SIN [0]	UART_ SOUT [0]	7
	TSEC3_ RXD [3]	TSEC1_ RXD [2]	TSEC1_ RXD [3]	NC	NC	MDVAL	GND	PCI1_ REQ [0]	PCI1_ GNT [1]	PCI1_ AD [30]	PCI1_ AD [31]	PCI1_ AD [29]	UART_ RTS [0]	UART_ CTS [0]	8
	TSEC1_ RX_ER	TSEC1_ RXD [4]	TSEC1_ RXD [6]	NC	MSRCID [1]	EC_ MDIO	MSRCID [2]	PCI1_ AD [26]	PCI1_ AD [25]	OV _{DD} [7]	PCI1_ AD [24]	PCI1_ REQ [4]	UART_ RTS [1]	GND	9
	TV _{DD} [2]	TSEC1_ RXD [5]	TSEC1_ RXD [7]	NC	SENSE- V _{SS}	GND	DMA_ DREQ [0]	OV _{DD} [3]	PCI1_ C_BE [3]	PCI1_ AD [23]	PCI1_ AD [22]	OV _{DD} [14]	PCI1_ REQ [3]	PCI1_ REQ [2]	10
	TSEC3_ RX_ER	NC	NC	NC	SENSE- V _{DD}	DMA_ DDONE [1]	DMA_ DREQ [1]	PCI1_ AD [20]	PCI1_ AD [21]	OV _{DD} [8]	PCI1_ AD [16]	GND	PCI1_ GNT [3]	PCI1_ GNT [2]	11
	V _{DD}	NC	V _{DD}	NC	NC	DMA_ DACK [1]	CKSTP_ OUT	PCI1_ AD [19]	PCI1_ AD [18]	PCI1_ FRAME	PCI1_ C_BE [2]	PCI1_ AD [17]	PCI1_ AD [27]	PCI1_ AD [28]	12
	GND	V _{DD}	GND	NC	NC	DMA_ DACK [0]	PCI1_ STOP	OV _{DD} [4]	PCI1_ DEVSEL	PCI1_ TRDY	OV _{DD} [9]	PCI1_ IRDY	IIC2_ SCL	TEST_ SEL	13
	V _{DD}	GND	V _{DD}	NC	NC	PCI1_ AD [15]	PCI1_ C_BE [1]	PCI1_ PAR	PCI1_ SERR		PCI1_ PERR	GND	IIC2_ SDA	AV _{DD} _ CORE	14
							DET	AIL B						2	<u>/</u>

Figure 6. MPC8533E Pin Map Detail B

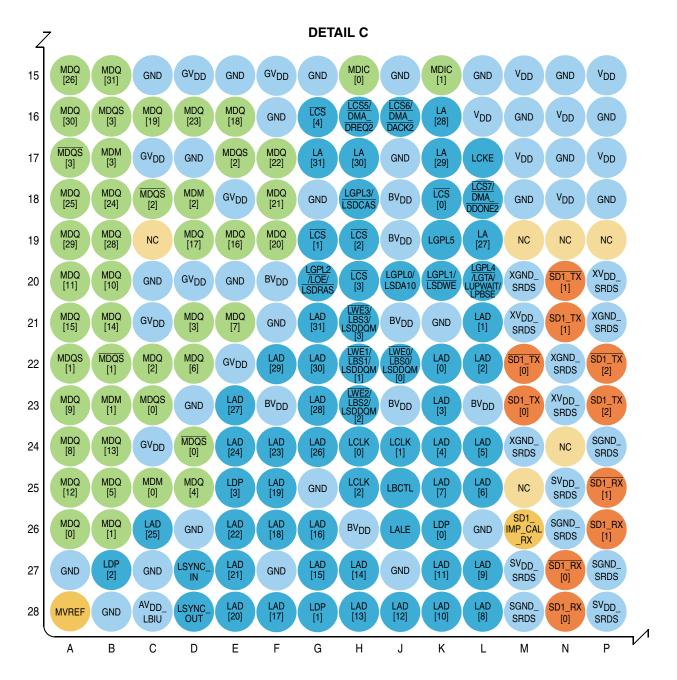


Figure 7. MPC8533E Pin Map Detail C

							DETA	AIL D						~	2
	GND	V _{DD}	GND	NC	NC	PCI1_ AD [9]	PCI1_ AD [11]	PCI1_ AD [12]	PCI1_ AD [13]	OV _{DD} [10]	PCI1_ AD [14]	RTC	HRESET_ REQ	UDE	15
	V _{DD}	GND	V _{DD}	NC	NC	OV _{DD} [1]	PCI1_ AD [0]	PCI1_ AD [8]	GND	PCI1_ AD [10]	CLK_ OUT	IRQ [5]	HRESET	SYSCLK	16
	GND	V _{DD}	GND	NC	NC	NC	GND	PCI1_ AD [2]	PCI1_ AD [5]	PCI1_ C_BE [0]	L2_ TSTCLK	IRQ [1]	IRQ [4]	ASLEEP	17
	V _{DD}	GND	V _{DD}	NC	NC	NC	NC	PCI1_ AD [1]	OV _{DD} [6]	GND	PCI1_ AD [6]	PCI1_ AD [7]	MCP	AV _{DD} _ PLAT	18
	NC	NC	IRQ [8]	PCI1_ AD [3]	PCI1_ AD [4]	IRQ [3]	SRESET	LSSD_ MODE	19						
	SD1_TX [3]	XV _{DD} _ SRDS	SD1_TX [4]	XGND_ SRDS	SD1_TX [6]	XV _{DD} _ SRDS	SD2_TX [0]	NC	L1_ TSTCLK	OV _{DD} [11]	GPIN [7]	OV _{DD} [15]	IRQ[9] DMA_ DREQ3	AV _{DD} PCI1	20
	SD1_TX [3]	XGND_ SRDS	SD1_TX [4]	XV _{DD} _ SRDS	SD1_TX [6]	XGND_ SRDS	SD2_TX [0]	NC	GND	IRQ [2]	GPIN [3]	GPOUT [4]	IIC1_ SCL	IIC1_ SDA	21
	XV _{DD} _ SRDS	SD1_ TST_ CLK	XGND_ SRDS	SD1_TX [5]	XV _{DD} _ SRDS	SD1_TX [7]	XGND_ SRDS2	NC	IRQ [7]	GPIN [4]	OV _{DD} [13]	GPOUT [0]	IRQ [0]	TRST	22
	XGND_ SRDS	SD1_ TST_ CLK	XV _{DD} _ SRDS	SD1_TX [5]	XGND_ SRDS	SD1_TX [7]	XV _{DD} _ SRDS2	NC	IRQ [6]	GPIN [2]	GND	GPIN [5]	GND	GPOUT [1]	23
	SV _{DD_} SRDS	SV _{DD_} SRDS	SGND_ SRDS	SGND_ SRDS	SV _{DD_} SRDS	SV _{DD_} SRDS	SGND_ SRDS	SGND_ SRDS	SGND_ SRDS	SGND_ SRDS2	IRQ[11] DMA_ DDONE3	OV _{DD} [16]	GPIN [1]	GPIN [0]	24
	SGND_ SRDS	SD1_RX [3]	SV _{DD} _ SRDS	NC	SGND_ SRDS	SD1_RX [4]	SV _{DD} _ SRDS	SD1_RX [6]	SGND_ SRDS2	SD2_RX [0]	SGND_ SRDS2	GPOUT [5]	GPIN [6]	GPOUT [3]	25
	SV _{DD_} SRDS	SD1_RX [3]	SGND_ SRDS	SD1_ PLL_ TPA	SV _{DD} _ SRDS	SD1_RX [4]	SGND_ SRDS	SD1_RX [6]	SV _{DD} _ SRDS2	SD2_RX [0]	SV _{DD} _ SRDS2	GPOUT [7]	GPOUT [6]	PCI1_ CLK	26
	SD1_RX [2]	SV _{DD_} SRDS	SD1_ REF_ CLK	AGND_ SRDS	NC	SV _{DD_} SRDS	SD1_RX [5]	SGND_ SRDS	SD1_RX [7]	SV _{DD_} SRDS	IRQ[10] DMA_ DACK3	OV _{DD} [17]	GPOUT [2]	TMS	27
N	SD1_RX [2]	SGND_ SRDS	SD1_ REF_ CLK	SD1_ PLL_ TPD	AV _{DD} _ SRDS	SGND_ SRDS	SD1_RX [5]	SV _{DD} _ SRDS	SD1_RX [7]	SGND_ SRDS	SD1_ IMP_CAL _TX	TDO	тск	TDI	28
~	R	Т	U	V	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	

Figure 8. MPC8533E Pin Map Detail D

Figure 9 provides a ball map.

