
Freescale Semiconductor
Application Note

Document Number: AN3770
Rev. 0, 04/2009

Contents

Introduction . 1
Function Overview. 1
Functional Description . 2

3.1 Injection Pulse Description 2
3.2 Start Angle Re-Calculation 3
3.3 Modifying the Amount of Fuel, Additional Injection . 3
3.4 Example of a Complex Injection Pulse 4
3.5 Performance and Use of the eTPU FUEL Function 5
C Level Application Program Interface (API) for eTPU . 6

4.1 Initialization Functions . 9
4.2 Change Operation Functions. 11
4.3 Value Return Functions . 14
Examples of Function Usage. 14

5.1 Example 1 . 14
5.2 Example 2 . 15

6 Summary and Conclusions..17

Using the FUEL eTPU Function
by: Michal Princ

System Application Engineer
Roznov Czech System Center
1 Introduction
This application note provides a simple C interface for
the FUEL eTPU function used as part of the complete
eTPU Set 2 Automotive Function Set. The functions can
be used on any Freescale product that has an enhanced
time processor unit (eTPU) module. Example code is
available for MPC55xx and MPC563xM devices. This
application note must be read in conjunction with
application note AN2864 – General C Functions for the
eTPU and application note AN3768 – eTPU Automotive
Set (Set 2).

2 Function Overview
The FUEL eTPU function generates one or more fuel
injection pulses and thus controls the amount of fuel in
the intake manifold. Fuel injection pulses start at a
calculated engine cycle angle (0–720 degrees) based on
a specified end angle and the amount of fuel required.
Multiple additional injection pulses are allowed.

1
2
3

4

5

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Functional Description
Injection time for the last engine cycle (per a cylinder) as well as the total injection time over all cylinders
is stored. The eTPU synchronization functions, CAM and CRANK, provide angular information to the
FUEL function.

3 Functional Description

3.1 Injection Pulse Description
The fuel driver can drive a timed pulse controlled by a combination of time and engine angle information.
The user must specify:

1. The injection pulse width, consists of two values:

— Injection Time — Defines the amount of fuel required.

— Compensation Time — Compensates for the opening and closing time of the valve. This value
is influenced by numerous parameters including the injector parameters, temperature, battery
voltage, and so on.

2. Angle-based parameters that determine the injection pulse start angle:

— Cylinder Offset Angle — The angle offset for each engine cylinder.

— Injection Normal End Angle — This is the angle where the injection must be finished, before
the absolute latest point. This parameter is global for all cylinders. The sum of the Injection
Normal End Angle + Cylinder Offset Angle gives the angle at which the injection must be
finished.

— Drop Dead Angle — This angle corresponds to the closing angle of the intake valve plus an
offset. This is the point where no additional fuel can be put into the cylinder. This parameter is
global for all cylinders. The sum of the Drop Dead Angle + Cylinder Offset Angle gives the
absolute latest angle where the injection needs to be finished.

Based on the above defined parameters the beginning of the injection pulse is calculated as follows:

Injection Start Angle = Injection Normal End Angle + Cylinder Offset Angle – time_to_angle(Injection
Time + Compensation Time)

Calculation of the Injection Start Angle is performed typically twice per engine cycle, at the Drop Dead
Angle and at the Recalc Angle, see Figure 1. The CPU can update the Injection Time at any time. If the
update comes between the last Drop Dead Angle and the scheduled Injection Start Angle it triggers a
recalculation of the Injection Start Angle.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor2

Functional Description

Figure 1. Injection Pulse Definition

3.2 Start Angle Re-Calculation
The application requires the end of the pulse to occur at a given engine angle, the injection pulse start angle
must be predicted based on the actual engine speed. The pulse completion angle is subject to changes in
engine speed while the pulse is running. The closer the prediction is made to the start time of the pulse, the
better the prediction is. The first calculation of the next engine cycle Injection Start Angle is performed at
the Drop Dead Angle, but it deals with a rough prediction. The Injection Start Angle needs to be
re-calculated again, just before the estimated Injection Start Angle. You must specify the Recalculation
Offset Angle parameter that determines the Recalc Angle, see Figure 1.

