
Freescale Semiconductor
Application Note

 AN3733
Rev. 0, 07/2008

Contents

Introduction . 1
SPE Instruction Set . 2

2.1 Instruction Overview . 2
2.2 Breaking Down Mnemonics. 3
SPE Performance Improvements Over Book E. 6

3.1 SPE Versus Book E — Simple Example 6
3.2 Instruction Timing . 9
3.3 SPE versus Book E Timing Comparison 12
Techniques for Writing Efficient SPE. 13

4.1 Controlling Instructions Using SPE Assembly 13
4.2 Scheduling Instructions to Reduce Stalls 13
4.3 Rolling Out Small Loops . 16
4.4 Aligning SPE Instructions 16
4.5 Register Usage . 17
Guide to Writing SPE Functions 17
Summary . 18

ppendix A Multiplication of Two Matrices 19
ppendix B SPE Function Examples. 20

Improving DSP Performance
Using Efficient SPE Coding
by: Robert Moran

Applications Engineering
Microcontroller Solutions Group
The signal processing engine (SPE) on the MPC5500
family of devices allows multiple data operations to be
performed by a single instruction. This feature is aimed
at DSP operations, where the use of the SPE will increase
system performance. The fundamentals of the SPE are
explained within this application note, along with the
benefits to system performance that this module offers.

To achieve optimal performance from the SPE,
consideration must be given to implementation of the
software. This application note details techniques that
should be used to gain this optimal performance. There
are also guidelines and examples to aid the user in
developing an SPE function for a DSP algorithm. With
these guidelines, the user should be able to develop DSP
functions using the SPE that will improve overall system
performance.

1 Introduction
It is possible to improve system performance for DSP
operations on the MPC5500 family by using the signal

1
2

3

4

5
6
A
A

© Freescale Semiconductor, Inc., 2008. All rights reserved.

processing engine (SPE) auxiliary processing unit (APU). The SPE APU is designed to accelerate
signal-processing applications normally suited to DSP operation. This acceleration is accomplished using
short (two-element) vectors within 64-bit general purpose registers (GPRs) and using single-instruction
multiple-data (SIMD) operations to perform the requisite computations. The SPE also architects an
accumulator register to allow for back-to-back operations without loop unrolling.

The SPE has its own set of dedicated instructions, which generally take elements from each source register
and operate on those elements with the corresponding elements of a second source register (and/or the
accumulator). The results of these operations are placed in the destination register and/or the accumulator.
Instructions that are vector in nature (that is, they produce results of more than one element) provide results
for each element that are independent of the computation of the other elements. For example, the SPE
allows the addition of two 32-bit values in parallel.

The SPE APU uses the GPRs within the e200z3 and e200z6 core. The GPRs are implemented as 64-bit
registers, although Book E instructions use only the lower 32 bits. When SPE instructions are executed
they use the full range of the 64-bit GPRs. The SPE APU instructions view the 64-bit register as being
composed of a vector of two elements, each of which is 32 bits wide. (Some instructions read or write
16-bit elements.) The most significant 32 bits are called the upper word, high word, or even word. The
least significant 32 bits are called the lower word, low word, or odd word. Unless otherwise specified, SPE
instructions write all 64 bits of the destination register.

The SPE APU is not a coprocessor, and therefore does not perform SPE instructions in parallel to the
e200z3/6 core. It uses the same pipeline and is subject to the same restrictions in bandwidth as the standard
Book E instruction set. The advantage that the SPE offers is that it can perform multiple data operations
for a single instruction, whereas Book E is limited to one data operation per instruction.

The SPE also implements floating-point instructions, which allows the use of vector and non-vector single
precision floating-point operations. This application note will be focusing only on vector operations —
more information on floating-point instructions can be found in the signal-processing engine chapter of
the e200z3/6 core manuals.

2 SPE Instruction Set

2.1 Instruction Overview
SPE instructions that perform vector operations begin with the mnemonic “ev” — this represents a 64-bit
vector instruction. The syntax of SPE instructions follows the same form as Book E instructions. For data
operations the instruction is represented by “instruction mnemonic, destination register, source register A,
source register B.” The syntax of load and store instructions also uses the same form as Book E
instructions.

The syntax of a simple SPE instruction is shown in Figure 1.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

2 Freescale Semiconductor

Figure 1. SPE Add Instruction

The instruction above will perform an add operation between the lower 32 bits of RA and RB, while also
performing an add operation between the upper 32 bits of RA and RB. This is visually represented in
Figure 2. The “evaddw” instruction takes one clock cycle to execute.

Figure 2. Addition of Two 32-bit Values Using “evaddw” Instruction

The corresponding instruction in Book E is “add RD, RA, RB.” However, this instruction performs only
a 32-bit add and therefore requires an additional add instruction to replicate the “evaddw” instruction.

The clear difference here is that two add instructions, and therefore two clock cycles, are required to
perform the same operation as one “evaddw” instruction, carried out in one clock cycle.

In the context of a DSP function that consists of a small loop processing a large quantity of data, a
significant number of clock cycles can be saved per loop by using the SPE vector instructions, and hence
significantly increase the system performance.

2.2 Breaking Down Mnemonics
There are several SPE instructions that at first sight look very complex. These instructions can be broken
down and simplified to make them easier to understand. This is best illustrated by using an example of the
“evmhesmiaaw” instruction illustrated in Figure 3.

RA

RB

RD

+ +

0 31 32 63
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 3

Figure 3. Example of the “evmhesmiaaw” Instruction

The “evmhesmiaaw” mnemonic can be broken into several elements.

Figure 4. Elements of an SPE instruction

As shown in Figure 4, in SPE instructions there are generally three elements that differ:
• Data Operation: The operation that will be performed on the data. In this example it is a “multiply”

operation (represented by the “m”).
• Data Type: This relates to the properties of the data that are expected by the instruction. In this

example the instruction expects signed modulo integer data (represented as “smi”) that is half-word
in size (represented by the “h”), of which each half-word is stored in the even side (represented by
the “e”) of each 32-bit element of the 64-bit register.

• Accumulator Options: Allows the accumulator to be set to the result of the instruction, or, as in this
example, adds the result of the instructions to the contents of the accumulator.

The operation of this instruction is illustrated in Figure 5.

evmhesmiaaw

Vector
Instruction

Data
Operation

Data
Type

Accumulator
Options
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

4 Freescale Semiconductor

Figure 5. Multiply and Accumulate of Two 16-bit Values Using “evmhesmiaaw” Instruction

As shown above, the complex mnemonics can be broken down into a form that is easier to understand.
This can make it much simpler to select the exact instruction needed for an operation. For example, there
are approximately 80 “multiply” instructions, all of which are subtly different, but each operation can be
described in a similar fashion. The difference between the many variations is generally the type of data
used and the location of this data in the 64-bit vector. A programmer is allowed a great deal of flexibility
to find the correct instruction for a specific function.

