
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2008. All rights reserved.

In some multicore usage scenarios, it is desirable to divide
the available core processors and other system resources into
individual partitions, each of which can function as an
individual, self-contained system. Freescale’s
implementation of Hypervisor, also known as “Topaz,”
utilizes a series of device trees to specify how the overall
system resources in a multi-core system are divided among
various partitions, as well as how each of those individual
partitions make use of the resources that are allocated to it.

This application note explains the contents of the master
device tree in a multicore Hypervisor implementation used
to allocate system resources to the individual partitions.
Additionally, it describes the contents of the individual
device trees that each partition uses for local allocation of
those resources.

1 Basic System Configuration

1.1 Hypervisor
The multicore system that is partitioned and managed by the
Freescale implementation of Hypervisor consists of multiple
CPUs as well as shared resources such as IO and memory.

Document Number: AN3649
Rev. 0, 10/2008

Contents
1. Basic System Configuration .1
2. Hypervisor Device Tree. .3
3. Partition Device Tree .13
4. Executing Under the Simics® Simulator.16
5. Revision History .17
A. Example Device Tree File Set for an 8-Core,

8-Partition Implementation .18

Understanding Device Tree Files in Multicore
Hypervisor/LWE Implementations
by Networking and Multimedia Group

Freescale Semiconductor, Inc.
Austin, TX

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

2 Freescale Semiconductor

Basic System Configuration

The Hypervisor provides a thin layer between the actual system hardware and the individual partitions that
share the system resources. The Hypervisor device tree contains information regarding how the available
systems resources are divided up among the individual partitions. In addition to the master Hypervisor
device tree, the implementation requires each of the individual partitions to have its own device tree that
specifies how the resources allocated to it are used within the partition.

• Hypervisor device tree allocates resources to individual partitions

• Guest device trees define how individual partitions use resources

Figure 1 shows how the system resources are partitioned.

Figure 1. Partitioning of System Resources

1.2 Light Weight Executive
The Light Weight Executive (LWE) consists of a minimal set of library functions that allow for the
execution of application code on a partition running under Hypervisor. This eliminates the overhead
required to execute a full operating system on the individual partitions to have a framework under which
to run application code. For example, for an eight-core system, a user might choose to set aside two CPUs
under one partition to run an SMP Linux operating system, while the remaining six are each allocated to
individual partitions that run application code under LWE.

1.3 Boot Process
Although the focus of this document is on the contents of the device tree files used to describe how system
resources are allocated, it is helpful to know a bit about how the boot code, Hypervisor, and the individual
partitions are initialized. The boot process can be described in the following phases:

1. U-Boot is executed to initialize the processor and to begin execution of the operating system code.

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 3

Hypervisor Device Tree

2. The operating system code that is executed is actually the Hypervisor. When Hypervisor is
executed, it reads the master Hypervisor device tree file to obtain the definition of how the system
is to be partitioned.

3. Hypervisor initializes the individual partitions using the individual partition device trees that are
specified in the partitions node of the Hypervisor device tree.

2 Hypervisor Device Tree
The Hypervisor device tree is used to define how the available hardware resources will be allocated among
partitions. Device trees are created from a text based source file, typically named with a “.dts” file
extension. An application known as the “device tree compiler” creates a binary image, typically carrying
a “.dtb” file extension.

A device tree file consists of several blocks, known as “nodes.” Each node can contain child nodes.
Additionally, nodes contain items known as “properties” that define the attributes of the node. The
Hypervisor device tree must contain the following nodes:

• cpus and cpu—Defines all physical CPUs in the system

• memory node—Specifies the private memory of the Hypervisor

• chosen node—Defines any global Hypervisor configuration options

• partitions node—Defines the guest partitions

• csr/simple-bus node—Defines the private I/O resources in CCSR space that belong to the
Hypervisor

• byte-channels node—Defines all byte-channels. At least one byte-channel must be defined for the
Topaz console

It is important to note that it is possible for boot code to modify the device tree binary prior to use. As
explained in the discussion of the individual nodes below, there are a couple of properties that are listed as
required by the Topaz documentation that do not appear in the device tree source file. This is because the
U-boot code for this implementation modifies the device tree binary prior to use to add some of these
required items.

The Hypervisor device tree conforms to a specification known as ePAPR. The ePAPR specification is an
extension of the Power Architecture™ Platform Requirements specification that addresses boot services.
Additional information regarding ePAPR can be found at: http://www.power.org.

2.1 Cpus and Cpu Nodes
The cpus node contains multiple cpu child nodes that must define all of the physical CPUs that exist in the
system. One CPU, typically CPU 0, is designated as the master CPU. In addition to properties defining
basic CPU related items such as cache line sizes and bus frequencies, the master cpu node contains a
“status” property that is set to the value “okay.”