Recalc Angle = Injection Start Angle – Recalculation Offset Angle

3.3 Modifying the Amount of Fuel, Additional Injection Pulse(s)
The value of the injection time can be changed by the CPU at any time, even if the injection pulse is already
finished (before the Drop Dead Angle + Cylinder Offset Angle point). If it is changed afterwards, the
changes are valid for the next engine cycle.

3.3.1 Main Injection Pulse

After the injection pulse has started, it is a pure time pulse with no further angle references.

If the pulse is active, modifying the injection time via the CPU results in a longer or shorter pulse (worst
case, is an immediate end of pulse). If the pulse gets longer, it stops at the Drop Dead Angle + Cylinder
Offset Angle point. No additional fuel can be put into the cylinder after this point. If the pulse gets longer,
the Compensation Time is used only once.

intake valve closed
open

Compensation Time

injection pulse

Recalculation Injection Time
 Offset Angle (specified)

Recalc (specified) Injection Injection Normal Drop Dead Angle +
Angle Start Angle End Angle + Cylinder Offset Angle

(calculated) (calculated) Cylinder Offset Angle (specified)
(specified)
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 3

Functional Description
The function tracks Real Injection Time to know how much fuel has been injected in that cylinder. This is
calculated by:

Real Injection Time = Real End Edge Time – Real Start Edge Time – Compensation Time

3.3.2 Additional Injection Pulse(s)

The CPU can request to change the Injection Time even if the main injection pulse is already finished. If
this request comes after the point Drop Dead Angle + Cylinder Offset Angle the change applies for the next
engine cycle. However, if the request comes before the point Drop Dead Angle + Cylinder Offset Angle,
and if the value of the Injection Time is increased by the CPU, another injection pulse may happen (almost)
immediately.

This pulse happens only if it is longer than a predefined parameter, Minimum Injection Time, preventing
very short injection pulses being scheduled. Every pulse adds the Compensation Time because the valve
needs to open and close once per pulse.

Pulses are not allowed to be back-to-back. After the pulse switches off, it must stay off for some time.
Using the parameter Minimum Off Time, the FUEL function makes sure the signal is inactive between two
consecutive pulses for this Minimum Off Time.

At the end of each additional injection pulse the Real Injection Time is updated:

Real Injection Time = Real Injection Time + Real End Edge Time – Real Start Edge Time – Compensation
Time

3.4 Example of a Complex Injection Pulse
This section describes how complex injection pulse generation works, see Figure 2. In this example, the
pulse has been scheduled with an Injection Time of 100 units. This defines the start point of the pulse
(Compensation Time is always included).

Figure 2. Injection Pulse

original injection pulse

Compensation Time Injection Time = 100 Minimum Off Time = 20

1 2 3 4 5

real injection pulse

Injection Time = 100

Injection Time set to 40
Drop Dead Angle + Drop Dead Angle +

Injection Time set to 62 Cylinder Offset Angle Cylinder Offset Angle

Injection Time set to 80

Injection Time set to 200

Injection Time set to 100
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor4

Functional Description
At point 1, the CPU decides to reduce the Injection Time to 40. As the current pulse is already longer than
this value, an immediate end of the pulse is scheduled. The Real Injection Time is calculated (assume 60
in this example).

At point 2, the CPU decides to increase the Injection Time to 62. As the previous injection pulse had a
length of 60 (stored in Real Injection Time), the delta pulse is calculated by 62-60=2. As the result is
smaller than the Minimum Injection Time (assume 5 for this example), no pulse happens.

At point 3, the CPU increases the Injection Time to 80. The delta pulse is calculated by Additional Pulse
Length = Injection Time – Real Injection Time = 80 - 60 = 20. This value is longer than the Minimum
Injection Time, therefore an immediate pulse is scheduled with a length of (20 + Compensation Time).
After the pulse the Real Injection Time is updated to 80.

At point 4, the CPU increases the Injection Time to 200. This pulse is not scheduled immediately, because
the Minimum Off Time is not met. The eTPU waits for the Minimum Off Time to expire and then calculates
a new pulse length:

Additional Pulse Length = Injection Time – Real Injection Time = 200 - 80 = 120.

This value is longer than the Minimum Injection Time, therefore a pulse is scheduled with a length of (120
+ Compensation Time).