At a high level the different instructions can be broken down into several fields:
• Simple integer instructions

— Basic logical/mathematical operations — add, subtract, and, or, etc.
— Data manipulation — merge, splat, shift, compare, etc.

• Load and store instructions
• Complex integer instructions

— Multiply and/or accumulate
— Add/subtract and/or accumulate
— Divide

It is beyond the scope of this application note to detail the specific instructions listed above. However, a
full description can be found in the document EREF: A Programmer’s Reference Manual for Freescale
Embedded Processors (Including the e200 and e500 Families) available from the Freescale website.

0 15 16 31 32 47 48 63

RA

RB

RD

ACC

ACC

× ×

+ +
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 5

3 SPE Performance Improvements Over Book E

3.1 SPE Versus Book E — Simple Example
As mentioned previously, the SPE provides a performance enhancement because it allows multiple data
operations in a single cycle. The example below shows a comparison of SPE assembly versus Book E
assembly for a very simple multiply-and-accumulate operation. The SPE instructions have not been
optimized in this example, so that it is easier to see the initial performance enhancement gained by using
the SPE over Book E. Optimization techniques for the SPE instructions will be detailed later in this
application note.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

6 Freescale Semiconductor

Example 1.

Perform a multiply-and-accumulate of two 16-bit values with two other 16-bit values, which are stored
side by side at start location 0x40000000 (assume the address is pre-loaded into r4) and store to location
0x40000010 (assume the address is pre-loaded into r3).

SPE Implementation:

evlwhe r5, 0x0 (r4)

evlwhe r6, 0x4 (r4)

evmhesmiaaw r7, r5, r6

evstdd r7, 0x0 (r3)

SPE Instructions Corresponding Data Operations

0x40000000

r5

0 15 16 31

0 15 16 31 32 47 63

evlwhe

0x40000004

r6

0 15 16 31

0 15 16 31 32 47 48 63

evlwhe

×
r7

×

ACC

+ +

ACC

evmhesmiaaw

r7
0

0x40000010

15 16 31 32 47 48 63

evstdd
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 7

Book E Implementation:

r5

0x40000000

lhz
32 47 48 63

32 63

r6

0x40000000

lhz
32 47 48 63

32 63

r7

0x40000004

lhz
32 47 48 63

32 63

r8

0x40000004

lhz
32 47 48 63

32 63

r7

mullw
32 63

×

r5

r9

r8

mullw
32 63

×

r6

r10

r11

add
32 63

r9

r11

+

r11

add
32 63

r10

r11

+

r9

stw
32 63

0x40000010

r10

stw
32 63

0x40000014

Book E Instructions Corresponding Data Operations

lhz r5, 0x0 (r4)

lhz r7, 0x4 (r4)

mullw r9, r5, r7

add r11, r9, r11

stw r9, 0x0 (r3)

lhz r6, 0x2 (r4)

lhz r8, 0x6 (r4)

mullw r10, r6, r8

add r11, r10, r11

stw r10, 0x4 (r3)
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

8 Freescale Semiconductor

Comparing the two different implementations, it can clearly be seen that the SPE coding uses fewer
instructions and fewer operations than the equivalent Book E coding. This indicates the performance
impact that the SPE has over Book E. This performance impact is further illustrated by looking at the
instruction execution time. To perform a theoretical timing comparison, the execution of the instructions
through the core pipeline must be understood in detail.

3.2 Instruction Timing
Instructions are processed in the core using the instruction pipeline. MPC55xx devices that implement the
e200z6 core use a seven-stage pipeline, whereas devices with the e200z3 core use a four-stage pipeline.
This chapter will focus on the seven-stage pipeline. However, the principles discussed can also be applied
to the four-stage pipeline.

The seven-stage pipeline is split into seven stages, consisting of four different functions. A diagram of the
seven-stage pipeline is shown in Figure 6:

Figure 6. Seven Stages of e200z6 Pipeline

The details of the pipeline are as follows:
• Two instruction fetch stages

As many as two instructions are fetched per clock cycle and placed in a seven-entry instruction
buffer.

• Instruction decode stage
Each instruction takes one cycle to decode and is dispatched at the end of the decode stage.

FETCH 0

FETCH 1

DECODE

EXECUTE 0

EXECUTE 1

EXECUTE 2

WRITE BACK
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 9

• Three execution stages
A three-stage execution pipeline includes feed-forwarding, which allows dependent instructions to
continue through the pipeline. All instructions, including branch instructions, pass through all three
stages of the execute pipeline, in order and in single file. The execution units within the core are
used at this stage to complete the specific task of the instruction. These execution units include the
Integer unit, the Load/Store unit, the SPE APU unit, and the Branch unit.

• Result write-back stage
This is where the results are committed to architected registers (such as GPRs) and instructions are
deallocated from the instruction pipeline.

Instructions are fed into the pipeline one at a time, each stage containing only one instruction at a time.
Furthermore, instructions cannot bypass any stage of the pipeline and must flow in a linear manner. This
is illustrated in Figure 7.

Figure 7. Illustration of Instructions Progressing Through Pipeline

Figure 7 also illustrates that instructions are fed into the pipeline on every new cycle. This means that,
presuming no delays (discussed later), an instruction will complete on every clock cycle, thereby achieving
single-cycle throughput.

All instructions have an execution time associated with them; this execution time can be broken down to
throughput and latency. Throughput of an instruction is the time taken by an instruction before the next
instruction can be executed.

There is one condition that is of the highest importance: if the next instruction depends on an output from
the previous instruction then it will have to wait additional cycles before it can begin execution. The
overall time this would take is referred to as latency.

If the core has to wait before it can begin the execution of the next instruction due to the latency of the
previous instruction, then this is referred to as stalling the pipeline. Stalls in the pipeline have a
performance impact, as no new instructions are being executed when the pipeline has stalled. This problem
can be alleviated by rescheduling instructions so as to reduce the effects of instruction latency. Details of
this technique are described later in Section 4, “Techniques for Writing Efficient SPE.” Further details of
the pipeline can be found in the “Instruction Pipeline and Execution Timing” chapter of the respective
e200z3/6 core manuals.