In contrast, each secondary cpu node must have the following properties:

• status must be set to “disabled.”

• enable-method must be set to “spin-table.”

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

4 Freescale Semiconductor

Hypervisor Device Tree

• cpu-release-addr must be set as specified in the ePAPR.

Note that the cpu-release-addr property is one of those items that does not actually appear in the source
file, but rather is added by U-Boot.

Example 1 is an excerpt from a .dts file showing a cpus node containing child nodes to define 3 processors,
one of which is the master, and the remaining two of which are secondary CPUs.

Example 1. cpus Node

cpus {

#address-cells = <1>;

#size-cells = <0>;

cpu@0 {

device_type = "cpu";

compatible = "fsl,e500mc", "fsl,e500";

reg = <0>;

d-cache-line-size = <20>;

i-cache-line-size = <20>;

d-cache-size = <8000>;

i-cache-size = <8000>;

timebase-frequency = <0x8333333>;

bus-frequency = <0x66666666>;

clock-frequency = <0x66666666>;

status = "okay";

};

cpu@1 {

device_type = "cpu";

compatible = "fsl,e500mc", "fsl,e500";

reg = <1>;

d-cache-line-size = <20>;

i-cache-line-size = <20>;

d-cache-size = <8000>;

i-cache-size = <8000>;

timebase-frequency = <0x8333333>;

bus-frequency = <0x66666666>;

clock-frequency = <0x66666666>;

status = "disabled";

enable-method = "spin-table";

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 5

Hypervisor Device Tree

cpu@2 {

device_type = "cpu";

compatible = "fsl,e500mc", "fsl,e500";

reg = <2>;

d-cache-line-size = <20>;

i-cache-line-size = <20>;

d-cache-size = <8000>;

i-cache-size = <8000>;

timebase-frequency = <0x8333333>;

bus-frequency = <0x66666666>;

clock-frequency = <0x66666666>;

status = "disabled";

enable-method = "spin-table";

};

};

2.2 Partitions and Partition Nodes
The partitions node is used to define and allocate resources to each individual partition. The partitions
node contains a partition sub-node for each partition that is implemented. Each partition node must
contain the following properties:

• A binary image of the guest device tree that is used by that partition

• The devices that make up the partition

• The physical to logical CPU id mapping for a partition’s CPUs

• A property specifying which CPU should be the boot CPU for an SMP partition

• True physical address to guest physical address mapping

The following subsections provide a detailed explanation of the contents of the properties in the partition
nodes.

2.2.1 fsl,hv-cpus
The fsl,hv-cpus property defines which physical CPUs are associated with a partition. The value of this
property is expressed as an array of an arbitrary number of pairs that represent a starting CPU index
followed by the number of sequential CPUs beginning at the specified index that is associated with the
partition.

Example 2. fsl,hv-cpus—one CPU starting at physical CPU 0

fsl,hv-cpus = <0 1>

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

6 Freescale Semiconductor

Hypervisor Device Tree

Example 3. fsl,hv-cpus—three CPUs starting at physical CPU 4

fsl,hv-cpus = <4 3>

Example 4. fsl,hv-cpus—one CPU starting at physical CPU 2 followed by one CPU
starting at physical CPU 4

fsl,hv-cpus = <2 1 4 1>

Example 5. fsl,hv-cpus—one CPU starting at physical CPU1 followed by one CPU
starting at physical CPU 3 followed by two CPUs starting at physical CPU 5

fsl,hv-cpus = <1 1 3 1 5 2>

2.2.2 fsl,hv-dtb
Each partition requires a device tree to define how the resources allocated it by the master device tree are
utilized within the partition. The fsl,hv-dtb property specifies a pointer to a compiled device tree binary
file. When the master Hypervisor device tree is compiled, the partition device tree files specified by this
property are included as a part of the master Hypervisor device tree binary image. During initialization,
this partition device tree binary is loaded at the address specified by the fs,hv-dtb-window property
(described in Section 2.2.3, “fsl,hv-dtb-window’) for use by the partition being defined.

Example 6. fsl,hv-dtb

fsl,hv-dtb = mydevicetree.dtb

2.2.3 fsl,hv-dtb-window
The fsl,hv-dtb-window property defines the address within the physical memory of the guest partition
where the device tree binary specified by the fsl,hv-dtb property will be loaded. This property is specified
as a <prop-encoded-array> encoded as: < dtb-addr-start dtb-size>

dtb-addr is a <u64> value—the guest physical address specifying the start of a memory range where the
guest device tree is to be loaded

dtb-size is a <u32> value specifying the size of the memory window for the DTB

Because dtb-addr is a 64-bit value, two 32-bit integer values are used in the <prop-encoded-array> to
specify the full 64-bit value. In the following example the first two arguments “0 01000000” combine to
form the full 64-bit address and the argument “10000” is a 32-bit value specifying the size.