During this additional injection pulse the absolute angle at which the injection needs to be finished happens
(Drop Dead Angle + Cylinder Offset Angle). This results in an immediate end of the pulse. The Real
Injection Time is updated by the latest pulse and, in this example, set to 130. This value is added to the Sum
Of Injection Time, which is used for the fuel consumption display on the dashboard.

Sum Of Injection Time = Sum Of Injection Time + Real Injection Time

The Real Injection Time is also copied to the CPU updating the CPU with the amount of real fuel injected
in the last engine cycle. At this point the Real Injection Time is reset to 0.

The next change of the Injection Time to 100, that occurs after the Drop Dead Angle + Cylinder Offset
Angle point, applies to the next engine cycle.

3.5 Performance and Use of the eTPU FUEL Function

3.5.1 FUEL Channel Assignment

Ensure all FUEL functions are using the same TCR1 clock. This can be executed by assigning all FUEL
channels to the same eTPU engine, or by ensuring TCR1 clock synchronization on both eTPU engines.

3.5.2 FUEL Response to the Stall Condition on the CRANK Channel

If a STALL condition is detected on the CRANK channel, see application note AN3769 — Using the
Engine Position (CAM and CRANK) eTPU Functions, the CRANK function sends a link to all output
functions including all initialized FUEL channels. On the link, the FUEL channels immediately stop any
injection pulses and re-sync (re-initialize) themselves, therefore no host intervention is required. All eTPU
set2 output functions behave the same way in this situation.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 5

C Level Application Program Interface (API) for eTPU FUEL Function
3.5.3 FUEL Minimum Off Time, Limitations

As described previously, the Minimum Off Time parameter is introduced to ensure the fuel signal is inactive
between two consecutive pulses for the defined minimum time period. This applies only for the time
between the main injection pulse and the additional injection pulse. Minimum off time is not applied
between two consecutive primary injection pulses (two engine cycles). The CPU must check the requested
injection pulse width against the actual engine cycle period.

3.5.4 Performance

Like all eTPU functions, the FUEL function performance in an application is to some extent dependent
upon the service time (latency) of other active eTPU channels. This is due to the operational nature of the
scheduler. The more eTPU channels that are active, the larger the impact on performance. Worst-case
latency in any eTPU application can be closely estimated. To analyze the performance of an application
that appears to approach the limits of the eTPU, use the guidelines given in the eTPU reference manual
and the information provided in the eTPU FUEL software release available from Freescale.

4 C Level Application Program Interface (API) for eTPU
FUEL Function

The following functions provide easy access for the application developer to the Fuel function. Use of
these functions eliminates the need to directly control the eTPU registers. The API consists of 14 functions.
These functions can be found in the etpu_fuel.c and etpu_fuel.h files. The functions are described below
and are available from Freescale as part of this application note download. In addition, the eTPU
C-compiler generates a file called etpu_fuel_auto.h. This file contains information relating to the eTPU
FUEL function including details of how the eTPU Data Memory is organized and definitions for various
API parameters.

FUEL channels initialization functions:

int32_t fs_etpu_fuel_init_3cylinders(uint8_t channel_1,

uint8_t channel_2,

uint8_t channel_3,

uint8_t cam_chan,

int8_t priority,

uint8_t polarity,

uint24_t cylinder_offset_angle_1,

uint24_t cylinder_offset_angle_2,

uint24_t cylinder_offset_angle_3,

uint24_t drop_dead_angle,

uint24_t injection_normal_end_angle,
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor6

C Level Application Program Interface (API) for eTPU FUEL Function
uint24_t recalculation_offset_angle,

uint24_t injection_time_us_1,

uint24_t injection_time_us_2,

uint24_t injection_time_us_3,

uint24_t compensation_time_us,

uint24_t minimum_injection_time_us,

uint24_t minimum_off_time_us)

int32_t fs_etpu_fuel_init_4cylinders(uint8_t channel_1,

uint8_t channel_2,

uint8_t channel_3,

uint8_t channel_4,

uint8_t cam_chan,

uint8_t priority,

uint8_t polarity,

uint24_t cylinder_offset_angle_1,

uint24_t cylinder_offset_angle_2,

uint24_t cylinder_offset_angle_3,

uint24_t cylinder_offset_angle_4,

uint24_t drop_dead_angle,

uint24_t injection_normal_end_angle,

uint24_t recalculation_offset_angle,

uint24_t injection_time_us_1,

uint24_t injection_time_us_2,

uint24_t injection_time_us_3,

uint24_t injection_time_us_4,

uint24_t compensation_time_us,

uint24_t minimum_injection_time_us,

uint24_t minimum_off_time_us)