KEY

IFx Instruction Fetch EXn Execute

DEC Decode WB Writeback

 System Clock Cycle

 1 2 3 4 5 6 7 8 9

evlwhe IF0 IF1 DEC EX0 EX1 EX2 WB

evlwhe IF0 IF1 DEC EX0 EX1 EX2 WB

evaddi IF0 IF1 DEC EX0 EX1 EX2 WB
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

10 Freescale Semiconductor

An example of an instruction stall is shown in Figure 8. This example uses a multiply instruction followed
by a store instruction. The store instruction is saving the result of the previous multiply, and therefore needs
to wait for the multiply instruction to provide its result (in other words, complete the execution stage)
before the store can begin its execution.

Figure 8. Latency Example

Figure 8 shows that the store instruction cannot begin its execution until the multiply instruction has
completed its execution in cycle seven. Therefore the store instruction does not complete until three cycles
after the multiply instruction has completed. This means that the stall introduced a latency of three cycles.

The throughput and latency of each instruction can be found in the “Instruction Timings” section of the
core manual for either the e200z3 or the e200z6.

Writing efficient code for the SPE involves looking at the execution timing of instructions in great detail.
The essential element of this timing is the latency. The timing analysis above is more complex than is
needed and can be summarized by looking only at the latency of the instructions. Figure 9 shows a simpler
representation of instruction timing, looking only at latency, and provides the user with a quick method to
identify stalls in the pipeline.

Figure 9. Performance of SPE versus Book E

Figure 9 details how the latency of instructions affects the overall instruction timing. Instructions that are
dependent on the latency of a previous instruction are highlighted by the red circle and arrow. Multiply,
load, and store SPE instructions have a throughput of one cycle and a latency of three cycles. This means

KEY

Ifx Instruction Fetch EXn Execute

DEC Decode WB Writeback

S Stall

 System Clock Cycle

 1 2 3 4 5 6 7 8 9 10

evmhesmiaaw IF0 IF1 DEC EX0 EX1 EX2 WB

evstdd IF0 IF1 DEC S S EX0 EX1 EX2 WB

1 1 evlwhe
2 2 1 evlwhe
3 3 2
4 3
5 1 evmhesmiaaw
6 2
7 3
8 1 evstdd

Latency
Cycle Instruction

The “evlwhe” instructions are
not dependent on each other.
Therefore the next “evlwhe”
can start on the next cycle.

The “evmhesmiaaw”
instruction is dependent on
the result of both “evlwhe”
instructions. It cannot start
until “evlwhe” latency has
been incurred.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 11

that any non-dependent instruction which follows a multiply instruction can begin on the next clock cycle,
that is, the throughput time. However, any instruction dependent on the output of the multiply instruction
cannot begin until three cycles after the multiply instruction, in other words, the latency.

This can be further illustrated by looking at Figure 9. On the second cycle the SPE instruction being
executed is “evlwhe.” This has a throughput of one cycle and a latency of three cycles. The next instruction
is “evmhesmiaaw,” which uses the output of the two previous “evlwhe” instructions. This means that it
has to wait until both “evlwhe” instructions have propagated fully through the pipeline. As the second
“evlwhe” occurs on the second cycle and has a latency of three cycles, its output will not be valid until the
fifth cycle. This is when the “evmhesmiaaw” instruction can begin execution. This means, though, that no
new instructions are being executed on the third or fourth cycle. Therefore two stalls were introduced to
the pipeline.

This timing analysis of the pipeline is not fully accurate, as it does not take into account any potential
delays introduced by memory wait states or crossbar contention. However, in the context of writing
efficient SPE instructions, this method provides an effective and quick tool for writing optimal code.

3.3 SPE versus Book E Timing Comparison
Referring back to the example shown in Section 3.1, “SPE Versus Book E — Simple Example,” the benefit
that the SPE offers can be illustrated further by performing a timing comparison between the two
implementations (this is illustrated in Figure 10). The SPE column details which clock cycle the SPE
instructions are executed on, while the Book E column details the execution of the Book E instructions.

Figure 10. Performance of SPE versus Book E

A B C A B C
1 1 evlwhe 1 lhz

2 2 1 evlwhe 2 1 lhz

3 3 2 3 2
4 3 3
5 1 evmhesmiaaw 1 mullw

6 2 2
7 3 3
8 1 evstdd 1 add

9 2 1 stw

10 3 2 1 lhz
11 1 3 2 lhz
12 2 3
13 3
14 1 mullw
15 2
16 3
17 1 add
18 1 stw
19 2
20 3

Latency
Cycle BookESPE

Latency
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

12 Freescale Semiconductor

As we see in Figure 10, the number of clock cycles required to complete the SPE instructions is 10,
whereas the number of clock cycles required to complete the equivalent Book E instructions is 20. This
small example illustrates that the SPE has an improvement in system performance over Book E. This
system performance can be further improved in larger DSP operations where the effects of instruction
latency are reduced.

4 Techniques for Writing Efficient SPE
There are techniques that can be used when writing SPE functions to improve the efficiency of the code.

• Controlling instructions using SPE assembly
• Scheduling instructions to reduce stalls
• Rolling out small loops
• Aligning SPE instructions
• Register usage

4.1 Controlling Instructions Using SPE Assembly
Currently there are two different ways that SPE instructions can be implemented. They can be coded using
assembly or by using the C intrinsics defined in the Signal Processing Engine Auxiliary Processing Unit
Programming Interface Manual (SPEPIM) available at the Freescale.com website.

The SPE-PIM defines a set of intrinsics with approximately one intrinsic for each available SPE
instruction (with some additional intrinsics for data and register manipulation). Each intrinsic acts as a
function call that, when compiled, will generate the SPE instruction that it represents.

However, the actual register allocation is delegated to the compiler, and the code generated using the SPE
intrinsics will be PowerPC EABI compliant. Thus use of the SPE-PIM to produce SPE code is
considerably easier than programming directly in assembly.

The one drawback of the SPE intrinsics is that there is less control over the instruction sequencing
compared to using assembly. Because the compiler defines the register usage for the intrinsics, this can
lead to inefficiencies in timing that would not be present when using assembly.

Choosing which implementation to use is a decision for the system designer. The SPE intrinsics are much
easier to integrate into a C environment, and they offer performance improvements over the equivalent C
implementation. However, for the best possible performance, assembly allows the flexibility to fully
optimize the instruction timings and achieve the greatest efficiency. For this reason, the examples used in
this application note will be referring to the assembly implementation of SPE instructions.