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 7

Hypervisor Device Tree

Example 7. fsl,hv-dtb-window

fsl,hv-dtb-window = <0 01000000 10000>

2.2.4 fsl,hv-physaddr-map
The fsl,hv-physaddr-map property specifies the regions of the true physical memory that are made
available to the partition as well as the guest physical address locations that they are mapped to within the
guest partitions. The property is encoded as an arbitrary number of triplets in the form
<guest-physical-addr, true- physical-address, length>.

guest-physical-addr is a <u64> value specifying the start of the guest physical address range.

true- physical-address is a <u64> value specifying the start of the true physical address range.

length is a <u32> value specifying the length of the address range.

Because both the guest physical address and the true physical address values are 64-bit values, two 32-bit
integer values are used in the property array to contain each of the full 64-bit values. As a result, each triplet
actually consists of five 32-bit integer values.

Consider the following example:

fsl,hv-physaddr-map = <0 0 0 1000000 17000000

0 17000000 0 20000000 1000000>

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

8 Freescale Semiconductor

Hypervisor Device Tree

This code example contains two sets of triplets consisting of five 32-bit values each. The first set of triplets
specifies a memory range that is mapped to the guest partition starting at guest physical address 0x00 from
the true physical address 0x1000000, and is 17000000 bytes in size, shown in Figure 2.

Figure 2. Physical Address Mapping (First Triplet from Example)

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 9

Hypervisor Device Tree

The second triplet indicates a memory range that is mapped to the guest partition starting at the guest
physical address 0x17000000 from the true physical address 0x20000000, and is 1000000 in size, shown
in Figure 3.

Figure 3. Physical Address Mapping (Second Triplet from Example)

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

10 Freescale Semiconductor

Hypervisor Device Tree

From the perspective of the guest partition this creates a contiguous block of memory starting at guest
physical address 0x00 and is 18000000 bytes in size, shown in Figure 4. However, that 18000000 block
of memory is not contiguous in the true physical memory space.

Figure 4. Memory Mapping Produced from Example

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 11

Hypervisor Device Tree

It is possible to map the same physical memory to multiple guest partitions to be used as an inter-partition
communications mechanism, shown in Figure 5.

Figure 5. Mapped Shared Memory Areas

It is also important to understand that in Figure 5, the guest physical addresses of the shared memory
regions do not need to be the same across the guest partitions.

2.2.5 fsl,hv-load-image-table
The fsl,hv-load-image table property is used to specify one or more images to be loaded into the guest
physical address space prior to starting the partition. The property is specified as an encoded array table
with one or more rows. Each row consist of three cells: <image-src-addr, image-gphys-addr, image-size>

image-src-addr is a <u64> and is the source physical address of an image to be loaded into the partition.
The image may be a binary image or may be in ePAPR ELF format.

image-gphys-addr is a <u64> and specifies the guest physical address within the partition's main memory
segment. This must be a word aligned address.

image-size is a <u32> and specifies the size of the image in bytes. The image size can be zero if the image
is an ELF image.

Because both the image-src-addr and image-gpys-addr items are 64-bit values two 32-bit integer values
are required for each in order to express the full 64-bit value. In the following example the image located
at true physical address 0xef200000 is loaded into the guest physical address location 0x00. The size
argument is zero, indicating that the image is an ELF image. One should also remember that the guest

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

12 Freescale Semiconductor

Hypervisor Device Tree

physical location 0x00 is mapped from a location in the true physical address space by the
fsl,hv-physaddr-map property described above.

Example 8. fsl,load-image-table

fsl,load-image-table = <0 ef200000 0 0 0>

2.3 Byte Channels
Byte channels are virtual 16 bit communications channels that can be used to communicate between
partitions. Additionally, a byte channel can be associated with a serial console in order to provide an output
mechanism for a partition. Byte channels are created in the master Hypervisor device tree by specifying a
byte-channels node. The individual partitions make use of these byte channels by specifying a handle to
the byte channel in the partition device tree.

Example 9. byte-channels Node

byte-channels {

bc0: byte-channel0 {

compatible = "fsl,hv-byte-channel";

fsl,endpoint = <&uartmux>;

fsl,mux-channel = <0>;

};

}

2.4 Doorbell Interrupts
Another way to provide inter-partition communication is through the use of doorbell interrupts. As with
byte channels a doorbell is specified in the master Hypervisor device tree. The individual partitions make
use of these doorbells by specifying a send and/or a receive handle to the doorbell in the partition device
tree.

