
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2008. All rights reserved.

The MSC8122 DSP is a 4-core device based on the
StarCore® SC140 DSP architecture, and is intended for
router, multimedia, and gateway applications. The device
bus architecture manages and arbitrates accesses between
the 4 cores, the DMA controller, internal memory, and
external memory.

The purpose of this document is to describe the possibility of
deadlock due to bus starvation in the MSC8122 during code
fetching, and provides guidelines to avoid deadlock and core
starvation using code tuning and external memory timing.

NOTE
Although this application note is directed
toward the MSC8122 DSP, the information
can also apply to the MSC8112, MSC8113,
and MSC8126 DSPs.

Document Number: AN3735
Rev. 1, 10/2008

Contents
1. MSC8122 Device Overview (Bus Architecture) 2
2. MSC8122 SQBus Core Arbitration Scheme 2
3. Deadlock Cause During Instruction Fetch 3
4. How to Avoid Prefetch Related Deadlock 5

4.1. Using Code/Application Tuning 5
4.2. Asynchronous Prefetch Enabling 5
4.3. Avoiding the SQBus . 5

5. Cautions About Altering Memory Access Timing . . . 5
A. Example Code for Enabling Cache, Write Buffer, and

Prefetch for the MSC8122 . 7

MSC8122: Avoiding Arbitration Deadlock
During Instruction Fetch

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

2 Freescale Semiconductor

MSC8122 Device Overview (Bus Architecture)

1 MSC8122 Device Overview (Bus Architecture)
The basic block diagram of the MSC8122 is shown in Figure 1

This document focuses on MSC8122 memory accesses; specifically code fetching. At the device level, the
four DSP cores in the MSC8122 access M2 memory via the MQBus and the Local Bus. Accessing external
memory (off-chip SDRAM for example), requires using the SQBus. This application note focuses
specifically on the SQBus and the effects of multicore access through the SQBus to external SDRAM
through the System Interface Unit (SIU).

2 MSC8122 SQBus Core Arbitration Scheme
The SQBus uses 2 types of arbitration: round-robin arbitration and priority based arbitration.

• The round robin arbitration model guarantees access to each core that accesses the bus (at the same
priority).

• Priority based arbitration provides higher access priority to certain accesses in the following order
(from highest to lowest):

— High Priority:

– Non-prefetch data or instruction read accesses

– Immediate data write accesses

— Middle Priority—Data write access

— Low Priority—Instruction pre-fetch access

Figure 1. MSC8122 Block Diagram

MQBus
SQBus

Local Bus

128

128

Boot
ROM

64

PLL

JTAG

RS-232

Internal Local Bus

Internal System Bus

IPBus

IP Master

64

64

UART

Memory
Controller

M2
RAM

GPIO Pins

Interrupts

Memory
Controller

System Bus

32/64

DSI Port

32

32/64

PLL/Clock

JTAG Port

SC140
Extended Core

SC140
Extended Core

SC140
Extended Core

System
Interface

32 Timers

4 TDMs

DMA Bridge SIU
Registers

Direct
Slave

Interface
(DSI)

8 Hardware
Semaphores

GIC

GPIO

MII/RMII/SMIIEthernet

SC140
Extended Core

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

Freescale Semiconductor 3

Deadlock Cause During Instruction Fetch

To prevent deadlocks (core freeze due to inadequate priority to access the bus) the SQBus arbiter and logic
upgrades the priority of a core middle priority request when the core is frozen and loses access. If a core
is frozen during a low priority pre-fetch access, the SQBus arbiter increases access priority if the access is
at a new cache line.

Low priority pre-fetch requests however, are not upgraded to high priority during mid-cache line. The
intent of this note is to clarify how the programmer should take care to avoid deadlock due to the case of
a single core being unable to gain access to the SQBus during a mid-cache line pre-fetch while other cores
have a higher priority on the SQBus.

3 Deadlock Cause During Instruction Fetch
The SQBus arbiter samples the priority of bus requests and gives access to the bus at a constant rate (1/8th
the bus clock frequency). This section describes which scenarios can lead to deadlock for a core trying to
perform a pre-fetch on the SQBus. To cause a deadlock, the following conditions must occur
simultaneously:

• One core requests access to external memory via SQBus with low priority.

• Any other core or cores are accessing the SQBus with mid and high priority at every interval where
the SQBus arbiter samples bus requests (see Figure 2).

Example 1 demonstrates the situation in which deadlock on one core may occur.

Example 1. Deadlock Scenario

The system runs the following setup: core 0 acts as a master core and initializes the device
while the other 3 cores wait in a polling loop for the master core to finish.

In this code, the master core runs code from SDRAM (via the SQBus) using cache and
prefetch. It is supposed to run a few NOPs, and then set a shared variable. The slave cores
are running code directly from SDRAM (via SQBus, no cache), and poll a shared variable
waiting for the master core to signal that the slave cores can begin executing.

Figure 2. Cores Requesting Access: Core 0 Frozen (Never Granted Access)

Access Sampling

Core0—Low Pri

Core1 - Hi Pri

Core2 - Hi Pri

Core3 - Hi Pri

Access Granted Core1 Core2 Core3 Core1 Core2 Core3 Core1 Core2 Co

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

4 Freescale Semiconductor

Deadlock Cause During Instruction Fetch

NOTE
The problem here is that the slave cores are using the full bandwidth of the SQBus with
constant high priority instruction access requests. The master core can gain access using
prefetch (low priority) at the start of the cache line because the bus logic raises the master
core priority after 1 freeze. But, as soon as a mid-cache line (low priority) prefetch begins,
the core priority is not raised and the master core effectively freezes because when it starts
the next prefetch, due to its low priority, the bus never grants access (see Figure 2).