4.2 Scheduling Instructions to Reduce Stalls
One of the key elements in writing efficient SPE functions is to minimize the amount of stalls that will
occur in the pipeline. Section 3.2, “Instruction Timing,” details how the throughput and latency of SPE
instructions can introduce stalls into the pipeline. These can be minimized by scheduling the instructions
in a particular manner so that the stalls are padded out with nondependent instructions.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 13

Rescheduling the instructions to reduce the number of stalls can save several clock cycles on a small piece
of code. This will particularly benefit applications that use a loop of code to process large quantities of
data. For example, take a sixth-order FIR that is stored in a loop and used to process pressure data over
two engine revolutions (for example, 720 data samples). If four instructions can be saved per loop due to
re-scheduling, then potentially 2880 clock cycles could be saved during the processing of all of the data
samples.

There are two stages to reducing the number of stalls in the assembly language code:
1. Identifying where stalls will occur
2. Re-scheduling the instructions

4.2.1 Identifying Stalls

Stalls will generally occur after instructions that have a latency of more than one cycle. When using
non-floating-point SPE, this refers mainly to the multiply (and accumulate), load, and store instructions,
which all have a latency of three cycles. All floating-point (vector or non-vector) instructions, with the
exception of the divide instruction, have a latency of three cycles.

A common pattern in DSP algorithms is to perform multiply-and-accumulate (MAC) operations. The
results of the MAC are then stored to a memory location. This is often captured in a loop, with a MAC
instruction and a store instruction occurring on each loop iteration.

The implementation of this technique when using SPE assembly is often a multiply instruction followed
by a store instruction. The store instruction depends on the output of the multiply instruction — therefore
the pipeline will be stalled between the multiply and the store.

An example to illustrate this can be taken from Appendix A, Example A-1. This is a multiplication of two
matrices. The left side of Figure 11 shows the timing of this example when the instruction scheduling has
not been optimized. It can be seen that there are three places where the pipeline stalls.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

14 Freescale Semiconductor

Figure 11. Timing Comparison of Non-Optimized versus Optimized Instruction Scheduling

4.2.2 How to Reschedule the Instructions

After the stalls have been identified, the next task is to reschedule the instructions to reduce the number of
stalls.

The most common way to reschedule instructions is to move load instructions between any multiply
instructions and their dependent store instructions. Because DSP operations often involve several MAC
and store operations one after the other, the stalls in the pipeline between these two instructions can be used
to load values for the next operation.

For example, the right side of Figure 11 illustrates how the matrix operations in Appendix A,
“Multiplication of Two Matrices,” could be optimized to reduce the number of stalls. The two stalls before
the “evor” instruction exist because the instruction depends on the completion of the previous “evlwhe”
and “evlwhou” instructions. However, it does not depend on the “evlwwsplat” instruction. Therefore this
instruction can be moved into the area where one stall existed and will save a clock cycle.

The second set of stalls exist between a multiply instruction (“evmhossiaaw”) and a store instruction
(“evstdw”). This is where the values for the next MAC operations can be loaded. In this case the
“evlwwsplat” and “evmhesmia” instructions are rescheduled to the areas where both stalls existed. One
point to make here is that the destination register for the second set of MAC operations has changed from
r11 to r12. This allows the values to be loaded for the second set of MAC operations before the first set of
operations have completed. If this had not been done, and the “evmhesmia” instruction on cycle 9 used
r11, then the result being saved to memory on the following store instruction would be incorrect.

In this example it was not possible to fill the final two stalls. However, if this routine was implemented in
a loop then this would be the ideal place to reschedule the first two load instructions, thereby eliminating
the two stalls.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 15

4.3 Rolling Out Small Loops
A very simple but effective method for increasing performance when using SPE assembly instructions is
to roll out small loops. Some DSP functions require a small loop of code to process a large quantity of data.
A second-order FIR is a good example of this; it consists of two loads, two MAC and two stores for each
data point. This loop could be run several hundred times in a typical application.

Each loop takes roughly 10 cycles to complete. However, there is a branch instruction at the end of every
loop that needs to be considered. This branch instruction adds an additional three cycles per loop. In this
instance the branch instruction adds a roughly 25% performance hit on every loop. The way to reduce this
impact is to make the loops more linear, which can be done by increasing the number of times the
operations of the loop are repeated before a branch instruction is taken.

Using the second-order FIR as an example, if the load, MAC, and store operations were performed four
times each loop (as shown in Figure 12), then the overall number of clock cycles per loop would be
roughly 40. This means that the impact of a three-cycle branch is reduced to 7.5%, thereby reducing the
overall impact.

Figure 12. Rolling Out a Small Loop to Reduce the Impact of a Branch

4.4 Aligning SPE Instructions
The alignment of data that is used by SPE instructions is important for improving system performance.

On the MPC5554 and MPC5553 devices, all double-word accesses to data must be 64-bit aligned. An
alignment exception will occur if any double-word load or store access is made to a non-64-bit aligned
memory address.

2 x Load
2 x MAC
2 x Store
branch

2 x Load
2 x MAC
2 x Store

2 x Load
2 x MAC
2 x Store

2 x Load
2 x MAC
2 x Store

2 x Load
2 x MAC
2 x Store
branch

Small Loop
Branch Impact: 25% Hit

 Small Loop Rolled Out Four Times
Branch Impact: 7.5% Hit
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

16 Freescale Semiconductor

On all other current MPC55xx family devices, a double-word access to data must be at least 32-bit aligned.
It is recommended that the data be aligned on a 64-bit access for the most efficient throughput. If the data
is 32-bit aligned but not 64-bit aligned, then two fetches to the memory would be required to gather the
double-word data. This obviously has an impact on performance.

Another strong argument for aligning double-word data accesses to 64-bit boundaries is for compatibility.
If software was written for MPC5566, which did not use 64-bit alignment, then it would not compatible
with the MPC5554 and MPC5553 devices, on which an alignment exception would occur.

4.5 Register Usage
SPE instructions abide by the embedded application binary interface (EABI) for the use of general-purpose
registers. This is also true for Book E instructions. In addition, it is common to save and restore the GPRs
in accordance with the EABI when entering and exiting an SPE assembly function. For a large SPE
function taking several thousand clock cycles to complete, the time required to save and restore registers
has little impact on the overall system time. When a smaller task is performed, which may take tens of
clock cycles, then the time taken for the save and restore routine becomes more significant.

One aspect of the EABI definitions is the difference between volatile (GPR3–GPR12) and nonvolatile
registers (GPR14–GPR31). The contents of a nonvolatile register need to be saved if one of these registers
is used in an SPE assembly function. This is the opposite of the volatile registers, which do not need to be
saved between sub-routines.