Example 10. Doorbells Node in the Master Device Tree

doorbells {

doorbell@0 {

compatible = "fsl,hv-doorbell";

};

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 13

Partition Device Tree

3 Partition Device Tree
In addition to creating a master Hypervisor device tree that specifies the way that system resources are
divided among the partitions, it is also necessary to create a device tree for each individual partition
specifying how the available resources are utilized within that partition.

3.1 Root Node
The root node of the partition device tree is required and must have the following properties:

• #address-cells—Specifies the number of <u32> cells to represent the address in the reg property
in children of root (must be 2).

• #size-cells—Specifies the number of <u32> cells to represent the size in the reg property in
children of root (must be 1).

• compatible—Must be “fsl,hv-platform-p4080”, “fsl,hv-platform”

• epapr-version—Must be epapr-version = “ePAPR-1.0”

Example 11. Guest Device Tree Root Node

/ {

compatible = "fsl,hv-platform-p4080",

"fsl,hv-platform";

epapr-version = "ePAPR-1.0";

#address-cells = <2>;

#size-cells = <1>;

3.2 CPUs and CPU Nodes
Just as in the master Hypervisor device tree, the cpus node contains multiple cpu child nodes that define
the properties of each of the CPUs available to the partition. These CPUs are made available to the partition
in the master Hypervisor device tree partitions node.

From the perspective of the partition, these CPUs are contiguous. However, the actual physical CPUs
being utilized may be non-contiguous. For example, the master Hypervisor tree may make physical CPUs
1, 3, and 5 available to a partition. However, from the perspective of the partition the available CPUs are
viewed as CPUs 0, 1, and 2. Additionally, no CPUs other than those explicitly made available to a partition
are visible from within the partition.

Example 12. CPU node

cpus {

#address-cells = <1>;

#size-cells = <0>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

14 Freescale Semiconductor

Partition Device Tree

cpu@0 {

device_type = "cpu";

compatible = "fsl,e500mc", "fsl,e500";

reg = <0>;

d-cache-line-size = <20>;

i-cache-line-size = <20>;

d-cache-size = <8000>;

i-cache-size = <8000>;

timebase-frequency = <0x8333333>;

bus-frequency = <0x66666666>;

clock-frequency = <0x66666666>;

};

};

3.3 Memory Node
The memory node specifies the physical address and size of memory belonging to the partition. The
property is encoded as a pair of values consisting of a 64-bit address indicating the start of memory
followed by a size argument. As with other unsigned 64-bit property values, two 32-bit integer values are
used to comprise the complete 64-bit address. It should also be noted that the address is relative to the
physical address within the partition and not to the true physical address from which the available partition
memory is mapped.

Example 13. Memory Node

memory {

reg = <0 0 0C000000>;

device_type = "memory";

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 15

Partition Device Tree

3.4 Byte Channels
The individual partitions make use of byte channels by specifying a handle within the Hypervisor node of
the partition device tree. The handles node is a child node of the Hypervisor node. The fsl,endpoint
property of the byte channel node ties the byte channel handle to the actual byte channel defined in the
master device tree.

Example 14. Byte Channel Handle in the Partition Device Tree

hypervisor {

handles {

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,hv-handles";

interrupt-parent = <&vmpic>;

byte-channel@0 {

compatible = "fsl,hv-byte-channel-handle";

fsl,endpoint = "byte-channel0";

interrupt-parent = <&vmpic>;

};

3.5 Doorbell Interrupts
The individual partitions make use of doorbells by specifying a handle within the Hypervisor node of the
partition device tree. The handles node is a child node of the Hypervisor node. The fsl,endpoint property
of the doorbell node ties the doorbell handle to the actual doorbell defined in the master device tree.

Example 15. Doorbell Handle in the Partition Device Tree

hypervisor {

handles {

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,hv-handles";

interrupt-parent = <&vmpic>;

.

.

.

doorbell@0 {

compatible = "fsl,hv-doorbell-send-handle";

fsl,endpoint = "/doorbells/doorbell@1";

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

16 Freescale Semiconductor

Executing Under the Simics® Simulator

};

4 Executing Under the Simics® Simulator
The Simics® simulator can be used to provide a model of the target multicore hardware so that
development can proceed even before availability of actual hardware. The software and device tree files
are identical to those that execute on the actual target hardware.

Simics uses a script file, typically with a .simics extension, to configure the simulation environment. There
are several items that need to be placed into the simics script when executing Hypervisor/lwe applications
under the simics simulator.

4.1 Image files
The simics environment uses two arrays to specify image files and their locations in the simulated
hardware memory, as follows:

• guest_image[]—This array specifies the binary image files on the host system containing the
images to be loaded.

• guest_addr[]—This array specifies the physical addresses in the simulated hardware memory
where the corresponding binaries specified in the guest_image[] array are loaded.