int32_t fs_etpu_fuel_init_6cylinders(uint8_t channel_1,

uint8_t channel_2,
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 7

C Level Application Program Interface (API) for eTPU FUEL Function
uint8_t channel_3,

uint8_t channel_4,

uint8_t channel_5,

uint8_t channel_6,

uint8_t cam_chan,

uint8_t priority,

uint8_t polarity,

uint24_t cylinder_offset_angle_1,

uint24_t cylinder_offset_angle_2,

uint24_t cylinder_offset_angle_3,

uint24_t cylinder_offset_angle_4,

uint24_t cylinder_offset_angle_5,

uint24_t cylinder_offset_angle_6,

uint24_t drop_dead_angle,

uint24_t injection_normal_end_angle,

uint24_t recalculation_offset_angle,

uint24_t injection_time_us_1,

uint24_t injection_time_us_2,

uint24_t injection_time_us_3,

uint24_t injection_time_us_4,

uint24_t injection_time_us_5,

uint24_t injection_time_us_6,

uint24_t compensation_time_us,

uint24_t minimum_injection_time_us,

uint24_t minimum_off_time_us)

Change operation functions:

int32_t fs_etpu_fuel_set_injection_time(uint8_t channel,

uint24_t injection_time_us)

int32_t fs_etpu_fuel_set_drop_dead_angle(uint8_t channel,

uint24_t drop_dead_angle)

int32_t fs_etpu_fuel_set_normal_end_angle(uint8_t channel,
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor8

C Level Application Program Interface (API) for eTPU FUEL Function
uint24_t normal_end_angle)

int32_t fs_etpu_fuel_set_recalc_offset_angle(uint8_t channel,

uint24_t recalc_offset_angle)

int32_t fs_etpu_fuel_set_compensation_time(uint8_t channel,

uint24_t compensation_time_us)

int32_t fs_etpu_fuel_set_minimum_injection_time(uint8_t channel,

uint24_t minimum_injection_time_us)

int32_t fs_etpu_fuel_set_minimum_off_time(uint8_t channel,

uint24_t minimum_off_time_us)

int32_t fs_etpu_fuel_switch_off(uint8_t channel)

int32_t fs_etpu_fuel_switch_on(uint8_t channel)

Value return functions:

uint24_t fs_etpu_fuel_get_sum_of_injection_time(void)

uint24_t fs_etpu_fuel_get_CPU_real_injection_time(uint8_t channel)

The FUEL initialization functions dynamically allocate eTPU Data Memory. Dynamic allocation of eTPU
Data Memory occurs if the channel has a zero in its channel parameter base address field. The channel
parameter base address (CPBA) field is updated by the API with a non-zero value to point to the parameter
RAM allocated to the channel. The fs_etpu_fuel_init_3cylinders, fs_etpu_fuel_init_4cylinders and
fs_etpu_fuel_init_6cylinders APIs does not allocate new parameter RAM if the channels have a non-zero
value in their channel parameter base address fields, this means that channels have already been assigned.

4.1 Initialization Functions

4.1.1 int32_t fs_etpu_fuel_init_3cylinders(...),
int32_t fs_etpu_fuel_init_4cylinders(...),
int32_t fs_etpu_fuel_init_6cylinders(...)

The initialization functions (fs_etpu_fuel_init_Xcylinders) are used to initialize the eTPU channels for the
eTPU FUEL functions. Based on the number of the engine cylinders it is possible to initialize 3, 4 or 6
eTPU channels for the FUEL function. The functions have the following parameters:

• channel_X (uint8_t) — The number of the channel that generates the fuel signal for the cylinder
#X, X = 1–6. For products with a single eTPU, this parameter must be assigned a value of 0–31.
For devices with two eTPUs, this parameter must be assigned a value of 0–31 for eTPU_A and
64–95 for eTPU_B. The user must ensure all FUEL functions use the same TCR1 clock. This can
be executed by assigning all FUEL channels to the same eTPU engine, or by ensuring TCR1 clock
synchronization on both eTPU engines.