For this reason, volatile registers can be used when developing SPE assembly functions. If they are used,
then there is no need to save or restore them when entering and exiting the function. This saves several
clock cycles.

For example, consider an SPE function that requires eight GPRs. If the nonvolatile registers
GPR14–GPR22 were used for this function, then the save-and-restore routine would amount to an
overhead of roughly 16 clock cycles. If the volatile registers GPR4–GPR12 were used, then the
save-and-restore routine would not be required. Therefore there would be no overhead for using these
registers.

5 Guide to Writing SPE Functions
For a required DSP operation, the procedure given here offers a high-level guide to writing an efficient
SPE assembly function to implement the DSP operation.

1. Determine whether the DSP operation is suited to the SPE.
SPE takes advantage of vector operations aligned on 64-bit boundaries. If the DSP operation
required allows a great deal of parallelism, then it is most likely suited to the SPE. On the other
hand, if the function requires a lot of data operations on non-64-bit aligned data, then the overhead
of realigning data may outweigh the advantage of the vector operations. In this case, the SPE may
not offer a distinct advantage.
Floating-point operations are the exception to this situation, and would benefit greatly from the use
of the SPE.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 17

2. Derive a formula for the DSP operation and graphically map the flow of data through the SPE
function.
Look to see where data is suited for parallel operations, and take into account how data needs to be
loaded (in other words, odd/even) to allow this technique.
Ensure that data operations are suited to being 64-bit aligned to maximize the effectiveness of the
SPE.

3. Implement the graphical representation as SPE instructions.
Write the function in accordance with the flow of the equation. The main aim at this stage is to write
the function in SPE assembly and verify that it performs the desired task, while also keeping it as
simple as possible to understand. Do not try to reschedule the instructions at this stage, as it may
add unnecessary complexity at this stage in the code development..

4. After the SPE assembly function has been written and tested, apply the techniques for improving
efficiency.
Plot the theoretical timing for the function. Identify where there are stalls in the code and try to
reschedule other instructions to reduce the number of stalls.
If the function has a short repetitive loop, evaluate if it is suited to being rolled out, which will
reduce the effect of a branch instruction.

There are two examples in Appendix B, “SPE Function Examples,” which detail how a fourth-order FIR
SPE function (Example B-1, “Fourth-Order FIR Filter”) and a simple two-by-two matrix multiplication
SPE function (Example B-2, “Two-by-Two Matrix Multiplication”) have been created by using these
guidelines.

6 Summary
There are significant performance benefits to be gained by using the SPE for DSP operations. This
application note has detailed the techniques that can be used to gain optimal performance with SPE
instructions, the benefits of which, compared to standard C and non-optimal SPE encoding, are
highlighted. These techniques will provide an efficient set of guidelines for the user to develop SPE
functions that achieve optimal DSP performance.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

18 Freescale Semiconductor

Appendix A Multiplication of Two Matrices
Example A-1.

Multiply 16-bit matrices A x B when:
A = [00][01] B = [00][01]

[10][11] [10][11]

r3 = input address of matrix A

r4 = input address of matrix B

r5 = output address

SPE assembly flow:
#/* load r9 = A[0][0] | A[0][1] | A[0][0] | A[0][1] */
#/* load r10 = B[0][0] | 0x0000 | B[0][1] | 0x0000 */
#/* load r11 = 0x0000 | B[1][0] | 0x0000 | B[1][1] */
#/* load r10 = B[0][0] | B[1][0] | B[0][1] | B[1][1] */
#/* A[0][0]*B[0][0] || A[0][0]*B[0][1] */
#/* ACC_HI + A[0][1]*B[1][0] || ACC_LO + A[0][1]*B[1][1] */
#/* store to C[0][0] and C[0][1] */
#/* load r9 = A[1][0] | A[1][1] | A[1][0] | A[1][1] */
#/* A[1][0]*B[0][0] || A[1][0]*B[0][1] */
#/* ACC_HI + A[1][1]*B[1][0] || ACC_LO + A[1][1]*B[1][1] */
#/* store to C[1][0] and C[1][1] */

Non-Optimized SPE assembly code:
evlwwsplat r9, 0(r3);
evlwhe r10, 0(r4);
evlwhou r11, 4(r4);
evor r10, r10, r11;
evmhesmia r11, r9, r10;
evmhossiaaw r11, r9, r10;
evstdw r11, 0(r5);
evlwwsplat r9, 4(r3);
evmhesmia r12, r9, r10;
evmhossiaaw r12, r9, r10;
evstdw r12, 8(r5);

Optimized SPE assembly code:
evlwhe r10, 0(r4);
evlwhou r11, 4(r4);
evlwwsplat r9, 0(r3);
evor r10, r10, r11;
evmhesmia r11, r9, r10;
evmhossiaaw r11, r9, r10;
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 19

evlwwsplat r9, 4(r3);
evmhesmia r12, r9, r10;
evstdw r11, 0(r5);
evmhossiaaw r12, r9, r10;
evstdw r12, 8(r5);
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

20 Freescale Semiconductor

Appendix B SPE Function Examples
Example B-1. Fourth-Order FIR Filter

1. Determine if the DSP operation is suited to the SPE.
The majority of operations in an FIR are multiply-and-accumulate.
There are no restrictions on the data that do not allow 64-bit alignment for the data.
Therefore this DSP operation is suited to the SPE.

2. Derive a formula for the DSP operation and graphically map the flow of data through the
SPE function.
The equation for a fourth-order FIR is:

For 2 sample points, y(8) and y(9), the equation can be broken out to:
y(8) = h(0) × x(8) + h(1) × x(7) + h(2) × x(6) + h(3) × x(5)
y(9) = h(0) × x(9) + h(1) × x(8) + h(2) × x(7) + h(3) × x(6)
This can be represented graphically:

Figure 13. Multiply and Accumulate Two Coefficients

y n() h k()

k 0=

3

∑ x n k–()×=

h3 h3

h2 h2

h1 h1

h0 h0

… …

x4 x5

x6 x7

x8 x9

… …

× h(0) × x(8) h(0) × x(9)

h(0) × x(8) +
h(2) × x(6)

h(0) × x(9) +
h(2) × x(7) ×
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 21

Figure 14. Shift Input Data by 32 Bits (Can Use a Merge Instruction to Implement)

Figure 15. Multiply and Accumulate Remaining Two Coefficients

3. Implement the graphical representation as SPE instructions.
Assume:
r3 = Address of first element in output array “y.” Aligned to 64-bit boundary.
r4 = Address of first element in input array “x.” Aligned to 64-bit boundary.
r5 = Address of first element of coefficients “h.” Aligned to 64-bit boundary.
Input data is 16-bit signed integer.
Output data is 32-bit signed integer.