	A	В	С	D	Е	F	G	Н	J	К	L	М	Ν	Ρ	R	Т	U	۷	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	
1		GVDD	MDQS [5]	(MDQ [32]	(MDQ [46]	(MDQ [47]	MDQ [34]		(MDQ [56]	(MDQ [57]		GVDD	(MDQ [62]	MDQ [58]	MDQ [59]		TSEC1 TXD [0]	TSEC1 TXD [2]	NC	MP_CAL	SGND_ SRDS2		SD2_RX [2]	SD2_RX [2]	SGND_ SRDS2			SD2_ PLL_ TPA	1
2	(MDQ [44]	(MDQ [40]	(MDM [5]	MDQS [5]	GVDD	(MDQ [42]	(MDQ [43]	(MDQ [35]	(MDQ [60]	(MDQ [61]	(MDM [7]	MDQS [7]		MDQS [7]	MDQ [63]		TSEC1 TXD [1]	TSEC1 TXD [3]	NC		SD2_RX [3]	SD2_RX [3]				(SD2 REF CLK			2
3		(MDQ [45]	(MDQ [41]	MCS [0]		(MDQ [33]	GVDD	(MDQ [38]	(MDQ [52]	GVDD	(MDM [6]	MDQS [6]	(MDQ [50]	MDQ [51]	GVDD			TSEC1 TXD [4]	NC		CATHODE			SGND_ SRDS2			SD2_ PLL_ TPD	SD2 IMP_CAL _RX	3
4	(MBA [0]			GVDD	(MDQ [36]		(MDM [4]		(MDQ [39]	(MDQ [53]	(MDQ [49]	MDQS [6]	(MDQ [54]	MDQ [55]			TSEC1_ TX_EN		NC			SD2_TX [2]	SD2_TX [2]				SD2_ TST_ CLK		4
5	(MA [10]	(MBA [1]					(MDQ [37]		(MDQS [4]	(MDQS [4]	(MDQ [48]	GND			TSEC1_ COL_		TSEC1 TXD [6]	TSEC1 TXD [5]	NC	SD2_TX [3]	SD2_TX [3]			MSRCID [4]	OV _{DD} [12]				5
6)(NC)			(MODT [2]				(мск [2]			TSEC3 TXD		TSEC3 TXD	TSEC3 TXD [2]	TSEC1 RXD		TSEC1 TX_CLK	NC			MSRCID [3]		PCI1_ REQ					6
7) (MA [0])		NC		(MA [13]	GVDD	(MODT [1]	(NC)	GND	TSEC3	TSEC3 TXD [7]	TSEC3 TXD [6]	TSEC3 TXD [5]	TSEC3 GTX CLK	TSEC1 RXD [1]	TSEC1 RX_DV		NC	MSRCID [0]	DIMA DDONE								7
8	(MCK [3]		(MA [2]				(MA [1]	(MCK [5]		GND	TSEC3 TX_ER	TSEC3 TXD [4]		TSEC3 RX_DV	TSEC3 RXD [3]	TSEC1 RXD [2]	TSEC1 RXD 3	(NC)	NC			PCI1 REO 0		PCI1_ AD_ [30]	PCI1_ AD_ [31]	PCI1_ AD [29]			8
9	мск [0]			(MA [4]	(MA [8]	MA [7]	GVDD		(NC)	NC	TSEC3_ CRS	TSEC3_ COL	TSEC3 RXD [1]	TSEC3 RX_CLK	TSEC1_ RX_ER	TSEC1 RXD [4]	TSEC1 RXD [6]	(NC)	MSRCID [1]		MSRCID [2]	0014	PCI1_ AD [25]		PCI1_ AD [24]	PCI1 REQ [4]			9
10	(MA [3]		(MA [5]	NC	(MA [14]	(MA [15]	MCKE [2]			MCKE [1]		GND	\sim	TSEC3 RXD	TVDD	TSEC1 RXD [5]	TSEC1 RXD [7]	(NC)	SENSE-			OV _{DD}		PCI1_ AD [23]	PCI1_ AD [22]	OV _{DD}	PCI1 REQ	PCI1 REQ [2]	10
11	(MA [6]		MECC [3]	(MA [12]		MECC [2]	GVDD		(MCK [1]		TSEC3 RXD [4]	TSEC3 RXD [5]	TSEC3 RXD [6]	TSEC3 RXD	TSEC3_ RX_ER		NC	(NC)	SENSE-	DMA DDONE		(PCI1_ AD [20]	(PCI1_ AD [21]		PCI1_ AD [16]		PCI1 GNT [3]	PCI1 GNT [2]	11
12	(MA [11])(MA [9])		MECC [7]			MECC [0]			GVDD		NC		NC	VDD		VDD	NC	NC			PCI1_ AD_ [19]	(PCI1- AD- [18]			(PCI1 AD [17]	PCI1_ AD [27]	PCI1_ AD [28]	12
13		(MBA [2]	(MECC)	MDQS [8]					(MCK [4]	NC		VDD		VDD	GND				NC										13
14		(MDQ [27]		MECC [1]		MECC [5]	MECC [4]			GVDD		GND		GND	VDD		VDD	NC	NC	PCI1 AD [15]		PCI1_PAR					(IIC2 SDA		14
15	(MDQ [26]	(MDQ [31]		GVDD		GVDD		(MDIC [0]		(MDIC [1]		VDD		VDD	GND			(NC)	NC	(PCI1 AD [9]		PCI1 AD [12]	(PCI1- AD- [13])	OV _{DD} [10]	PCI1_ AD_ [14]	RTC	HRESET		15
16	(MDQ [30]		(MDQ [19]	(MDQ [23]	(MDQ [18]					LA [28]		GND		GND	VDD		VDD	(NC)	NC			PCI1_ AD_ [8]		PCI1_ AD_ [10]		(IRQ [5]	HRESET	SYSCLK	16
17	(MDQS [3])(MDM [3])			(MDQS [2]	(MDQ [22]	LA [31]	(LA [30])		LA [29]		VDD		VDD	GND			(NC)	NC			PCI1_ AD_ [2]	(PCI1_ AD [5]				(IRQ [4]	ASLEEP	17
18	(MDQ [25]	(MDQ [24]	(MDQS)	(MDM [2]	GVDD	(MDQ [21]		LGPL3/	BVDD			GND		GND	VDD		VDD	(NC)	NC		NC	PCI1_ AD_ [1]			PCI1_ AD_ [6]	(PCI1_ AD [7]			18
19	(MDQ [29]	(MDQ [28]		(MDQ [17]	(MDQ [16]	(MDQ [20]			BVDD	LGPL5	LA [27]	NC)(NC)(NC	NC		NC	(NC)	NC		(NC)	NC		PCI1_ AD [3]	PCI1_ AD [4]	(IRQ [3]	SRESET		19
20	(MDQ [11]	(MDQ [10]		GVDD		BVDD	LGPL2 /LOE/ LSDRAS		LGPL0/ LSDA10	LGPL1/ LSDWE		XGND_ SRDS	(SD1_TX)		SD1_TX [3]		SD1_TX [4]		SD1_TX [6]		SD2_TX [0]	NC		OV _{DD} [11]	GPIN [7]	OV _{DD} [15]		AV _{DD} PCI1	20
21	(MDQ [15]	(MDQ [14]		(MDQ [3]			LAD [31]		BVDD	GND	LAD [1]		SD1_TX		SD1_TX		SD1_TX [4]		SD1_TX [6]		SD2_TX	NC		(IRQ [2]		GPOUT [4]			21
22	(MDQS [1]		(MDQ [2]	(MDQ [6]	GVDD	LAD [29]	(LAD [30]			LAD [0]	LAD [2]	SD1_TX [0]		SD1_TX [2]				SD1_TX [5]		SD1_TX [7]		NC	(IRQ [7]	GPIN [4]	OV _{DD} [13]	GPOUT [0]		TRST	22
23	(MDQ [9]	(MDM [1]	(MDQS [0]		LAD [27]	BVDD	LAD [28]		BVDD	LAD [3]	BVDD	SD1_TX		SD1_TX				SD1_TX [5]	XGND_ SRDS	SD1_TX [7]		NC	(IRQ [6]	GPIN [2]		GPIN [5]		GPOUT [1]	23
24	(MDQ [8]	(MDQ [13]		MDQS [0]	LAD [24]	LAD [23]	LAD [26]	LCLK [0]	LCLK [1]	LAD [4]	LAD [5])(NC)(SGND_ SRDS										SGND_ SRDS2		OV _{DD} [16]	GPIN [1]	GPIN [0]	24
25	(MDQ [12]			(MDQ [4]		LAD [19]		LCLK [2]		LAD [7]	LAD [6]	NC		SD1_RX [1]	SGND_ SRDS	SD1_RX [3]		NC		SD1_RX [4]		SD1_RX [6]	SGND_ SRDS2	SD2_RX		GPOUT [5]	GPIN [6]	GPOUT [3]	25
26	(MDQ [0]		LAD [25]		LAD [22]	LAD [18]	LAD [16]	BVDD				SD1 IMP CAL		SD1_RX		SD1_RX [3]		(SD1_ PLL_ TPA		SD1_RX [4]		SD1_RX [6]		SD2_RX		GPOUT [7]	GPOUT [6]		26
27					(LAD [21]		LAD [15]	LAD [14]			LAD [9]	\geq	(SD1_RX)	\geq	SD1_RX [2]				NC	\times	SD1_RX [5]	\simeq	SD1_RX [7]			OV _{DD}	GPOUT [2]	TMS	27
28					LAD [20]	LAD [17]		(LAD [13]	(LAD [12]	LAD [10]	LAD [8]		SD1_RX		\simeq		SD1_ REF_ CLK	SD1_ PLL_ TPD			SD1_RX [5]		SD1_RX [7]	SGND_ SRDS	SD1 IMP_CAL TX	TDO	ТСК		28
``	A	В	c	D	E	F	G	H	J	К	L	M	N	P	R	Т	U	V	W	Y	AA	AB	AC	AD	AE	AF	AG	AH	
											Fig	ure	9. M	PC	3533	BE B	all I	Мар)										

4.3 Pin Listings

Table 8 provides a pin list organized by bus. A downloadable version of the pin list is available in the file AN3641SW.zip on Freescale.com.