• cam_chan (uint8_t) — This is the channel number the CAM function is assigned to. The FUEL
function reads the TCR2_Counts_Per_Engine_Cycle value from CAM.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 9

C Level Application Program Interface (API) for eTPU FUEL Function
• priority (uint8_t) — This is the priority to assign to all FUEL channels. This parameter must be
assigned a value of:

— FS_ETPU_ PRIORITY_HIGH

— FS_ETPU_ PRIORITY_MIDDLE

— FS_ETPU_ PRIORITY_LOW

— FS_ETPU_ PRIORITY_DISABLED

• polarity (uint8_t) — This is the polarity of the output signal. It must be assigned one of these
values:

— FS_ETPU_FUEL_PULSE_HIGH

— FS_ETPU_FUEL_PULSE_LOW

• cylinder_offset_angle_X (uint24_t) — Offset angle for the engine cylinder #X, X = 1-6. Range 0
to 71999. 71999 represents 719.99 degrees.

• drop_dead_angle (uint24_t) — This is the closing angle of the intake valve. No additional fuel can
be put into the cylinder after this angle. Range 0 to 71999. 71999 represents 719.99 degrees. This
parameter is global and sets the drop dead angle for all the fuel signals.

• injection_normal_end_angle (uint24_t) — This is the angle where the injection should be finished.
Range 0 to 71999. 71999 represents 719.99 degrees. This parameter is global and sets the normal
end angle for all the fuel signals.

• recalculation_offset_angle (uint24_t) — (Injection_Start_Angle-Recalculation_Offset_Angle)
defines the angle where the re-calc thread is scheduled. Range 0 to 71999. 71999 represents 719.99
degrees. This parameter is global and sets the recalculation angle for all the fuel signals.

• injection_time_us_X (uint24_t) — This is the length of the injection pulse, in microseconds, for
the engine cylinder #X, X = 1–6. If it is not necessary to generate injection pulses immediately after
the FUEL INIT, set these parameters to zero and later use the fs_etpu_fuel_set_injection_time
function to change the injection time for all individual FUEL channels.

• compensation_time_us (uint24_t) — Each generated injection pulse is prolonged by this time to
compensate for the opening and closing time of the valve. The time is measured in microseconds.
This value is influenced by valve parameters, temperature, battery voltage, and so on. This
parameter is global and sets the compensation time for all the fuel signals.

• minimum_injection_time_us (uint24_t) — This is the required minimum injection pulse width, in
microseconds. This parameter is global and sets the minimum injection time for all the fuel signals.

• minimum_off_time_us (uint24_t) — This is the minimum time between two injection pulses, in
microseconds. This parameter is global and sets the normal off time for all the fuel signals.

Return Notes — The initialization function returns an error code if the channel can not be initialized. The
error codes that can be returned are found in the utilities file etpu_utils.h:

• FS_ETPU_ERROR_MALLOC

• FS_ETPU_ERROR_VALUE
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor10

C Level Application Program Interface (API) for eTPU FUEL Function
WARNING
These functions do not configure pins, they only configure the eTPU. In a
device, pins may need to be configured to select the eTPU functionality. See
example code.

4.2 Change Operation Functions
These functions are used to set or change function parameters of the eTPU FUEL functions. The functions
and their parameters are described in this section:

4.2.1 int32_t fs_etpu_fuel_set_injection_time(uint8_t channel,
uint24_t injection_time_us)

This function is used to change the injection time on a specific FUEL channel. It is not possible to change
the injection time for all initialized FUEL channels by calling this function, instead you have to call this
function several times based on the number of initialized FUEL channels. This function has the following
parameters:

• channel (uint8_t) — The number of the channel that generates the fuel signal.

• injection_time_us (uint24_t) — This is the length of the injection pulse in microseconds.

Return notes — This function returns 0 if the injection time update was successful. This function must only
be used if the FUEL channel has no pending HSRs. If it is called and there are pending HSRs, a sum of
pending HSR numbers is returned and this function must be called again later.

4.2.2 int32_t fs_etpu_fuel_set_drop_dead_angle(uint8_t channel,
uint24_t drop_dead_angle)

This function sets the drop dead angle. The drop dead angle parameter is global for all initialized FUEL
channels. This function changes the drop dead angle for all generated fuel signals.