Example 2. Deadlock Scenario Code

Master Core:
org p:0
jmp $20000000 ;Jumps to Code in SDRAM (Accessed via SQBus)
org p:$20000000

start:
init: type func

;the following segment sets a shared variable in M2 to be used as a flag
;signals other cores that initialization is completed by Core 0
move.l #$01010400,r5
nop
clr d0
move.l d0,(r5)
;set breakpoint here and start slave cores before restarting master core
bsr enable_icache
bsr enable_wbuffer
bsr enable_prefetch
nop
nop
nop
nop
nop
nop
nop
move #1,(r5)
debug ; only for Run/Stop at the end of the program debugging purpose
nop

Slave Cores
 org p:0
jmp $20F1E7FC
org p:$20F1E7FC
move.l #$01010400,r5
nop

test_loop:
move.l (r5),d0
tsteq d0
nop
bt test_loop
nop

NOTE*
Functions/Macros such as “enable_icache” are defined in Appendix A, Example Code for
Enabling Cache, Write Buffer, and Prefetch for the MSC8122.

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

Freescale Semiconductor 5

How to Avoid Prefetch Related Deadlock

4 How to Avoid Prefetch Related Deadlock
The following sections describe ways to avoid prefetch related deadlock situations.

4.1 Using Code/Application Tuning
The most basic way to ensure that priority related deadlock does not occur is to enable prefetch at the start
of the application without intercore interdependencies. What this means is, the programmer needs to
ensure that after one core has prefetch enabled, the other cores do not execute any looping code that
depends on the first core before their respective prefetch units are enabled.

When there is no intercore dependencies before the prefetch instruction, an OS Barrier, and so forth, is not
even necessary to ensure prefetch is enabled for all cores simultaneously. This is because the core(s) have
prefetch enabled effectively hit a “priority barrier” by switching to low priority and getting blocked until
the high priority cores reach their respective prefetch enable instructions.

4.2 Asynchronous Prefetch Enabling
If the programmer wants to enable prefetch for just one core (for some period of time) and use this core to
initialize the device while other cores are polling without prefetch, deadlock can be avoided by running
initialization code from non-SQBus memory.

4.3 Avoiding the SQBus
The obvious way to prevent deadlock on the SQBus is to not use it (that is, run prefetch-enabled code from
M2 Memory and use the MQ Bus). You can do that using one of the following methods:

• In assembly: this is accomplished by allocating the initialization section of code to M2 or M1 using
the .org directive.

• In a C project, the programmer can allocate the initialization sequence in a function to a section
and locate this section in M1/M2 using the linker command file and pragmas, or the application
file (*.appli). Refer to the StarCore C Compiler User Guide pdf file provided with CodeWarrior®
IDE in the \help\PDF\ folder for more information on application files and pragmas.

• If M1 and M2 resources are limited, overlaying code is another approach. Overlay is the coding
technique of copying sections of code from one memory location to another and then running that
code.

5 Cautions About Altering Memory Access Timing
Testing showed that some level of deadlock can be avoided by altering timing settings to external memory,
but this method has shown to cause bus overheating on ADS and custom boards, and as such should be
strictly avoided. The theory behind this method is that the deadlock condition only occurs when there is
overlap between accesses of different cores to external memory via the SQBus (as illustrated in Figure 2).

In a test using the MSC8122 ADS board, the overlap was eliminated by reducing delay parameters in
SDRAM timing, as shown in Example 3.

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

6 Freescale Semiconductor

Cautions About Altering Memory Access Timing

Example 3. Adjusting SDRAM Timing

On the MSC8122ADS, SDRAM timing is configured in the
8122ADS_DSI32_Slave_Init.cfg file generated by the CodeWarrior default stationary.

When running cores at 500 MHz (bus at 166MHz), and using the DSI configuration file set
for 166 MHz SDRAM, asynchronous initialization using 1 core with prefetch can lead to
deadlock.

In the test, deadlock was removed by decreasing the SDRAM delays to match the DSI
configuration file 133 MHz SDRAM initialization.

However, AS A RESULT of the reduced delay in the SDRAM controller (required to
eliminate access overlap), bus overheating occurred.

CAUTION
Adjusting the SDRAM timing to incorrect values for a certain bus frequency can result in
bus overheating and potential damage to system boards. Do not use this method to attempt
to resolve prefetch-related deadlock.

MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch, Rev. 1

Freescale Semiconductor 7

Cautions About Altering Memory Access Timing

Appendix A Example Code for Enabling Cache, Write
Buffer, and Prefetch for the MSC8122

enable_icache:
move.l #pICCR,r1
move.l #$0000f001,r0
nop
nop
nop
move.w r0,(r1)
nop
nop
move.l #pICCMR,r1
move.l #$00000001,r0
nop
nop
nop
move.w r0,(r1)
nop
nop

enable_wbuffer:
move.l #WBCR,r1
move.l #$000003FF,r0
nop
nop
move.w r0,(r1)
nop
nop

enable_prefetch:
move.l #pIFUR,r1
move.l #$00000000,r0
nop
nop
move.w r0,(r1)
nop
nop

Document Number: AN3735
Rev. 1
10/2008

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks
or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and
other countries. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

	MSC8122: Avoiding Arbitration Deadlock During Instruction Fetch
	1 MSC8122 Device Overview (Bus Architecture)
	2 MSC8122 SQBus Core Arbitration Scheme
	3 Deadlock Cause During Instruction Fetch
	4 How to Avoid Prefetch Related Deadlock
	4.1 Using Code/Application Tuning
	4.2 Asynchronous Prefetch Enabling
	4.3 Avoiding the SQBus

	5 Cautions About Altering Memory Access Timing
	Appendix A Example Code for Enabling Cache, Write Buffer, and Prefetch for the MSC8122