order4_FIR:

stwu r1, -0x8(r1); #/* Save Non-Volatile r16 */
evstdd r16, 0x0(r1); #/* Save Non-Volatile r16 */

addi r16, r0, 75 #/* Loop to return 150 outputs */
addi r3, r3, 0x4; #/* Point yptr to 1st output */
subi r4, r4, 0x4; #/* xptr set before 1st input */

… …

x4 x5

x6 x7

x8 x9

… …

… x4

x5 x6

x7 x8

x9 …

… …

h3 h3

h2 h2

h1 h1

h0 h0

… x4

x5 x6

x7 x8

x9 …
… …

×
h(0) × x(8) +
h(2) × x(6) +
h(1) × x(7)

h(0) × x(9) +
h(2) × x(7) +
h(1) × x(8)

h(0) × x(8) +
h(2) × x(6) +
h(1) × x(7) +
h(3) × x(5)

h(0) × x(9) +
h(2) × x(7) +
h(1) × x(8) +
h(3) × x(6)

×

Improving DSP Performance Using Efficient SPE Coding, Rev. 0

22 Freescale Semiconductor

evlhhousplat r9, 0x0(r5); #/* Load h(0) */
evlhhousplat r10, 0x2(r5); #/* Load h(1) */
evlhhousplat r11, 0x4(r5); #/* Load h(2) */
evlhhousplat r12, 0x6(r5); #/* Load h(3) */

#-------------------------------

Loop_begin:

evlwhou r6, 0x0(r4); #/* Load x(4/5) */
evlwhou r7, 0x4(r4); #/* Load x(6/7) */
evlwhou r8, 0x8(r4); #/* Load x(8/9) */

evmhosmia r5, r8, r9; #/* (x(8/9) x h0), store to ACC */
evmhosmiaaw r5, r7, r11; #/* (x(6/7) x h2) + ACC */

evmergelohi r8, r7, r8; #/* Use reg for x(7/8)*/
evmergelohi r7, r6, r7; #/* Use reg for x(5/6)*/

evmhosmiaaw r5, r7, r12; #/* (x(5/6) x h3) + ACC */
evmhosmiaaw r5, r8, r10; #/* (x(7/8) x h1) + ACC */

evstwho r5, 0x0(r3); #/* Store to y(8) & y(9) */

#-------------------------------

addi r3, r3, 0x4; #/* update xptr */
addi r4, r4, 0x4; #/* update yptr */
cmpwi r16, 0x0 #/* Check if loop should end */
subi r16, r16, 0x1 #/* Decrement loop end */

bne Loop_begin #/* Branch to start of loop */

evldd r16, 0x0(r1); #/* Restore Non-Volatile r16 */
addi r1, r1, 0x8; #/* Save stack */

blr #/* Return to function call */

4. After the SPE assembly function has been written and tested, apply the techniques for
improving the efficiency.
— Loop is rolled out three times to create a larger loop that outputs 6 “y” values.
— Instructions are rescheduled to reduce number of stalls in pipeline.
— Align load and store instructions to 64-bit boundaries to avoid non-aligned performance hits.
— Use all possible volatile registers before using any nonvolatile registers.
Timing comparison from non-optimized FIR loop to the optimized FIR loop is shown in Figure 16.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 23

Figure 16. Timing Comparison for Rescheduled Optimized FIR Loop

The timing comparison is then used to form the SPE assembly code below.
Assume:
r3 = Address of first element in output array “y.” Aligned to 64-bit boundary.
r4 = Address of first element in input array “x.” Aligned to 64-bit boundary.
r5 = Address of first element of coefficients “h.” Aligned to 64-bit boundary.
Input data is 16-bit signed integer.
Output data is 32-bit signed integer.

order4_FIR:

stwu r1, -0x18(r1); #/* Save Non-Volatile r16 */
evstdd r16, 0x0(r1); #/* Save Non-Volatile r16 */
evstdd r17, 0x8(r1); #/* Save Non-Volatile r16 */
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

24 Freescale Semiconductor

evstdd r18, 0x10(r1); #/* Save Non-Volatile r16 */

addi r16, r0, 25 #/* Loop to return 150 outputs */
addi r3, r3, 0x4; #/* Point yptr to 1st output */
subi r4, r4, 0x4; #/* xptr set before 1st input */

evlhhousplat r9, 0x0(r5); #/* Load h(0) */
evlhhousplat r10, 0x2(r5); #/* Load h(1) */
evlhhousplat r11, 0x4(r5); #/* Load h(2) */
evlhhousplat r12, 0x6(r5); #/* Load h(3) */

evlwhou r6, 0x0(r4); #/* Load x(0/1) */
evlwhou r7, 0x4(r4); #/* Load x(2/3) */
evlwhou r8, 0x8(r4); #/* Load x(4/5) */

evmergelohi r18, r6, r7; #/* Use reg for x(1/2)*/

#-------------------------------

Loop_begin:

evmhosmia r5, r7, r11; #/* (x(2/3) x h2), store to ACC */
evmhosmiaaw r5, r8, r9; #/* (x(4/5) x h0) + ACC */

evmergelohi r17, r7, r8; #/* Use reg for x(3/4)*/

evmhosmiaaw r5, r18, r12; #/* (x(1/2) x h3) + ACC */
evmhosmiaaw r5, r17, r10; #/* (x(3/4) x h1) + ACC */

evlwhou r6, 0xC(r4); #/* Load x(6/7) */

evstwho r5, 0x0(r3); #/* Store to y(2) & y(3) */

#-------------------------------

evmhosmia r5, r8, r11; #/* (x(4/5) x h2), store to ACC */
evmhosmiaaw r5, r6, r9; #/* (x(6/7) x h0) + ACC */

evmergelohi r18, r8, r6; #/* Use reg for x(5/6)*/

evmhosmiaaw r5, r17, r12; #/* (x(3/4) x h3) + ACC */
evmhosmiaaw r5, r18, r10; #/* (x(5/6) x h1) + ACC */

evlwhou r7, 0x10(r4); #/* Load x(8/9) */

evstwho r5, 0x4(r3); #/* Store to y(4) & y(5) */
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 25