This function has the following parameters:

• channel (uint8_t) — The number of any channel that generates the fuel signal, typically the FUEL
channel number for the first cylinder.

• drop_dead_angle (uint24_t) — This is the closing angle of the intake valve. No additional fuel can
be put into the cylinder after this angle. Range 0 to 71999. 71999 represents 719.99 degrees.

Return notes — The error code that can be returned is:

• FS_ETPU_ERROR_VALUE

4.2.3 int32_t fs_etpu_fuel_set_normal_end_angle(uint8_t channel,
uint24_t normal_end_angle)

This function changes the normal end angle. The normal end angle parameter is global for all initialized
FUEL channels. This function changes the normal end angle for all generated fuel signals.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 11

C Level Application Program Interface (API) for eTPU FUEL Function
This function has the following parameters:

• channel (uint8_t) — The number of any channel that generates the fuel signal, typically the FUEL
channel number for the first cylinder.

• normal_end_angle (uint24_t) — This is an angle when the injection should be finished. Range 0
to 71999. 71999 represents 719.99 degrees.

Return notes — The error code that can be returned is:

• FS_ETPU_ERROR_VALUE

4.2.4 int32_t fs_etpu_fuel_set_recalc_offset_angle(uint8_t channel,
uint24_t recalc_offset_angle)

This function sets the recalculation offset angle. The recalculation offset angle parameter is global for all
initialized FUEL channels. This function changes the recalculation offset angle for all generated fuel
signals.

This function has the following parameters:

• channel (uint8_t) — The number of any channel which generates the fuel signal, typically the
FUEL channel number for the first cylinder.

• recalc_offset_angle (uint24_t) — (Injection_Start_Angle-Recalculation_Offset_Angle) defines
the angle when the re-calc thread is scheduled. Range 0 to 71999. 71999 represents 719.99 degrees.

Return notes — The error code that can be returned is:

• FS_ETPU_ERROR_VALUE

4.2.5 int32_t fs_etpu_fuel_set_compensation_time(uint8_t channel,
uint24_t compensation_time_us)

This function changes the compensation time. The compensation time parameter is global for all initialized
FUEL channels. This function changes the compensation time for all generated fuel signals.

This function has the following parameters:

• channel (uint8_t) — The number of any channel that generates the fuel signal, typically the FUEL
channel number for the first cylinder.

• compensation_time_us (uint24_t) — Each generated injection pulse is prolonged by this time to
compensate for the opening and closing time of the valve. The time is measured in microseconds.
This value is influenced by valve parameters, temperature, battery voltage, and so on.

4.2.6 int32_t fs_etpu_fuel_set_minimum_injection_time(uint8_t channel,
uint24_t minimum_injection_time_us)

This function changes the minimum injection time. The minimum injection time parameter is global for
all initialized FUEL channels. This function changes the minimum injection time for all generated fuel
signals.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor12

C Level Application Program Interface (API) for eTPU FUEL Function
This function has the following parameters:

• channel (uint8_t) — The number of any channel which generates the fuel signal, typically the
FUEL channel number for the first cylinder.

• minimum_injection_time_us (uint24_t) — This is the required minimum injection pulse width, in
microseconds.

4.2.7 int32_t fs_etpu_fuel_set_minimum_off_time(uint8_t channel,
uint24_t minimum_off_time_us)

This function sets the minimum off time. The minimum off time parameter is global for all initialized
FUEL channels. This function changes the minimum off time for all generated fuel signals.

This function has the following parameters:

• channel (uint8_t) — The number of any channel which generates the fuel signal, typically the
FUEL channel number for the first cylinder.

• minimum_off_time_us (uint24_t) —This is the minimum time between two injection pulses, in
microseconds.

4.2.8 int32_t fs_etpu_fuel_switch_off(uint8_t channel)

This function switches the injection pulse generation off. Switching off must not be executed by setting
the Injection Time = 0, as this shortens an injection pulse that is currently in progress, resulting in an
incorrect pulse. Instead this function must be used. In this case the CPU can switch off at any time, but a
pulse that has already been started will correctly finished.

It is not possible to switch off all initialized FUEL channels by calling this function, instead the user has
to call this function several times based on the number of initialized FUEL channels.