Signal	Pin
PCI	
PCI1_AD[31]	AE8
PCI1_AD[30]	AD8
PCI1_AD[29]	AF8
PCI1_AD[28]	AH12
PCI1_AD[27]	AG12
PCI1_AD[26]	AB9
PCI1_AD[25]	AC9
PCI1_AD[24]	AE9
PCI1_AD[23]	AD10
PCI1_AD[22]	AE10
PCI1_AD[21]	AC11
PCI1_AD[20]	AB11
PCI1_AD[19]	AB12
PCI1_AD[18]	AC12
PCI1_AD[17]	AF12
PCI1_AD[16]	AE11
PCI1_AD[15]	Y14
PCI1_AD[14]	AE15
PCI1_AD[13]	AC15
PCI1_AD[12]	AB15
PCI1_AD[11]	AA15
PCI1_AD[10]	AD16
PCI1_AD[9]	Y15
PCI1_AD[8]	AB16
PCI1_AD[7]	AF18
PCI1_AD[6]	AE18
PCI1_AD[5]	AC17
PCI1_AD[4]	AE19
PCI1_AD[3]	AD19

Table	8.	Pin	List—	Βv	Bus
10010	•••			_,	

Table 8. Pin List—By Bus (continued)

Signal	Pin
PCI1_AD[2]	AB17
PCI1_AD[1]	AB18
PCI1_AD[0]	AA16
PCI1_C_BE[3]	AC10
PCI1_C_BE[2]	AE12
PCI1_C_BE[1]	AA14
PCI1_C_BE[0]	AD17
PCI1_GNT[4]	AE7
PCI1_GNT[3]	AG11
PCI1_GNT[2]	AH11
PCI1_GNT[1]	AC8
PCI1_GNT[0]	AE6
PCI1_IRDY	AF13
PCI1_PAR	AB14
PCI1_PERR	AE14
PCI1_SERR	AC14
PCI1_STOP	AA13
PCI1_TRDY	AD13
PCI1_REQ[4]	AF9
PCI1_REQ[3]	AG10
PCI1_REQ[2]	AH10
PCI1_REQ[1]	AD6
PCI1_REQ[0]	AB8
PCI1_CLK	AH26
PCI1_DEVSEL	AC13
PCI1_FRAME	AD12
PCI1_IDSEL	AG6
DDR SDRAM Memory	y Interface
MDQ[0]	A26
MDQ[1]	B26
MDQ[2]	C22
MDQ[3]	D21
MDQ[4]	D25

Table 8. Pin List—By Bus (continued)

Signal	Pin
MDQ[5]	B25
MDQ[6]	D22
MDQ[7]	E21
MDQ[8]	A24
MDQ[9]	A23
MDQ[10]	B20
MDQ[11]	A20
MDQ[12]	A25
MDQ[13]	B24
MDQ[14]	B21
MDQ[15]	A21
MDQ[16]	E19
MDQ[17]	D19
MDQ[18]	E16
MDQ[19]	C16
MDQ[20]	F19
MDQ[21]	F18
MDQ[22]	F17
MDQ[23]	D16
MDQ[24]	B18
MDQ[25]	A18
MDQ[26]	A15
MDQ[27]	B14
MDQ[28]	B19
MDQ[29]	A19
MDQ[30]	A16
MDQ[31]	B15
MDQ[32]	D1
 MDQ[33]	F3
 MDQ[34]	G1
MDQ[35]	H2
 MDQ[36]	E4
MDQ[37]	G5

Table 8. Pin List—By Bus (continued)

Signal	Pin
MDQ[38]	НЗ
MDQ[39]	J4
MDQ[40]	B2
MDQ[41]	C3
MDQ[42]	F2
MDQ[43]	G2
MDQ[44]	A2
MDQ[45]	B3
MDQ[46]	E1
MDQ[47]	F1
MDQ[48]	L5
MDQ[49]	L4
MDQ[50]	N3
MDQ[51]	P3
MDQ[52]	J3
MDQ[53]	К4
MDQ[54]	N4
MDQ[55]	P4
MDQ[56]	J1
MDQ[57]	К1
MDQ[58]	P1
MDQ[59]	R1
MDQ[60]	J2
MDQ[61]	K2
MDQ[62]	N1
MDQ[63]	R2
MECC[0]	G12
MECC[1]	D14
MECC[2]	F11
MECC[3]	C11
MECC[4]	G14
MECC[5]	F14
MECC[6]	C13

Table 8. Pin List—By Bus (continued)

Signal	Pin
MECC[7]	D12
MDM[0]	C25
MDM[1]	B23
MDM[2]	D18
MDM[3]	B17
MDM[4]	G4
MDM[5]	C2
MDM[6]	L3
MDM[7]	L2
MDM[8]	F13
MDQS[0]	D24
MDQS[1]	B22
MDQS[2]	C18
MDQS[3]	A17
MDQS[4]	J5
MDQS[5]	C1
MDQS[6]	M4
MDQS[7]	M2
MDQS[8]	E13
MDQS[0]	C23
MDQS[1]	A22
MDQS[2]	E17
MDQS[3]	B16
MDQS[4]	K5
MDQS[5]	D2
MDQS[6]	M3
MDQS[7]	P2
MDQS[8]	D13
MA[0]	B7
MA[1]	G8
MA[2]	C8
MA[3]	A10
MA[4]	D9
MA[4]	D9

Table 8. Pin List—By Bus (continued)

Signal	Pin
MA[5]	C10
MA[6]	A11
MA[7]	F9
MA[8]	E9
MA[9]	B12
MA[10]	A5
MA[11]	A12
MA[12]	D11
MA[13]	F7
MA[14]	E10
MA[15]	F10
MBA[0]	A4
MBA[1]	B5
MBA[2]	B13
MWE	B4
MCAS	E7
MRAS	C5
MCKE[0]	H10
MCKE[1]	К10
MCKE[2]	G10
MCKE[3]	Н9
MCS[0]	D3
MCS[1]	H6
MCS[2]	C4
MCS[3]	G6
MCK[0]	A9
MCK[1]	J11
MCK[2]	J6
MCK[3]	A8
MCK[4]	J13
MCK[5]	H8
MCK[0]	В9
MCK[1]	H11

Table 8. Pin List—By Bus (continued)

Signal	Pin
MCK[2]	K6
MCK[3]	B8
MCK[4]	H13
MCK[5]	J8
MODT[0]	E5
MODT[1]	H7
MODT[2]	E6
MODT[3]	F6
MDIC[0]	H15
MDIC[1]	K15
TEST_IN	A13
TEST_OUT	A6
Local Bus Controlle	er Interface
LAD[0]	K22
LAD[1]	L21
LAD[2]	L22
LAD[3]	K23
LAD[4]	K24
LAD[5]	L24
LAD[6]	L25
LAD[7]	K25
LAD[8]	L28
LAD[9]	L27
LAD[10]	K28
LAD[11]	K27
LAD[12]	J28
LAD[13]	H28
LAD[14]	H27
LAD[15]	G27
LAD[16]	G26
LAD[17]	F28
LAD[18]	F26
LAD[19]	F25

Table 8. Pin List—By Bus (continued)

Signal	Pin
LAD[20]	E28
LAD[21]	E27
LAD[22]	E26
LAD[23]	F24
LAD[24]	E24
LAD[25]	C26
LAD[26]	G24
LAD[27]	E23
LAD[28]	G23
LAD[29]	F22
LAD[30]	G22
LAD[31]	G21
LDP[0]	K26
LDP[1]	G28
LDP[2]	B27
LDP[3]	E25
LA[27]	L19
LA[28]	K16
LA[29]	K17
LA[30]	H17
LA[31]	G17
LCS[0]	K18
LCS[1]	G19
LCS[2]	H19
LCS[3]	H20
LCS[4]	G16
LCS5/DMA_DREQ2	H16
LCS6/DMA_DACK2	J16
LCS7/DMA_DDONE2	L18
LWE0/LBS0/LSDDQM[0]	J22
LWE1/LBS1/LSDDQM[1]	H22
LWE2/LBS2/LSDDQM[2]	H23
LWE3/LBS3/LSDDQM[3]	H21