It is important to understand that the guest addresses specified should match the fsl,hv-load-image-table
properties in the master Hypervisor device tree file.

Example 16. Image Arrays

$guest_image[0] = "myimage1.elf"

$guest_addr[0] = 0xe8700000

$guest_image[1] = "myimage2.elf"

$guest_addr[1] = 0xe8800000

4.1 Device Tree File
The master Hypervisor device tree file must also be specified in the .simics script. This is done by setting
the dev_tree_blob variable.

Example 17. device_tree_blob

$dev_tree_blob = "mydevicetree.dtb"

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 17

Revision History

4.2 Hypervisor Kernel Image
In addition to having a pointer to the master device tree file, the simulator must know where the Hypervisor
kernel is located. This is specified using the kernel_image variable in the .simics script.

Example 18. kernel_image

$kernel_image = "hv.uImage"

5 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 10/2008 Initial public release.

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

18 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

Appendix A Example Device Tree File Set for an
8-Core, 8-Partition Implementation

A.1 Master Hypervisor Device Tree
/ {

model = "fsl,MPC8578SIM";
compatible = "fsl,MPC8578SIM";
#address-cells = <2>;
#size-cells = <1>;

aliases {
stdout = &uart0;
stdin = &uart0;
serial0 = &uart0;
uartmux = &uartmux;
byte-channel0 = &bc0;
byte-channel1 = &bc1;
byte-channel2 = &bc2;
byte-channel3 = &bc3;
byte-channel4 = &bc4;

 byte-channel5 = &bc5;
 byte-channel6 = &bc6;

};

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "okay";

};
cpu@1 {

device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <1>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 19

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@2 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <2>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@3 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <3>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@4 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <4>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

20 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@5 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <5>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@6 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <6>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};

cpu@7 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <7>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 21

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;
status = "disabled";
enable-method = "spin-table";

};
};

memory {
reg = <0 0 100000>;
device_type = "memory";

};

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,mpc8578-ccsr", "simple-bus";
ranges = <0 0 fe000000 400000>;

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;

};

uart0: serial@11c500 {
device_type = "serial";
compatible = "fsl,mpc8578-uart", "fsl,ns16550", "ns16550";
interrupts = <24 2>;
interrupt-parent = <&mpic>;
reg = <11c500 100>;
clock-frequency = <0>;

};

uart1: serial@11c600 {
device_type = "serial";
compatible = "fsl,mpc8578-uart", "fsl,ns16550", "ns16550";
interrupts = <24 2>;
interrupt-parent = <&mpic>;
reg = <11c600 100>;
clock-frequency = <0>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

22 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

};

global-utilities@e0000 {//global utilities block
compatible = "fsl,mpc8572-guts";
reg = <e0000 1000>;
fsl,has-rstcr;

};
};

uartmux: uartmux {
compatible = "fsl,hv-byte-channel-mux";
fsl,phys-dev = <&uart1>;

};

byte-channels {
bc0: byte-channel0 {

compatible = "fsl,hv-byte-channel";
fsl,endpoint = <&uartmux>;
fsl,mux-channel = <0>;

};

bc1: byte-channel1 {
compatible = "fsl,hv-byte-channel";
fsl,endpoint = <&uartmux>;
fsl,mux-channel = <1>;

};

bc2: byte-channel2 {
 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <2>;
 };

bc3: byte-channel3 {
 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <3>;
 };

bc4: byte-channel4 {
 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <4>;
 };

bc5: byte-channel5 {

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 23

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <5>;
 };

bc6: byte-channel6 {
 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <6>;
 };

bc7: byte-channel7 {
 compatible = "fsl,hv-byte-channel";
 fsl,endpoint = <&uartmux>;
 fsl,mux-channel = <7>;
 };

};

doorbells {
doorbell@0 {
compatible = "fsl,hv-doorbell";
};
doorbell@1 {
compatible = "fsl,hv-doorbell";
};
doorbell@2 {
compatible = "fsl,hv-doorbell";
};
doorbell@3 {
compatible = "fsl,hv-doorbell";
};
doorbell@4 {
compatible = "fsl,hv-doorbell";
};
doorbell@5 {
compatible = "fsl,hv-doorbell";
};
doorbell@6 {
compatible = "fsl,hv-doorbell";
};
doorbell@7 {
compatible = "fsl,hv-doorbell";
};

};

partitions {

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

24 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

part1 {
compatible = "fsl,hv-partition";
fsl,hv-cpus = <0 1>;
fsl,entry = <0>;
fsl,privileged;
fsl,hv-dtb = /incbin/("linux-p1.dtb");
fsl,hv-physaddr-map = <0 0 0 1000000 17000000
 0 17000000 0 20000000 1000000