#-------------------------------

evmhosmia r5, r6, r11; #/* (x(6/7) x h2), store to ACC */
evmhosmiaaw r5, r7, r9; #/* (x(8/9) x h0) + ACC */

evmergelohi r17, r6, r7; #/* Use reg for x(7/8)*/

evmhosmiaaw r5, r18, r12; #/* (x(5/6) x h3) + ACC */
evmhosmiaaw r5, r17, r10; #/* (x(7/8) x h1) + ACC */

evlwhou r8, 0x14(r4); #/* Load x(10/11) */
evaddiw r18, r17, 0; #/* Copy reg, required for loop */

evstwho r5, 0x8(r3); #/* Store to y(6) & y(7) */

#-------------------------------

addi r3, r3, 0xC; #/* update xptr */
addi r4, r4, 0xC; #/* update yptr */
cmpwi r16, 0x0 #/* Check if loop should end */
subi r16, r16, 0x1 #/* Decrement loop end */
bne Loop_begin #/* Branch to start of loop */

evldd r16, 0x0(r1); #/* Restore Non-Volatile r16 */
evldd r17, 0x8(r1); #/* Restore Non-Volatile r16 */
evldd r18, 0x10(r1); #/* Restore Non-Volatile r16 */
addi r1, r1, 0x18; #/* Save stack */

blr #/* Return to function call */

5. Results
The optimized SPE function was compared to the non-optimized function, and also to the
equivalent function implemented in C, to evaluate the impact on performance.
The measurements were taken using a MPC5554 with this configuration:
— Cache enabled for flash and RAM
— Flash BIUCR optimal Settings: 0x00014BFD
— System frequency set to 132 MHz
— Branch target buffer enabled
The results from these measurements are shown in Table 1.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

26 Freescale Semiconductor

NOTE
There is a performance difference for the first call of the function as the
variables are loaded into cache for the first time. These variables will be
stored in the cache; therefore, later function calls do not reload them into
cache.

The results in Table 1 clearly illustrate the impact that optimization techniques can have on SPE
assembly. The techniques used for this example had 44% better performance than the
non-optimized SPE function, and a 92% improvement compared to an equivalent C
implementation of the function.

Example B-2. Two-by-Two Matrix Multiplication

1. Determine whether the DSP operation is suited to the SPE.
The main operations in matrix multiplications are multiply-and-accumulate.
There are no restrictions on the data that do not allow 64-bit alignment for the data.
Therefore this DSP operation is suited to the SPE.

2. Derive a formula for the DSP operation and graphically map out the flow of data through the
SPE function.
Taking:

A = [00][01] B = [00][01]
[10][11] [10][11]

Table 1. Performance Results of Optimized SPE Assembly, Non-Optimized SPE Assembly and
C Implementation of a Fourth-Order FIR

Function Samples (N)
First Call

(Clock Cycles)
Later Calls

(Clock Cycles)
Performance

Improvement versus C

Optimized SPE 150 1097 1072 92%

Non-Optimized SPE 150 1954 1943 86%

C Function 150 14480 14470 N/A

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=

⎥
⎦

⎤
⎢
⎣

⎡
==

]11[].11[]01[].10[]10[].11[]00[].10[
]11[].01[]01[].00[]10[].01[]00[].00[

]11[]10[
]01[]00[

 BA x C

BABABABA
BABABABA

CC
CC
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 27

This can be represented graphically:

3. Implement the graphical representation as SPE instructions.
Assume:
Require 100 matrix outputs.
r3 = Address of first row in “A.” Aligned to 64-bit boundary.
r4 = Address of first row in “B.” Aligned to 64-bit boundary.
r5 = Address of first row in “C.” Aligned to 64-bit boundary.
Input data is 16-bit signed integer.

A[00] A[01]

A[10] A[11]

A[00]

×

A[00] A[01] A[01] Splat

B[00] B[01] B[10] B[11] Load even &
Load odd

B[00] B[01]

B[10] B[11]

A[00] x B[00] A[00] x B[01]

×

×

A[00] x B[00] +
A[01] x B[10]

A[00] x B[01] +
A[01] x B[11]

×

A[00] A[01]

A[10] A[11]

A[10]

×

A[10] A[11] A[11] Splat

B[00] B[01] B[10] B[11]

B[00] B[01]

B[10] B[11]

A[10] x B[00] A[10] x B[01]

×

×

A[10] x B[00] +
A[11] x B[10]

A[10] x B[01] +
A[11] x B[11]

×

C[00] C[01]

C[10] C[11]
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

28 Freescale Semiconductor

Output data is 32-bit signed integer.
Non-Optimized SPE assembly code:

Matrix_2_2_Multiply:

addi r16, r0, 99 #/* Loop to return 100 outputs */

#-------------------------------

#/* load r9 = A[0][0] | A[0][1] | A[0][0] | A[0][1] */
#/* load r10 = B[0][0] | 0x0000 | B[0][1] | 0x0000 */
#/* load r11 = 0x0000 | B[1][0] | 0x0000 | B[1][1] */
#/* Combine r10 & r11 = B[0][0] | B[1][0] | B[0][1] | B[1][1] */
#/* A[0][0]*B[0][0] || A[0][0]*B[0][1] */
#/* ACC_HI + A[0][1]*B[1][0] || ACC_LO + A[0][1]*B[1][1] */
#/* store to C[0][0] and C[0][1] */
#/* load r9 = A[1][0] | A[1][1] | A[1][0] | A[1][1] */
#/* A[1][0]*B[0][0] || A[1][0]*B[0][1] */
#/* ACC_HI + A[1][1]*B[1][0] || ACC_LO + A[1][1]*B[1][1] */
#/* store to C[1][0] and C[1][1] */

Loop_begin:

evlwwsplat r9, 0(r3);
evlwhe r10, 0(r4);
evlwhou r11, 4(r4);
evor r10, r10, r11;
evmhesmia r11,r9,r10;
evmhossiaaw r11,r9,r10;
evstdw r11,0(r5);
evlwwsplat r9, 4(r3);
evmhesmia r12,r9,r10;
evmhossiaaw r12,r9,r10;
evstdw r12,8(r5);

#-------------------------------

addi r3, r3, 0x8; #/* update r3 to next A matrix */
addi r4, r4, 0x8; #/* update r4 to next B matrix */
addi r5, r5, 0x10; #/* update r5 to next output */
cmpwi r16, 0x0 #/* Check if loop should end */
sub r16, r16, 0x1 #/* Decrement loop end */

bne Loop_begin #/* Branch to start of loop */

blr #/* Return to function call */
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 29

4. After the SPE assembly function has been written and tested, apply the techniques for
improving efficiency.
— Loop is rolled out twice to create a larger loop that outputs two matrices.
— Instructions are rescheduled to reduce number of stalls in pipeline.
— Align load and store instructions to 64-bit boundaries to avoid non-aligned performance hits.
— Rearrange register usage for store instructions to avoid stalls in pipeline.
Timing comparison between non-optimized matrix multiplication loop and optimized matrix
multiplication loop is shown in Figure 17 below.