Table 8. Pin List—By Bus (continued)

Signal	Pin
LALE	J26
LBCTL	J25
LGPL0/LSDA10	J20
LGPL1/LSDWE	K20
LGPL2/LOE/LSDRAS	G20
LGPL3/LSDCAS	H18
LGPL4/LGTA/LUPWAIT/LPBSE	L20
LGPL5	K19
LCKE	L17
LCLK[0]	H24
LCLK[1]	J24
LCLK[2]	H25
LSYNC_IN	D27
LSYNC_OUT	D28
DMA	
DMA_DACK[0]	Y13
DMA_DACK[1]	Y12
DMA_DREQ[0]	AA10
DMA_DREQ[1]	AA11
DMA_DDONE[0]	AA7
DMA_DDONE[1]	Y11
Programmable Interrupt C	controller
UDE	AH15
MCP	AG18
IRQ[0]	AG22
IRQ[1]	AF17
IRQ[2]	AD21
IRQ[3]	AF19
IRQ[4]	AG17
IRQ[5]	AF16
IRQ[6]	AC23
IRQ[7]	AC22
IRQ[8]	AC19

Table 8. Pin List—By Bus (continued)

Signal	Pin
IRQ[9]/DMA_DREQ3	AG20
IRQ[10]/DMA_DACK3	AE27
IRQ[11]/DMA_DDONE3	AE24
IRQ_OUT	AD14
Ethernet Management Gigabit	Reference Clock
EC_MDC	AC7
EC_MDIO	Y9
EC_GTX_CLK125	T2
Three-Speed Ethernet Controller	(Gigabit Ethernet 1)
TSEC1_RXD[7]	U10
TSEC1_RXD[6]	U9
TSEC1_RXD[5]	T10
TSEC1_RXD[4]	Т9
TSEC1_RXD[3]	U8
TSEC1_RXD[2]	Т8
TSEC1_RXD[1]	Т7
TSEC1_RXD[0]	T6
TSEC1_TXD[7]	T5
TSEC1_TXD[6]	U5
TSEC1_TXD[5]	V5
TSEC1_TXD[4]	V3
TSEC1_TXD[3]	V2
TSEC1_TXD[2]	V1
TSEC1_TXD[1]	U2
TSEC1_TXD[0]	U1
TSEC1_COL	R5
TSEC1_CRS	T4
TSEC1_GTX_CLK	T1
TSEC1_RX_CLK	V7
TSEC1_RX_DV	U7
TSEC1_RX_ER	R9
TSEC1_TX_CLK	V6
TSEC1_TX_EN	U4

Signal	Pin	
TSEC1_TX_ER	Т3	
Three-Speed Ethernet Controller (Gigabit Ethernet 3)		
TSEC3_RXD[7]	P11	
TSEC3_RXD[6]	N11	
TSEC3_RXD[5]	M11	
TSEC3_RXD[4]	L11	
TSEC3_RXD[3]	R8	
TSEC3_RXD[2]	N10	
TSEC3_RXD[1]	N9	
TSEC3_RXD[0]	P10	
TSEC3_TXD[7]	M7	
TSEC3_TXD[6]	N7	
TSEC3_TXD[5]	P7	
TSEC3_TXD[4]	M8	
TSEC3_TXD[3]	L7	
TSEC3_TXD[2]	R6	
TSEC3_TXD[1]	P6	
TSEC3_TXD[0]	M6	
TSEC3_COL	М9	
TSEC3_CRS	L9	
TSEC3_GTX_CLK	R7	
TSEC3_RX_CLK	P9	
TSEC3_RX_DV	P8	
TSEC3_RX_ER	R11	
TSEC3_TX_CLK	L10	
TSEC3_TX_EN	N6	
TSEC3_TX_ER	L8	
DUART		
UART_CTS[0]	AH8	
UART_CTS[1]	AF6	
UART_RTS[0]	AG8	
UART_RTS[1]	AG9	
UART_SIN[0]	AG7	

Table 8. Pin List—By Bus (continued)

Table 8. Pin List—By Bus (continued)

Signal	Pin
UART_SIN[1]	AH6
UART_SOUT[0]	AH7
UART_SOUT[1]	AF7
I ² C Interface	
IIC1_SCL	AG21
IIC1_SDA	AH21
IIC2_SCL	AG13
IIC2_SDA	AG14
SerDes1	
SD1_RX[0]	N28
SD1_RX[1]	P26
SD1_RX[2]	R28
SD1_RX[3]	T26
SD1_RX[4]	Y26
SD1_RX[5]	AA28
SD1_RX[6]	AB26
SD1_RX[7]	AC28
SD1_RX[0]	N27
SD1_RX[1]	P25
SD1_RX[2]	R27
SD1_RX[3]	T25
SD1_RX[4]	Y25
SD1_RX[5]	AA27
SD1_RX[6]	AB25
SD1_RX[7]	AC27
SD1_TX[0]	M23
SD1_TX[1]	N21
SD1_TX[2]	P23
SD1_TX[3]	R21
SD1_TX[4]	U21
SD1_TX[5]	V23
SD1_TX[6]	W21
SD1_TX[7]	Y23

Table 8. Pin List—By Bus (continued)

Pin
M22
N20
P22
R20
U20
V22
W20
Y22
V28
U28
U27
T22
T23
AD26
AD1
AB2
AD25
AC1
AA2
AA21
AC4
AA5
AA20
AB4
Y5
AG3
AE2
AF2
AG4
AF4
ut
AF22

Table 8. Pin List—By Bus (continued)

Signal	Pin
GPOUT[1]	AH23
GPOUT[2]	AG27
GPOUT[3]	AH25
GPOUT[4]	AF21
GPOUT[5]	AF25
GPOUT[6]	AG26
GPOUT[7]	AF26
General-Purpose Inp	put
GPIN[0]	AH24
GPIN[1]	AG24
GPIN[2]	AD23
GPIN[3]	AE21
GPIN[4]	AD22
GPIN[5]	AF23
GPIN[6]	AG25
GPIN[7]	AE20
System Control	
HRESET	AG16
HRESET_REQ	AG15
SRESET	AG19
CKSTP_IN	AH5
CKSTP_OUT	AA12
Debug	
TRIG_IN	AC5
TRIG_OUT/READY/QUIESCE	AB5
MSRCID[0]	Y7
MSRCID[1]	W9
MSRCID[2]	AA9
MSRCID[3]	AB6
MSRCID[4]	AD5
MDVAL	Y8
CLK_OUT	AE16
Clock	

Table 8. Pin List—By Bus (continued)

Signal	Pin
RTC	AF15
SYSCLK	AH16
JTAG	
тск	AG28
TDI	AH28
TDO	AF28
TMS	AH27
TRST	AH22
DFT	
L1_TSTCLK	AC20
L2_TSTCLK	AE17
LSSD_MODE	AH19
TEST_SEL	AH13
Thermal Manager	ment
TEMP_ANODE	Y3
TEMP_CATHODE	AA3
Power Managem	nent
ASLEEP	AH17
Power and Ground	Signals
GND	D5
GND	M10
GND	F4
GND	D26
GND	D23
GND	C12
GND	C15
GND	E20
GND	D8
GND	B10
GND	E3
GND	J14
GND	K21
GND	F8
	Го

Table 8. Pin List—By Bus (continued)

Signal	Pin
GND	A3
GND	F16
GND	E12
GND	E15
GND	D17
GND	L1
GND	F21
GND	H1
GND	G13
GND	G15
GND	G18
GND	C6
GND	A14
GND	A7
GND	G25
GND	H4
GND	C20
GND	J12
GND	J15
GND	J17
GND	F27
GND	M5
GND	J27
GND	K11
GND	L26
GND	К7
GND	К8
GND	L12
GND	L15
GND	M14
GND	M16
GND	M18
GND	N13

Table 8. Pin List—By Bus (continued)

Signal	Pin	
GND	N15	
GND	N17	
GND	N2	
GND	P5	
GND	P14	
GND	P16	
GND	P18	
GND	R13	
GND	R15	
GND	R17	
GND	T14	
GND	T16	
GND	T18	
GND	U13	
GND	U15	
GND	U17	
GND	AA8	
GND	U6	
GND	Y10	
GND	AC21	
GND	AA17	
GND	AC16	
GND	V4	
GND	AD7	
GND	AD18	
GND	AE23	
GND	AF11	
GND	AF14	
GND	AG23	
GND	AH9	
GND	A27	
GND	B28	
GND	C27	

Table 8. Pin List—By Bus (continued)