 0 fe040000 0 fe040000 20000
 0 fe060000 0 fe060000 1000
 0 fe061000 0 fe062000 1000
 0 fe062000 ffffffff ffffffff 1e000>;

fsl,hv-load-image-table = <0 ef100000 0 0 0
 0 ef600000 0 01300000

00100000>;
fsl,hv-dtb-window = <0 01000000 10000>;

};

part2 {
compatible = "fsl,hv-partition";
fsl,hv-cpus = <1 1>;
fsl,entry = <0>;
fsl,hv-dtb = /incbin/("lwe-p2.dtb");
fsl,hv-physaddr-map = <0 0 0 21000000 04000000

 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;

fsl,hv-load-image-table = <0 ef700000 0 0 0>;
fsl,hv-dtb-window = <0 01000000 10000>;

};

part3 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <2 1>;
 fsl,entry = <0>;
 fsl,hv-dtb = /incbin/("lwe-p3.dtb");
 fsl,hv-physaddr-map = <0 0 0 25000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 ef800000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

part4 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <3 1>;
 fsl,entry = <0>;
 fsl,hv-dtb = /incbin/("lwe-p4.dtb");

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 25

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

 fsl,hv-physaddr-map = <0 0 0 29000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 ef900000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

part5 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <4 1>;
 fsl,entry = <0>;
 fsl,hv-dtb = /incbin/("lwe-p5.dtb");
 fsl,hv-physaddr-map = <0 0 0 2d000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 efa00000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

part6 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <5 1>;
 fsl,entry = <0>;
 fsl,hv-dtb = /incbin/("lwe-p6.dtb");
 fsl,hv-physaddr-map = <0 0 0 41000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 efb00000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

part7 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <6 1>;
 fsl,entry = <0>;
 fsl,hv-dtb = /incbin/("lwe-p7.dtb");
 fsl,hv-physaddr-map = <0 0 0 45000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 efc00000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

part8 {
 compatible = "fsl,hv-partition";
 fsl,hv-cpus = <7 1>;
 fsl,entry = <0>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

26 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

 fsl,hv-dtb = /incbin/("lwe-p8.dtb");
 fsl,hv-physaddr-map = <0 0 0 49000000 04000000
 0 04000000 0 64000000 04000000
 0 08000000 0 6C000000 04000000>;
 fsl,hv-load-image-table = <0 efd00000 0 0 0>;
 fsl,hv-dtb-window = <0 01000000 10000>;
 };

};

chosen {
fsl,hv-pic-coreint = <0>;

};

};

A.2 Partition 1 Device Tree
/ {

compatible = "fsl,hv-platform-mpc8578",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p1";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

memory {
reg = <0 0 18000000>;
device_type = "memory";

};

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

i2c0: i2c@118000 {
device_type = "i2c";
compatible = "fsl,mpc8578-i2c",
 "fsl,i2c", "fsl-i2c";
reg = <118000 100>;
interrupts = <26 2>;
interrupt-parent = <&mpic>;
dfsrr;

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 27

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

serial@11d500 { // UART2
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d500 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};

qman: qman@318000 {
compatible = "fsl,mpc8578-qman";
reg = <318000 1000>;
interrupt-parent = <&mpic>;
interrupts = <70 2>;

};
bman: bman@31a000 {

compatible = "fsl,mpc8578-bman";
reg = <31a000 1000>;
interrupt-parent = <&mpic>;
interrupts = <74 2>;

};
};

qman-portal@0 {
compatible = "fsl,qman-portal";
reg = <0 e4200000 4000 0 e4300000 1000>;
/*
interrupts = <28 2>;
interrupt-parent = <&mpic>;
stashing-dest = <&cpu0>;
*/

};
bman-portal@0 {

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

28 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

compatible = "fsl,bman-portal";
reg = <0 e4000000 4000 0 e4100000 1000>;
/*
interrupts = <28 2>;
interrupt-parent = <&mpic>;
stashing-dest = <&cpu0>;
*/

 };

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <103ecc00>;

};
};

};

chosen {
linux,stdout-path = "/ccsr@fe000000/serial@11d500";
bootargs = "console=ttyS0,115200";
linux,initrd-start = <01300000>;

 linux,initrd-end = <01700000>;
};

aliases {
 stdout = "/ccsr/serial@11d500";
 };

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 29

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

A.3 Partition 2 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,partman-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

 shmem_heap {
 reg = <0 60000000 4000000>;
 compatible = "fsl,share-mem-heap";
 };

 shmem_heap_guarded {
 reg = <0 68000000 4000000>;
 compatible = "fsl,share-mem-heap-guarded";
 };

ccsr@fe000000 {

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

30 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 31

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel0";
interrupt-parent = <&vmpic>;

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

doorbell@0 {
compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@1";