Figure 17. Timing Comparison for Rescheduled Optimized Matrix Multiplication Loop

The timing comparison is then used to form the SPE assembly code below.
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

30 Freescale Semiconductor

Assume:
Require 100 matrix outputs.
r3 = Address of first row in “A.” Aligned to 64-bit boundary.
r4 = Address of first row in “B.” Aligned to 64-bit boundary.
r5 = Address of first row in “C.” Aligned to 64-bit boundary.
Input data is 16-bit signed integer.
Output data is 32-bit signed integer.
Optimized SPE assembly code:

Matrix_2_2_Multiply:

addi r16, r0, 48 #/* Loop to return 100 outputs */

#/* load r10 = B[0][0] | 0x0000 | B[0][1] | 0x0000 */
#/* load r11 = 0x0000 | B[1][0] | 0x0000 | B[1][1] */
evlwhe r10, 0(r4);
evlwhou r11, 4(r4);

#-------------------------------

#/* load r9 = A[0][0] | A[0][1] | A[0][0] | A[0][1] */
#/* Combine r10 & r11 = B[0][0] | B[1][0] | B[0][1] | B[1][1] */
#/* A[0][0]*B[0][0] || A[0][0]*B[0][1] */
#/* ACC_HI + A[0][1]*B[1][0] || ACC_LO + A[0][1]*B[1][1] */
#/* load r9 = A[1][0] | A[1][1] | A[1][0] | A[1][1] */
#/* A[1][0]*B[0][0] || A[1][0]*B[0][1] */
#/* store to C[0][0] and C[0][1] */
#/* ACC_HI + A[1][1]*B[1][0] || ACC_LO + A[1][1]*B[1][1] */
#/* load r10 = E[0][0] | 0x0000 | E[0][1] | 0x0000 */
#/* load r11 = 0x0000 | E[1][0] | 0x0000 | E[1][1] */
#/* store to C[1][0] and C[1][1] */

Loop_begin:

evlwwsplat r9, 0x0(r3);
evor r10, r10, r11;

evmhesmia r11,r9,r10;
evmhossiaaw r11,r9,r10;

evlwwsplat r9, 0x4(r3);

evmhesmia r12,r9,r10;

evstdw r11,0x0(r5);
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 31

evmhossiaaw r12,r9,r10;

evlwhe r10, 0x8(r4);
evlwhou r11, 0xC(r4);

evstdw r12,0x8(r5);

#-------------------------------

#/* load r9 = D[0][0] | D[0][1] | D[0][0] | D[0][1] */
#/* Combine r10 & r11 = E[0][0] | E[1][0] | E[0][1] | E[1][1] */
#/* D[0][0]*E[0][0] || D[0][0]*E[0][1] */
#/* ACC_HI + D[0][1]*E[1][0] || ACC_LO + D[0][1]*E[1][1] */
#/* load r9 = D[1][0] | D[1][1] | D[1][0] | D[1][1] */
#/* D[1][0]*E[0][0] || D[1][0]*E[0][1] */
#/* store to F[0][0] and F[0][1] */
#/* ACC_HI + D[1][1]*E[1][0] || ACC_LO + D[1][1]*E[1][1] */
#/* load r10 = H[0][0] | 0x0000 | H[0][1] | 0x0000 */
#/* load r11 = 0x0000 | H[1][0] | 0x0000 | H[1][1] */
#/* store to F[1][0] and F[1][1] */

evlwwsplat r9, 0x8(r3);
evor r10, r10, r11;

evmhesmia r11,r9,r10;
evmhossiaaw r11,r9,r10;

evlwwsplat r9, 0xC(r3);

evmhesmia r12,r9,r10;

evstdw r11,0x10(r5);

evmhossiaaw r12,r9,r10;

evlwhe r10, 0x10(r4);
evlwhou r11, 0x14(r4);

evstdw r12,0x18(r5);

#-------------------------------

addi r3, r3, 0x10; #/* update r3 to next A matrix */
addi r4, r4, 0x10; #/* update r4 to next B matrix */
addi r5, r5, 0x20; #/* update r5 to next output */
cmpwi r16, 0x0 #/* Check if loop should end */
subi r16, r16, 0x1 #/* Decrement loop end */
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

32 Freescale Semiconductor

bne Loop_begin #/* Branch to start of loop */

blr #/* Return to function call */

5. Results
The optimized SPE function was compared to the non-optimized function, and also to the
equivalent function implemented in C, to evaluate the impact on performance.
The measurements were taken using an MPC5554 with this configuration:
— Cache enabled for flash and RAM
— Flash BIUCR optimal settings: 0x00014BFD
—
— System frequency set to 132 MHz
— Branch target buffer enabled
The results from these measurements are shown in Table 2.

In this example, the optimization techniques used gained an extra 23% in performance compared
to the non-optimized SPE function, and an 81% improvement compared to an equivalent C
implementation of the function.

Table 2. Performance Results of Optimized SPE Assembly, Non-Optimized SPE Assembly and
C Implementation of a Fourth-Order FIR

Function Outputs (N)
First Call

(Clock Cycles)
Later Calls

(Clock Cycles)
Performance

Improvement versus C

Optimized SPE 100 2557 2531 81%

Non-Optimized SPE 100 3340 3329 75%

C Function 100 13715 13661 N/A
Improving DSP Performance Using Efficient SPE Coding, Rev. 0

Freescale Semiconductor 33

Document Number: AN3733
Rev. 0
07/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 SPE Instruction Set
	2.1 Instruction Overview
	2.2 Breaking Down Mnemonics

	3 SPE Performance Improvements Over Book E
	3.1 SPE Versus Book E - Simple Example
	3.2 Instruction Timing
	3.3 SPE versus Book E Timing Comparison

	4 Techniques for Writing Efficient SPE
	4.1 Controlling Instructions Using SPE Assembly
	4.2 Scheduling Instructions to Reduce Stalls
	4.2.1 Identifying Stalls
	4.2.2 How to Reschedule the Instructions

	4.3 Rolling Out Small Loops
	4.4 Aligning SPE Instructions
	4.5 Register Usage

	5 Guide to Writing SPE Functions
	6 Summary
	Appendix A Multiplication of Two Matrices
	Appendix B SPE Function Examples