Signal	Pin
OVDD	Y16
OVDD	AB7
OVDD	AB10
OVDD	AB13
OVDD	AC6
OVDD	AC18
OVDD	AD9
OVDD	AD11
OVDD	AE13
OVDD	AD15
OVDD	AD20
OVDD	AE5
OVDD	AE22
OVDD	AF10
OVDD	AF20
OVDD	AF24
OVDD	AF27
LVDD	R4
LVDD	U3
TVDD	N8
TVDD	R10
GVDD	B1
GVDD	B11
GVDD	C7
GVDD	C9
GVDD	C14
GVDD	C17
GVDD	D4
GVDD	D6
GVDD	R3
GVDD	D15
GVDD	E2
GVDD	E8

Table 8. Pin List—By Bus (continued)

Signal	Pin		
GVDD	C24		
GVDD	E18		
GVDD	F5		
GVDD	E14		
GVDD	C21		
GVDD	G3		
GVDD	G7		
GVDD	G9		
GVDD	G11		
GVDD	H5		
GVDD	H12		
GVDD	E22		
GVDD	F15		
GVDD	J10		
GVDD	КЗ		
GVDD	K12		
GVDD	K14		
GVDD	H14		
GVDD	D20		
GVDD	E11		
GVDD	M1		
GVDD	N5		
BVDD	L23		
BVDD	J18		
BVDD	J19		
BVDD	F20		
BVDD	F23		
BVDD	H26		
BVDD	J21		
BVDD	J23		
VDD	L16		
VDD	L14		
VDD	M13		

Device Pins

Table 8. Pin List—By Bus (continued)

Signal	Pin
VDD	M15
VDD	M17
VDD	N12
VDD	N14
VDD	N16
VDD	N18
VDD	P13
VDD	P15
VDD	P17
VDD	R12
VDD	R14
VDD	R16
VDD	R18
VDD	T13
VDD	T15
VDD	T17
VDD	U12
VDD	U14
VDD	U16
VDD	U18
SVDD_SRDS	M27
SVDD_SRDS	N25
SVDD_SRDS	P28
SVDD_SRDS	R24
SVDD_SRDS	R26
SVDD_SRDS	T24
SVDD_SRDS	T27
SVDD_SRDS	U25
SVDD_SRDS	W24
SVDD_SRDS	W26
SVDD_SRDS	Y24
SVDD_SRDS	Y27
SVDD_SRDS	AA25

Table 8. Pin List—By Bus (continued)

Signal	Pin
SVDD_SRDS	AB28
SVDD_SRDS	AD27
SVDD_SRDS2	AB1
SVDD_SRDS2	AC26
SVDD_SRDS2	AD2
SVDD_SRDS2	AE26
SVDD_SRDS2	AG2
XVDD_SRDS	M21
XVDD_SRDS	N23
XVDD_SRDS	P20
XVDD_SRDS	R22
XVDD_SRDS	T20
XVDD_SRDS	U23
XVDD_SRDS	V21
XVDD_SRDS	W22
XVDD_SRDS	Y20
XVDD_SRDS2	Y6
XVDD_SRDS2	AA6
XVDD_SRDS2	AA23
XVDD_SRDS2	AF5
XVDD_SRDS2	AG5
XGND_SRDS	M20
XGND_SRDS	M24
XGND_SRDS	N22
XGND_SRDS	P21
XGND_SRDS	R23
XGND_SRDS	T21
XGND_SRDS	U22
XGND_SRDS	V20
XGND_SRDS	W23
XGND_SRDS	Y21
XGND_SRDS2	Y4
XGND_SRDS2	AA4

Device Pins

Table 8. Pin List—By Bus (continued)

Signal	Pin
XGND_SRDS2	AA22
XGND_SRDS2	AD4
XGND_SRDS2	AE4
XGND_SRDS2	AH4
SGND_SRDS	M28
SGND_SRDS	N26
SGND_SRDS	P24
SGND_SRDS	P27
SGND_SRDS	R25
SGND_SRDS	T28
SGND_SRDS	U24
SGND_SRDS	U26
SGND_SRDS	V24
SGND_SRDS	W25
SGND_SRDS	Y28
SGND_SRDS	AA24
SGND_SRDS	AA26
SGND_SRDS	AB24
SGND_SRDS	AB27
SGND_SRDS	AC24
SGND_SRDS	AD28
AGND_SRDS	V27
SGND_SRDS2	Y2
SGND_SRDS2	AA1
SGND_SRDS2	AB3
SGND_SRDS2	AC2
SGND_SRDS2	AC3
SGND_SRDS2	AC25
SGND_SRDS2	AD3
SGND_SRDS2	AD24
SGND_SRDS2	AE3
SGND_SRDS2	AE1
SGND_SRDS2	AE25

Table 8. Pin List—By Bus (continued)

Signal	Pin
SGND_SRDS2	AF3
SGND_SRDS2	AH2
AGND_SRDS2	AF1
AVDD_LBIU	C28
AVDD_PCI1	AH20
AVDD_CORE	AH14
AVDD_PLAT	AH18
AVDD_SRDS	W28
AVDD_SRDS2	AG1
SENSEVDD	W11
SENSEVSS	W10
Analog Signa	s
MVREF	A28
SD1_IMP_CAL_RX	M26
SD1_IMP_CAL_TX	AE28
SD1_PLL_TPA	V26
SD2_IMP_CAL_RX	AH3
SD2_IMP_CAL_TX	Y1
SD2_PLL_TPA	AH1
No Connect Pi	ns
NC	C19
NC	D7
NC	D10
NC	K13
NC	L6
NC	К9
NC	B6
NC	F12
NC	J7
NC	M19
NC	M25
NC	N19
NC	N24

Device Pins

Table 8. Pin List—By Bus (continued)

Signal	Pin
NC	P19
NC	R19
NC	AB19
NC	T12
NC	W3
NC	M12
NC	W5
NC	P12
NC	T19
NC	W1
NC	W7
NC	L13
NC	U19
NC	W4
NC	V8
NC	V9
NC	V10
NC	V11
NC	V12
NC	V13
NC	V14
NC	V15
NC	V16
NC	V17
NC	V18
NC	V19
NC	W2
NC	W6
NC	W8
NC	T11
NC	U11
NC	W12
NC	W13

Signal	Pin
NC	W14
NC	W15
NC	W16
NC	W17
NC	W18
NC	W19
NC	W27
NC	V25
NC	Y17
NC	Y18
NC	Y19
NC	AA18
NC	AA19
NC	AB20
NC	AB21
NC	AB22
NC	AB23
NC	J9

Table 8. Pin List—By Bus (continued)

5 Clocks

Figure 10 shows the internal distribution of clocks within the MPC8533E.

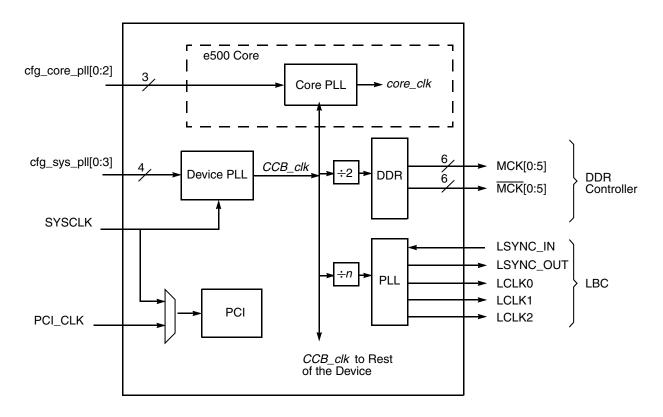


Figure 10. Clock Subsystem Block Diagram

The clock inputs for the MPC8533E are the EC_GTX_CLK125, PCI1_CLK, RTC, SD_REF_CLK/SD_REF_CLK, and SYSCLK. The EC_GTX_CLK125 input is used by the eTSEC controller as a reference clock for gigabit Ethernet modes. The PCI1_CLK input are PCI clock input if the PCI controller is configured in asynchronous mode. SD_REF_CLK/SD_REF_CLK are the reference clocks for PCI-Express operating modes. SYSCLK is the primary clock input to the device.

Table 10 shows how the clock pins should be connected.

Table 10	. Clock Pin	Recommendations
----------	-------------	-----------------

Pin Name	Pin Used	Pin Not Used
EC_GTX_CLK125	If any of the eTSECs are used in gigabit mode, connect to a 125 MHz clock.	Pull high or low through a 2–10 k Ω resistor to LV _{DD} or GND, respectively.
PCI1_CLK	If PCI1 is configured for PCI and asychronous mode, connect to a 16–66 MHz clock. If PCI1 is configured for PCI-X and asychronous mode, connect to a 66–133 MHz clock.	Pull high or low through a 2–10 k Ω resistor to OV _{DD} or GND, respectively.
RTC	If used, connect to a clock that runs no greater than 1/4 the platform CCB_clk.	Pull high or low through a 2–10 k Ω resistor to OV _{DD} or GND, respectively.

Pin Name	Pin Used	Pin Not Used
SD_REF_CLK/ SD_REF_CLK	If the SerDes is enabled at POR, connect to a clock at the frequency specified per the POR I/O Port Selection.	These pins must be connected to GND.
SYSCLK	This must always be connected to an input clock of 16–133 MHz	

Table 10. Clock Pin Recommendations (continued)

5.1 System PLL Ratio

The system PLL inputs, shown in Table 11, establish the clock ratio between the SYSCLK input and the platform clock used by the MPC8533E.

Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio	Binary Value of LA[28:31] Signals	CCB:SYSCLK Ratio
0000	16:1	1000	8:1
0001	Reserved	1001	9:1
0010	Reserved	1010	10:1
0011	3:1	1011	Reserved
0100	4:1	1100	12:1
0101	5:1	1101	Reserved
0110	6:1	1110	Reserved
0111	Reserved	1111	Reserved

Table 11. CCB Clock Ratio

5.2 e500 Core PLL Ratio

Table 12 describes the e500 core clock PLL inputs that program the core PLL and establish the ratio between the e500 core clock and the e500 core complex bus (CCB) clock.

Table 12. e500 Core to CCB Clock R	atio
------------------------------------	------

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core:CCB Clock Ratio
000	4:1	100	2:1
001	Reserved	101	5:2
010	Reserved	110	3:1
011	3:2	111	7:2

DDR Interface

5.3 Security Controller PLL Ratio

The SEC mode frequency configuration allows for CCB CLK:SEC_CLK ratio of 2:1 or 3:1. Depending on the SEC PLL ratio of 2:1 or 3:1, the serial bit clock frequency of I^2C (SCL) can be either one-half or one-third of the CCB clock respectively.

Pin Name	Value (Binary)	CCB CLK:SEC CLK
LWE	0	2:1 ¹
	1	3:1 ²

Table 13. SEC Frequency Ratio

Notes:

1. In 2:1 mode the CCB frequency must be operating \leq 400 MHz.

2. In 3:1 mode any valid CCB can be used. The 3:1 mode is the default ratio for security block.

6 DDR Interface

This section discusses the termination of DDR pins on the device. Table 14 shows how the DDR pins should be connected.

Pin Name	Pin Used	Pin Not Used
MA[0:15]	Auto-precharge for DDR signaled on A10 when DDR_SDRAM_CFG[PCHB8] = 0. Auto-precharge for DDR signaled on A8 when DDR_SDRAM_CFG[PCHB8] = 1.	These pins may be left unconnected.
MBA[0:2]	—	
MCAS	—	
MCK/MCK[0:5]	_	
MCKE[0:3]	These pins are actively driven instead of being tri-stated during reset.	
MCS[0:3]	_	
MDIC[0:1]	MDIC0 is grounded through an 18.2- Ω precision 1% resistor and MDIC1 is connected to GV _{DD} through an 18.2- Ω precision 1% resistor. These pins are used for automatic calibration of the DDR I/Os.	
MDM[0:8]	_	These pins may be left unconnected.
MDQ[0:63]	—	
MDQS[0:8]/MDQS[0:8]	_	
MECC[0:7]	_	These pins should be pulled high or low via a 2–10 k Ω resistor.

Table 14. DDR Pin Recommendations

Table 14. DDR Pin Recommendations (continued)		
Name	Pin Used	Pin Not Used

Table 14. DDR Pin	Recommendations	(continued)
-------------------	------------------------	-------------

Pin Name	Pin Used	Pin Not Used
MODT[0:3]	_	These pins may be left unconnected.
MRAS	_	
MWE		

Debug and Test Interface 7

This section discusses the termination of debug and test pins on the device. Table 15 shows how the Debug and Test pins should be connected.

Pin Name	Pin Used	Pin Not Used
ASLEEP	This pin must NOT be pulled down during power-on reset.	This pin may be left unconnected.
CLK_OUT	Note: This output is actively driven during reset rather than being three-stated during reset.	This pin may be left unconnected.
MDVAL	_	This pin must be left unconnected.
L1_TSTCLK	These signals must be pulled up via a 100–1000	Ω resistor to OV_DD for normal machine operation.
L2_TSTCLK		
LSSD_MODE		
MSRCID[0:1]	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state.	This pin must be left unconnected.
MSRCID[2:4]	These pins must NOT be pulled down during power-on reset.	This pin must be left unconnected.
SD1_IMP_CAL_RX	This pin must be pulled down through a 200 Ω resistor.	
SD1_IMP_CAL_TX	This pin must be pulled down through a 100 Ω resistor.	
SD1_PLL_TPA	Do not connect.	
SD2_IMP_CAL_RX	This pin must be pulled down through a 200 Ω resistor.	
SD2_IMP_CAL_TX	This pin must be pulled down through a 100 Ω resistor.	
SD2_PLL_TPA	Do not connect.	
TEST_SEL	This signal must be pulled up via a 100-1000 Ω resistor to OV _{DD} for normal machine operation.	
TEMP_ANODE, TEMP_CATHODE	TEMP_ANODE, TEMP_CATHODE are temperature diode pins on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461 [™]).	These pins may be left unconnected.

Table 15. Debug and Test Pin Recommendations

DMA Interface

Table 19. Debug and rest 1 in neconimendations (continued)		
Pin Name	Pin Used	Pin Not Used
TRIG_IN	_	Tie low through a 2–10 k Ω resistor to GND.
TRIG_OUT/READY	This pin must NOT be pulled down during power-on reset.	This pin must be left unconnected.

Table 15. Debug and Test Pin Recommendations (continued)

8 DMA Interface

This section discusses the termination of DMA pins on the device. Table 16 shows how the DMA pins should be connected.

Pin Name	Pin Used	Pin Not Used
DMA_DACK[0:1]	This pin is a reset configuration pin that sets the device derivative. These pins require 4.7 k Ω pull-up or pull-down resistors.	
DMA_DACK2/LCS6	_	If the Local Bus function of this pin is not used, this output pin may be left floating.
DMA_DACK3/IRQ10	_	Pull high or low to the inactive state through a 2–10 $k\Omega$ resistor to OV_{DD} or GND, respectively.
DMA_DREQ[0:1]	—	Pull high through a 2–10 k Ω resistor to OV _{DD} .
DMA_DREQ2/LCS5	_	If the Local Bus function of this pin is not used, this output pin may be left floating.
DMA_DREQ3/IRQ9	_	Pull high or low to the inactive state through a 2–10 $k\Omega$ resistor to OV_{DD} or GND, respectively.
DMA_DDONE[0:1]	_	These output pins may be left floating.
DMA_DDONE2/LCS7	_	If the Local Bus function of this pin is not used, this output pin may be left floating.
DMA_DDONE3/IRQ11	_	Pull high or low to the inactive state through a 2–10 k Ω resistor to OV_{DD} or GND, respectively.

Table 16. DMA Pin Recommendations

9 DUART Interface

This section discusses the termination of DUART pins on the device. Table 17 shows how the DUART pins should be connected.

Table 17. DUART Pin Recommendations

Pin Name	Pin Used	Pin Not Used
UART_CTS[0:1]	_	Tie high through a 2–10 k Ω resistor to OV_{DD}
UART_RTS[0:1]	_	These output pins may be left floating.
UART_SIN[0:1]	_	Tie low through a 2–10 k Ω resistor to GND.
UART_SOUT[0:1]	_	These output pins may be left floating.

10 Ethernet Management Interface

This section discusses the termination of the Ethernet Management pins on the device. Table 18 shows how the Ethernet Management pins should be connected.

Pin Name	Pin Used	Pin Not Used
EC_MDC	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
EC_MDIO		Tie high or low through a 2–10 k Ω resistor to OV _{DD} or GND, respectively.

Table 18. Ethernet Management Pin Recommendations

11 eTSEC Interface

This section discusses the termination of the Ethernet pins on the device. Table 19 shows how the Ethernet pins should be connected.

Pin Name	Pin Used	Pin Not Used
TSEC1_COL	-	Tie low through a 2–10 k Ω resistor to GND.
TSEC3_COL		
TSEC1_CRS	_	
TSEC3_CRS	_	
TSEC1_GTX_CLK	_	These output pins may be left floating.
TSEC3_GTX_CLK	_	
TSEC1_RX_CLK	_	Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD} or GND, respectively
TSEC3_RX_CLK	_	Tie high or low through a 2–10 $k\Omega$ resistor to TV_{DD} or GND, respectively.
TSEC1_RX_DV	_	Tie low through a 2–10 k Ω resistor to GND.
TSEC3_RX_DV	_	
TSEC1_RX_ER	_	
TSEC3_RX_ER	_	
TSEC1_RXD[7:0]	_	Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD} or GND, respectively.
TSEC3_RXD[7:0]	_	Tie high or low through a 2–10 $k\Omega$ resistor to TV_{DD} or GND, respectively.
TSEC1_TX_CLK		Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD} or GND, respectively

Table 19. Ethernet Pin Recommendations

Pin Name	Pin Used	Pin Not Used
TSEC3_TX_CLK	_	Tie high or low through a 2–10 k Ω resistor to TV _{DD} or GND, respectively.
TSEC1_TX_EN	These pins require an external 4.7 k Ω pull-down	These output pins may be left floating.
TSEC3_TX_EN	resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven (during reset).	
TSEC1_TX_ER	This pin is a reset configuration pin. It has a weak	If the POR default is acceptable, this output pin
TSEC3_TX_ER	internal pull-up P-FET which is enabled only when the processor is in the reset state.	may be left floating.
TSEC1_TXD[7:0]	This pin is a reset configuration pin. It has a weak	If the POR default is acceptable, this output pin
TSEC3_TXD[7:0]	internal pull-up P-FET which is enabled only when the processor is in the reset state.	may be left floating.