};
doorbell@1 {

compatible = "fsl,hv-doorbell-receive-handle";
fsl,endpoint = "/doorbells/doorbell@1";

};
doorbell@2 {

compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@2";

};
doorbell@3 {

compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@3";

};
doorbell@4 {

compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@4";

};
doorbell@5 {

compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@5";

};
doorbell@6 {

compatible = "fsl,hv-doorbell-send-handle";
fsl,endpoint = "/doorbells/doorbell@6";

};
doorbell@7 {

compatible = "fsl,hv-doorbell-send-handle";

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

32 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

fsl,endpoint = "/doorbells/doorbell@7";
};

};
};

chosen {
linux,stdout-path = "/ccsr@fe000000/serial@11d600";

 bootargs = "console=ttyS0,115200";
linux,initrd-start = <01300000>;
linux,initrd-end = <01400000>;
fsl,partition = "partition2";

};

 aliases {
stdout = "/hypervisor/handles/byte-channel@0";
uart3 = "/ccsr/serial@11d600";

 };

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e4008000 4000 0 e4102000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e4208000 4000 0 e4302000 1000>;

};

};

A.4 Partition 3 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 33

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

shmem_heap {
reg = <0 60000000 4000000>;
compatible = "fsl,share-mem-heap";

};

shmem_heap_guarded {
reg = <0 68000000 4000000>;
compatible = "fsl,share-mem-heap-guarded";

};

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

34 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel1";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 35

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

 door-bell@0 {
 compatible = "fsl,hv-doorbell-receive-handle";
 fsl,endpoint = "/doorbells/doorbell@2";
 };

};
};

chosen {
fsl,partition = "partition3";

};

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e400c000 4000 0 e4103000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e420c000 4000 0 e4303000 1000>;

};

};

A.5 Partition 4 Device Tree
/ {

compatible = "fsl,hv-platform-mpc8578",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

36 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

 shmem_heap {
 reg = <0 60000000 4000000>;
 compatible = "fsl,share-mem-heap";
 };

 shmem_heap_guarded {
 reg = <0 68000000 4000000>;
 compatible = "fsl,share-mem-heap-guarded";
 };

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 37

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel2";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

door-bell@0 {
compatible = "fsl,hv-doorbell-receive-handle";

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

38 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

fsl,endpoint = "/doorbells/doorbell@3";
};

};
};

chosen {
fsl,partition = "partition4";

};

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e4010000 4000 0 e4104000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e4210000 4000 0 e4304000 1000>;

};

};

A.6 Partition 5 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 39

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

shmem_heap {
reg = <0 60000000 4000000>;
compatible = "fsl,share-mem-heap";

};

shmem_heap_guarded {
reg = <0 68000000 4000000>;
compatible = "fsl,share-mem-heap-guarded";

};

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

40 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel3";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

door-bell@0 {
compatible = "fsl,hv-doorbell-receive-handle";
fsl,endpoint = "/doorbells/doorbell@4";

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 41

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

};
};

chosen {
fsl,partition = "partition5";

};

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e4014000 4000 0 e4105000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e4214000 4000 0 e4305000 1000>;

};

};

A.7 Partition 6 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

42 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

clock-frequency = <0x66666666>;
};

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

 shmem_heap {
 reg = <0 60000000 4000000>;
 compatible = "fsl,share-mem-heap";
 };

 shmem_heap_guarded {
 reg = <0 68000000 4000000>;
 compatible = "fsl,share-mem-heap-guarded";
 };

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 43

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel4";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

door-bell@0 {
compatible = "fsl,hv-doorbell-receive-handle";
fsl,endpoint = "/doorbells/doorbell@5";

};

};
};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

44 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

chosen {
fsl,partition = "partition6";

};

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e4018000 4000 0 e4106000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e4218000 4000 0 e4306000 1000>;

};

};

A.8 Partition 7 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 45

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

};

memory {
reg = <0 0 0C000000>;
device_type = "memory";

};

 shmem_heap {
 reg = <0 60000000 4000000>;
 compatible = "fsl,share-mem-heap";
 };

 shmem_heap_guarded {
 reg = <0 68000000 4000000>;
 compatible = "fsl,share-mem-heap-guarded";
 };

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

46 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";
big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel5";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

door-bell@0 {
compatible = "fsl,hv-doorbell-receive-handle";
fsl,endpoint = "/doorbells/doorbell@6";

};
};

};

chosen {
fsl,partition = "partition7";

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 47

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e401c000 4000 0 e4107000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e421c000 4000 0 e4307000 1000>;

};

};

A.9 Partition 8 Device Tree
/ {

compatible = "fsl,hv-platform-p4080",
 "fsl,hv-platform",
 "fsl,MPC8578SIM";

model = "fsl,hv-test-linux-p2";
epapr-version = "ePAPR-1.0";
#address-cells = <2>;
#size-cells = <1>;