This function has the following parameter:

• channel (uint8_t) — The number of the FUEL channel that needs to be stopped.

4.2.9 int32_t fs_etpu_fuel_switch_on(uint8_t channel)

This function switches the injection pulse generation on. This function is used after the injections were
suspended and the CPU requests to turn them back on again.

It is not possible to switch on all initialized FUEL channels by calling this function; instead the user has
to call this function several times based on the number of initialized FUEL channels.

This function has the following parameter:

• channel (uint8_t): The number of the FUEL channel which needs to be started.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 13

Examples of Function Usage
4.3 Value Return Functions

4.3.1 uint24_t fs_etpu_fuel_get_sum_of_injection_time(void)

This function returns the sum of all injection times (total injection time applied through all initialized
FUEL channels) in TCR1 TICKS. This function reads the global variable, it has no input parameter.

4.3.2 uint24_t fs_etpu_fuel_get_CPU_real_injection_time(uint8_t
channel)

This function returns the real injection time of the defined cylinder (particular FUEL channel), in the last
engine cycle, in TCR1 TICKS.

This function has the following parameter:

• channel (uint8_t) — The number of the defined FUEL channel.

5 Examples of Function Usage

5.1 Example 1
Description — This example demonstrates how to initialize four FUEL channels. The polarity of the fuel
signal is active high and cylinder offsets are 0 deg, 180 deg, 360 deg and 540 deg. The injection time of
the particular cylinders is set to 4000 microseconds (injection pulses are generated immediately after CAM
and CRANK have established synchronization).

Example Code — The example application, which is a part of the FUEL API, shows how to initialize
FUEL channels and how to create a simple application with the eTPU set2 FUEL function. The example
code is targeted at MPC5500, see fuel_ example.c and fuel_ example.h.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor14

Examples of Function Usage
The eTPU initialization routines fuel_etpu_gct_example.c and fuel_etpu_gct_example.h were generated
by Freescale's eTPU graphical configuration tool (GCT). The GCT is a Windows application that offers a
user-friendly graphical environment to configure the eTPU and generate initialization routines coded in
C-language. It is available for free at Freescale website.

The following piece of code shows how the eTPU FUEL channels are initialized:
err_code = fs_etpu_fuel_init_4cylinders(FUEL0_FUEL_CH_1,/* engine: A; channel: 5 */

 FUEL0_FUEL_CH_2,/* engine: A; channel: 6 */
 FUEL0_FUEL_CH_3,/* engine: A; channel: 7 */
 FUEL0_FUEL_CH_4,/* engine: A; channel: 8 */
 APP_ENG_POS0_CAM,/* cam_chan: APP_ENG_POS0_CAM */
 FS_ETPU_PRIORITY_MIDDLE,/* priority: Middle */
 FS_ETPU_FUEL_PULSE_HIGH,/* polarity: Pulse active high */
 0, /* cylinder_offset_angle_1: 0 */
 18000, /* cylinder_offset_angle_2: 18000 */
 36000, /* cylinder_offset_angle_3: 36000 */
 54000, /* cylinder_offset_angle_4: 54000 */
 60000, /* drop_dead_angle: 60000 */
 3000, /* injection_normal_end_angle: 3000 */
 2000, /* recalculation_offset_angle: 2000 */
 4000, /* injection_time_us_1: 4000 */
 4000, /* injection_time_us_2: 4000 */
 4000, /* injection_time_us_3: 4000 */
 4000, /* injection_time_us_4: 4000 */
 1, /* compensation_time_us: 1 */
 2000, /* minimum_injection_time_us: 2000 */
 1000); /* minimum_off_time_us: 1000 */

5.1.1 Program Output

The fuel injection pulses are generated on the eTPU channels 5–8. Figure 3 shows the relationship between
the active-high fuel signals and the CAM and CRANK signals.