Table 19. Ethernet Pin Recommendations (continued)

12 I²C Interface

This section discusses the termination of I^2C pins on the device. Table 20 shows how the I^2C pins should be connected.

Table 20. I²C Pin Recommendations

Pin Name	Pin Used	Pin Not Used
IIC1_SCL	Tie these open-drain signals high through a 1 k Ω	Tie high through a 2–10 k Ω resistor to OV_{DD}
IIC2_SCL	resistor to OV _{DD} .	
IIC1_SDA		
IIC2_SDA		

13 JTAG Interface

The correct operation of the JTAG interface requires that a group of system control pins be configured as demonstrated in Figure 12. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE Std 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic does not interfere with normal chip operation. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP

interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 12 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.

The COP interface has a standard header, shown in Figure 11, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an IC). Regardless of the numbering scheme, the signal placement recommended in Figure 11 is common to all known emulators.

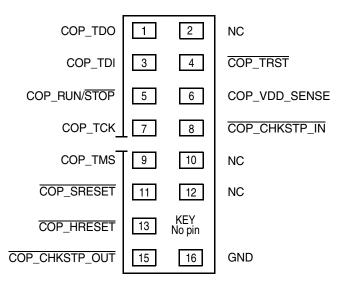
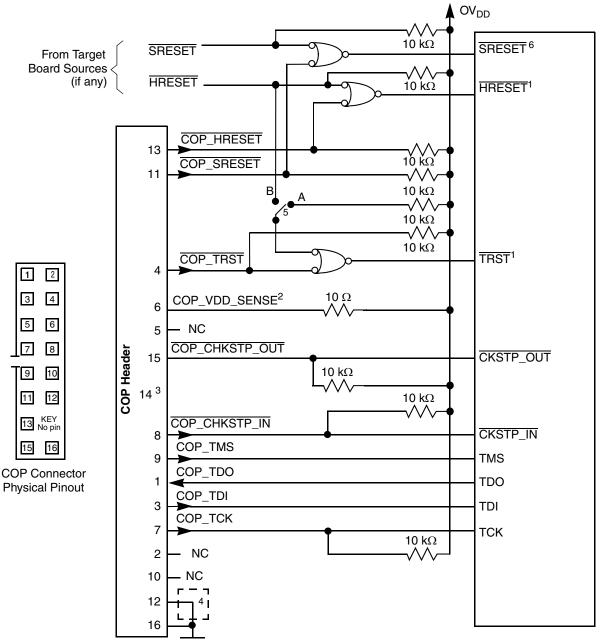



Figure 11. COP Connector Physical Pinout

JTAG Interface

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a $10-\Omega$ resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

Figure 12. JTAG Interface Connection

13.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 12. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- No pull-up/pull-down is required for TDI, TMS, or TDO.

13.2 JTAG Pins

Table 21 shows how the JTAG pins should be connected.

Pin Name	Pin Used	Pin Not Used
ТСК	If COP is used then connect as needed plus strap to OVDD via 10K pullup.	If COP is unused; Tie TCK to OVDD through a 10 $k\Omega$ resistor. This will prevent TCK from changing state and reading incorrect data into the device.
TDI	This pin has a weak internal pull-up P-FET that are always enabled. Connect to Pin3 of the COP connector	This pin may be left unconnected.
TDO	Connect to Pin1 of the COP connector	This pin may be left unconnected.
TMS	This pin has a weak internal pull-up P-FET that are always enabled. Connect to Pin9 of the COP connector	This pin may be left unconnected.
TRST	This pin has a weak internal pull-up P-FET that are always enabled. Connect to Pin4 of the COP connector and HRESET from the board	TRST should be tied to $\overline{\text{HRESET}}$ through a 0 Ω resistor.

Table 21. JTAG Pin Recommendations

13.3 JTAG Checklist

Table 22 provides a summary POR and reset checklist for the designer.

Table 22. Checklist for JTAG

Item	Description	Completed
3.	Connect the JTAG pins to the COP header as shown in Figure 12.	

Local Bus Interface

14 Local Bus Interface

This section discusses the termination of Local Bus pins on the device. Table 23 shows how the Local Bus pins should be connected.

Pin Name	Pin Used	Pin Not Used
LA27	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
LA[28:31]	This pin is a reset configuration pin that sets the C 4.7 k Ω pull-up or pull-down resistors.	CB clock to SYSCLK PLL ratio. These pins require
LAD[0:31]	Note that the LSB for the address = LAD[24:31]; however, the MSB for the data is on LAD[0:7].	Tie high or low through a 2–10 k Ω resistor to BV_{DD} or GND, respectively, if the general purpose POR configuration is not used.
LALE		500 core clock to CCB Clock PLL ratio. These pins
LBCTL	require 4.7 k Ω pull-up or pull-down resistors.	
LCLK[0:2]	_	These output pins may be left floating.
LCKE	—	
LCS[0:4]	_	
LCS5/DMA_DREQ2	_	If the DMA functions of these pins are not used,
LCS6/DMA_DACK2	_	these output pins may be left floating.
LCS7/DMA_DDONE2	—	
LGPL0/LSDA10	This pin is a reset configuration pin. It has a weak	If the POR defaults are acceptable, these output
LGPL1/LSDWE	internal pull-up P-FET which is enabled only when the processor is in the reset state.	pins may be left floating.
LGPL2/LOE/LSDRAS	This pin is a reset configuration pin that sets the e500 core clock to CCB Clock PLL ratio. These pins require 4.7 k Ω pull-up or pull-down resistors.	
LGPL3/LSDCAS	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
LGPL4/LGTA/LUPWAIT/ LPBSE	_	This pin either needs to be pulled-up via a $2-10 \text{ k}\Omega$ resistor to BV_{DD} or needs to be reconfigured as LPBSE prior to boot-up.
LGPL5	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
LSYNC_IN	LSYNC_IN needs to be connected via a trace to	LSYNC_IN needs to be directly connected to
LSYNC_OUT	LSYNC_OUT of length equal to the longest LCK <i>n</i> signal used.	LSYNC_OUT.

Table 23. Local Bus Pin	Recommendations
-------------------------	-----------------

Pin Name	Pin Used	Pin Not Used
LWE0/LBS0/LSDDQM0		If the POR defaults are acceptable, these output
LWE1/LBS1/LSDDQM1	internal pull-up P-FET which is enabled only when the processor is in the reset state.	pins may be left floating.
LWE2/LBS2/LSDDQM2		
LWE3/LBS3/LSDDQM3		

Table 23. Local Bus Pin Recommendations (continued)

15 PCI Interface

This section discusses the termination of PCI pins on the device.

15.1 Unrealized RST Pin

The MPC8533E does not implement for the PCI interface a specific RST pin separate from the rest of the device pins. Instead, the PCI RST is realized with the HRESET input.

15.2 PCI Pins

Table 24 shows how the PCI pins should be connected. Unless otherwise noted, unused inputs need be tied to their inactive state through a 2–10 k Ω resistor, and unused I/Os need be tied high or low through a 2–10 k Ω resistor to OV_{DD} and GND, respectively.

Pin Name	Pin Used	Pin Not Used
PCI1_AD[31:0]	_	If PCI arbiter is enabled during POR, All AD pins
PCI1_AD[31:0]	_	will be driven to the stable states after POR. Therefore, all ADs pins can be floating. If PCI arbiter is disabled during POR, All AD pins will be in the input state. Therefore, all ADs pins need to be grouped together and tied to OVdd through a single (or multiple) 10K ohm resistor(s)
PCI1_C_BE[3:0]	_	Tie high through a 2–10 k Ω resistor to OV_{DD}
PCI1_CLK	If PCI1 is configured as PCI asynchronous mode, a valid clock must be provided on pin PCI1_CLK, otherwise the processor will not boot up.	Tie high or low through a 2–10 $k\Omega$ resistor to OV_{DD} or GND, respectively,
PCI1_DEVSEL	A weak pull-up resistor (2–10 k	2) be placed on this pin to OV _{DD} .
PCI1_FRAME		
PCI1_GNT0	_	Tie high through a 2–10 k Ω resistor to OV_{DD}

Table 24. PCI Pin Recommendations

PIC Interface

Pin Name	Pin Used	Pin Not Used
PCI1_GNT[4:1]	This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the PCIn_AD pins as "No Connect" or terminated through 2–10 k Ω pull-up resistors with the default of internal arbiter if the PCIn_AD pins are not connected to any other PCI device. The PCI block will drive the PCIn_AD pins if it is configured to be the PCI arbiter—through POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is any other PCI device connected on the bus.	If the POR defaults are acceptable, these output pins may be left floating.
PCI1_IDSEL	—	Tie low through a 2–10 k Ω resistor to GND.
PCI1_IRDY	A weak pull-up resistor (2–10 kΩ) r	need be placed on this pin to OV _{DD} .
PCI1_PAR	—	Tie low through a 2–10 $k\Omega$ resistor to GND.
—	—	
PCI1_PERR	A weak pull-up resistor (2–10 k Ω) need be placed on this pin to OV _{DD} .	
PCI1_REQ0	—	Tie high through a 2–10 k Ω resistor to OV_{DD}
PCI1_REQ[4:1]	—	
PCI1_SERR	A weak pull-up resistor (2–10 k Ω) need be	
PCI1_STOP	placed on this pin to OV _{DD} .	
PCI1_TRDY		

Table 24. PCI Pin Recommendations (continued)

16 PIC Interface

This section discusses the termination of programmable interrupt controller pins on the device. Table 25 shows how the PIC pins should be connected.