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "fsl,e500mc", "fsl,e500";
reg = <0>;
d-cache-line-size = <20>;
i-cache-line-size = <20>;
d-cache-size = <8000>;
i-cache-size = <8000>;
timebase-frequency = <0x8333333>;
bus-frequency = <0x66666666>;
clock-frequency = <0x66666666>;

};

};

memory {
reg = <0 0 04000000>;

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

48 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

device_type = "memory";
};

 shmem_heap {
 reg = <0 60000000 4000000>;
 compatible = "fsl,share-mem-heap";
 };

 shmem_heap_guarded {
 reg = <0 68000000 4000000>;
 compatible = "fsl,share-mem-heap-guarded";
 };

ccsr@fe000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
device_type = "soc";
ranges = <0 0 fe000000 400000>;

serial@11d600 { // UART3
device_type = "serial";
compatible = "fsl,mpc8578-uart",

 "fsl,ns16550", "ns16550";
reg = <11d600 100>;
clock-frequency = <0>;
interrupts = <25 2>;
interrupt-parent = <&mpic>;

};

gtbcr@410f0 {
compatible = "fsl,mpc8578-gtbcr";
reg = <410f0 300>;
clock-frequency = <0>;
interrupt-parent = <&mpic>;

};

mpic: pic@40000 {
clock-frequency = <0>;
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <40000 40000>;
compatible = "fsl,mpc8578-mpic", "fsl,mpic",
 "chrp,open-pic";
device_type = "open-pic";

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 49

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

big-endian;
fsl,hv-interrupt-controller;

};
};

vmpic:vmpic {
compatible = "fsl,hv-vmpic";
interrupt-controller;
#interrupt-cells = <2>;
fsl,hv-phandle-ref = <&vmpic>;

};

hypervisor {
handles {

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,hv-handles";
interrupt-parent = <&vmpic>;

byte-channel@0 {
compatible = "fsl,hv-byte-channel-handle";
fsl,endpoint = "byte-channel6";

};

gpio {
reg = <1>;
compatible = "fsl,hv-gpio-handle";
fsl,real-dev = "gpio";
fsl,bitmask = <020033ff>;

};

door-bell@0 {
compatible = "fsl,hv-doorbell-receive-handle";
fsl,endpoint = "/doorbells/doorbell@7";

};
};

};

chosen {
fsl,partition = "partition8";

};

aliases {
stdout = "/hypervisor/handles/byte-channel@0";

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

50 Freescale Semiconductor

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

bman-portal {
compatible = "fsl,bman-portal";
reg = <0 e4020000 4000 0 e4108000 1000>;

};

qman-portal {
compatible = "fsl,qman-portal";
reg = <0 e4220000 4000 0 e4308000 1000>;

};

};

Understanding Device Tree Files in Multicore Hypervisor/LWE Implementations, Rev. 0

Freescale Semiconductor 51

Example Device Tree File Set for an 8-Core, 8-Partition Implementation

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3649
Rev. 0
10/2008

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

	1 Basic System Configuration
	1.1 Hypervisor
	Figure 1. Partitioning of System Resources

	1.2 Light Weight Executive
	1.3 Boot Process

	2 Hypervisor Device Tree
	2.1 Cpus and Cpu Nodes
	2.2 Partitions and Partition Nodes
	2.2.1 fsl,hv-cpus
	2.2.2 fsl,hv-dtb
	2.2.3 fsl,hv-dtb-window
	2.2.4 fsl,hv-physaddr-map
	Figure 2. Physical Address Mapping (First Triplet from Example)
	Figure 3. Physical Address Mapping (Second Triplet from Example)
	Figure 4. Memory Mapping Produced from Example
	Figure 5. Mapped Shared Memory Areas

	2.2.5 fsl,hv-load-image-table

	2.3 Byte Channels
	2.4 Doorbell Interrupts

	3 Partition Device Tree
	3.1 Root Node
	3.2 CPUs and CPU Nodes
	3.3 Memory Node
	3.4 Byte Channels
	3.5 Doorbell Interrupts

	4 Executing Under the Simics® Simulator
	4.1 Device Tree File
	4.2 Hypervisor Kernel Image

	5 Revision History
	Table 1. Document Revision History

	Appendix A Example Device Tree File Set for an 8-Core, 8-Partition Implementation
	A.1 Master Hypervisor Device Tree
	A.2 Partition 1 Device Tree
	A.3 Partition 2 Device Tree
	A.4 Partition 3 Device Tree
	A.5 Partition 4 Device Tree
	A.6 Partition 5 Device Tree
	A.7 Partition 6 Device Tree
	A.8 Partition 7 Device Tree
	A.9 Partition 8 Device Tree