Table 25. PIC Pin F	Recommendations
---------------------	-----------------

Pin Name	Pin Used	Pin Not Used
IRQ[0:8]	A weak pull-up or pull-down may be needed to	Tie high or low to the inactive state through a
IRQ9/DMA_DREQ3	the inactive state.	2–10 k Ω resistor to OV_{DD} or GND, respectively,
IRQ10/DMA_DACK3		
IRQ11/DMA_DDONE3		

Pin Name	Pin Used	Pin Not Used
IRQ_OUT	Pull high through a 2-	10 k Ω resistor to OV _{DD} .
MCP		
UDE		

17 SerDes Interface

This section discusses the termination of SerDes pins on the device. Table 26 and Table 27 show how the SerDes pins should be connected. Note that the SerDes must always have power applied to its supply pins.

Pin Name	Pin Used	Pin Not Used
SD1_PLL_TPD	Do not connect.	
SD1_PLL_TPA		
SD1_RX[0:7]	_	These pins must be connected to GND.
SD1_RX[0:7]		
SD1_TX[0:7]	_	These pins must be left unconnected.
SD1_TX[0:7]		
SD1_IMP_CAL_RX	This pin must be pulled down through a 200 Ω resistor.	
SD1_IMP_CAL_TX	This pin must be pulled down through a 100 Ω resistor.	
SD1_REF_CLK	_	These pins must be connected to GND.
SD1_REF_CLK	_	These pins must be connected to GND.
SD1_TST_CLK	Do not connect.	
SD1_TST_CLK	Do not connect.	

 Table 26. SerDes1 Pin Recommendations

Table 27. SerDes2 Pin Recommendations

Pin Name	Pin Used	Pin Not Used	
SD2_PLL_TPD	Do not e	Do not connect.	
SD2_PLL_TPA	Do not o	Do not connect.	
SD2_RX[0]	_	These pins must be connected to GND.	
SD2_RX[2]	These pins must be	These pins must be connected to GND.	
SD2_RX[3]	These pins must be	These pins must be connected to GND.	
SD2_RX[0]	_	These pins must be connected to GND.	
SD2_RX[2]	These pins must be	These pins must be connected to GND.	
SD2_RX[3]	These pins must be connected to GND.		

System Control

Pin Name Pin Used		Pin Not Used
SD2_TX[0]	_	These pins must be left unconnected.
SD2_TX[2]	These pins must be left unconnected.	
SD2_TX[3]	These pins must be left unconnected.	
SD2_TX[0]	_	These pins must be left unconnected.
SD2_TX[2]	These pins must be left unconnected.	
SD2_TX[3]	These pins must be left unconnected.	
SD2_IMP_CAL_RX	This pin must be pulled down through a 200 Ω resistor.	
SD2_IMP_CAL_TX	This pin must be pulled down through a 100 Ω resistor.	
SD2_REF_CLK	_	These pins must be connected to GND.
SD2_REF_CLK —		These pins must be connected to GND.
SD2_TST_CLK	Do not connect.	
SD2_TST_CLK	Do not connect.	

Table 27. SerDes2 Pin Recommendations (continued)

18 System Control

This section discusses the termination of system control pins on the device. Table 28 shows how the system control pins should be connected.

Table 28. System Control Pin Recommendations

Pin Name	Pin Used	Pin Not Used
CKSTP_IN	Pull high through a 2–10 k Ω resistor to OV _{DD} . Connect to Pin7 of the COP connector (refer to Figure 12).	Pull high through a 2–10 k Ω resistor to OV_{DD}
CKSTP_OUT	Pull this open-drain signal high through a $2-10 \text{ k}\Omega$ resistor to OV_{DD} . Connect to Pin15 of the COP connector (refer to Figure 12).	Pull high through a 2–10 $k\Omega$ resistor to OV_{DD}
HRESET	Pull high through a 2–10 k Ω resistor to OV _{DD} . Connect to Pin13 of the COP connector (refer to Figure 12).	
HRESET_REQ	Pull high through a 2–10 k Ω resistor to OV _{DD} . This pin must NOT be pulled down during power-on reset.	This pin must NOT be pulled down during power-on reset.
SRESET	Pull high through a 2–10 k Ω resistor to OV _{DD} . Connect to Pin11 of the COP connector (refer to Figure 12).	Pull high through a 2–10 k Ω resistor to OV_{DD}

19 Spare Configuration Pins

Several pins on the MPC8533E are marked per configuration as shown in Table 29. The spare pins are unused POR config pins. It is highly recommended that the customer provide the capability of setting these

pins low (that is, pull-down resistor which is not currently stuffed) in order to support new config options should they arise between revisions.

Pin Name	Pin Number	Comment
EC_MDC	AC7	cfg_spare[0]
TSEC1_TXD[7]	Τ5	cfg_spare[1]
TSEC1_TXD[3]	V2	cfg_spare[2]
TSEC3_TXD[7]	M7	cfg_spare[3]

Table 29. RESERVED Pin Recommendations

20 Power and Ground Signals

The MPC8533E has several power supplies. Table 30 shows how the SerDes pins should be connected.

Table 30. Power and Ground Pin Recommendations
--

Pin	Comment
AV _{DD} _CORE	Power supply for e500 PLL (1.0 V through a filter).
AV _{DD} _LBIU	Power supply for Local Bus PLL (1.0 V through a filter).
AV _{DD} PCI1	Power supply for PCI1 PLL (1.0 V through a filter).
AV _{DD} _PLAT	Power supply for core complex bus PLL. (1.0 V through a filter)
AV _{DD} _SRDS	Power supply for SerDes PLL (1.0 V through a filter).
AV _{DD} _SRDS2	Power supply for SerDes PLL (1.0 V through a filter).
BV _{DD}	Power supply for the Local Bus I/Os (1.8 V, 2.5 V / 3.3 V).
GND	—
GV _{DD}	Power supply for the DDR I/Os (1.8 V / 2.5 V).
LV _{DD}	Power supply for the TSEC1 I/Os (2.5 V / 3.3 V).
MVREF	DDR input reference voltage equal to approximately half of GV _{DD}
OV _{DD}	Power supply for PCI and other standards' I/Os (3.3 V).
SENSEVDD	This pin is connected to the V_{DD} plane internally and may be used by the core power supply to improve tracking and regulation.
SENSEVSS	This pin is connected to the GND plane internally and may be used by the core power supply to improve tracking and regulation.
SV _{DD} _SRDS	Power supply for the SerDes 1 transceivers (1.0 V).
SV _{DD} _SRDS2	Power supply for the SerDes 2 transceivers (1.0 V).
XV _{DD} _SRDS	Pad Power for SerDes 1 transceivers (1.0 V)
XV _{DD} _SRDS2	Pad Power for SerDes 2 transceivers (1.0 V)
XGND_SRDS	SerDes 1 GND

Table 30. Power and Ground Pin Re	ecommendations (continued)
-----------------------------------	----------------------------

Pin	Comment
XGND_SRDS2	SerDes 2 GND
AGND_SRDS	SerDes 1 PLL GND
AGND_SRDS2	SerDes 2 PLL GND
TV _{DD}	Power supply for the TSEC3 I/Os (2.5 V / 3.3 V).
XV _{DD}	Power supply for the SerDes I/Os (1.0 V).
V _{DD}	Power supply the core I/Os (1.0 V).

21 Documentation History

Table 31 provides a revision history for this application note.

Table 31. Document Revision History

Revision	Date	Substantive Change(s)
3	3/2011	 Updated introductory paragraph in Section 4.2, "Pin Map." Removed duplicate pin lists.
2	2/2009	 Added Table 3, "Estimated I/O Power Dissipation." Updated Table 28, "System Control Pin Recommendations."
1	10/2008	• In Section 4.2, "Pin Map," changed "top view of the pin map" to "bottom view of the pin map."
0	7/2008	Initial Release

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: AN3641 Rev. 3 01/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. © 2008, 2009, 2011 Freescale Semiconductor, Inc.