Figure 3. Simulator Outputs - Example 1

5.2 Example 2
Description — This example shows how to initialize three FUEL channels. The polarity of the fuel signal
is active low and cylinder offsets are 0 deg, 240 deg, and 480 deg. The injection time of the particular
cylinders is set to 0 after the initialization.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 15

Examples of Function Usage
Example Code — This example is not a part of the FUEL API but can be created by modifying the example
1 codes. The FUEL channels initialization routine in fuel_etpu_gct_example.c must be changed as follows:
err_code = fs_etpu_fuel_init_3cylinders(FUEL0_FUEL_CH_1,/* engine: A; channel: 5 */

 FUEL0_FUEL_CH_2,/* engine: A; channel: 6 */
 FUEL0_FUEL_CH_3,/* engine: A; channel: 7 */
 APP_ENG_POS0_CAM,/* cam_chan: APP_ENG_POS0_CAM */
 FS_ETPU_PRIORITY_MIDDLE,/* priority: Middle */
 FS_ETPU_FUEL_PULSE_LOW,/* polarity: Pulse active low */
 0, /* cylinder_offset_angle_1: 0 */
 24000, /* cylinder_offset_angle_2: 24000*/
 48000, /* cylinder_offset_angle_3: 48000*/
 60000, /* drop_dead_angle: 60000 */
 3000, /* injection_normal_end_angle: 3000 */
 2000, /* recalculation_offset_angle: 2000 */
 0, /* injection_time_us_1: 0 */
 0, /* injection_time_us_2: 0 */
 0, /* injection_time_us_3: 0 */
 1, /* compensation_time_us: 1 */
 2000, /* minimum_injection_time_us: 2000 */
 1000); /* minimum_off_time_us: 1000 */

As the injection time of the particular cylinder is set to 0 at initialization, no fuel pulses are generated after
the FUEL initialization and the host CPU has to set the injection time of the individual FUEL channels
later. The fs_etpu_fuel_set_injection_time API function is used each time the CPU requests a change of
the injection time on a particular FUEL channel. This function returns 0 if the injection time update was
successful. If the FUEL channel has any pending HSRs, this function returns a sum of pending HSR
numbers. This function must be called again to apply the requested new value of the injection time. The
following technique can be used:
error_code = 1;
while (error_code != 0)
{
 error_code = fs_etpu_fuel_set_injection_time(FUEL0_FUEL_CH_1, 4000);
 }
error_code = 1;
while (error_code != 0)
{
 error_code = fs_etpu_fuel_set_injection_time(FUEL0_FUEL_CH_2, 4000);
 }
error_code = 1;
while (error_code != 0)
{
 error_code = fs_etpu_fuel_set_injection_time(FUEL0_FUEL_CH_3, 4000);
 }

5.2.1 Program Output

The fuel injection pulses are generated on the eTPU channels 5–8. Figure 4 shows the relationship between
the active-low fuel signals and the CAM and CRANK signals.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor16

Summary and Conclusions
Figure 4. Simulator Outputs - Example 2

6 Summary and Conclusions
This application note provides the user with a description of the eTPU FUEL function (giving code and
application examples). The simple C interface functions enable easy implementation of the FUEL function
in port injection applications. The functions are targeted at the MPC55xx and MPC563xM family of
devices, but can be used with any device that has an eTPU module.
Using the FUEL eTPU Function, Rev. 0

Freescale Semiconductor 17

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

AN3770
Rev. 0
04/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Function Overview
	3 Functional Description
	3.1 Injection Pulse Description
	3.2 Start Angle Re-Calculation
	3.3 Modifying the Amount of Fuel, Additional Injection Pulse(s)
	3.3.1 Main Injection Pulse
	3.3.2 Additional Injection Pulse(s)

	3.4 Example of a Complex Injection Pulse
	3.5 Performance and Use of the eTPU FUEL Function
	3.5.1 FUEL Channel Assignment
	3.5.2 FUEL Response to the Stall Condition on the CRANK Channel
	3.5.3 FUEL Minimum Off Time, Limitations
	3.5.4 Performance

	4 C Level Application Program Interface (API) for eTPU FUEL Function
	4.1 Initialization Functions
	4.1.1 int32_t fs_etpu_fuel_init_3cylinders(...), int32_t fs_etpu_fuel_init_4cylinders(...), int32_t fs_etpu_fuel_init_6cylinders(...)

	4.2 Change Operation Functions
	4.2.1 int32_t fs_etpu_fuel_set_injection_time(uint8_t channel, uint24_t injection_time_us)
	4.2.2 int32_t fs_etpu_fuel_set_drop_dead_angle(uint8_t channel, uint24_t drop_dead_angle)
	4.2.3 int32_t fs_etpu_fuel_set_normal_end_angle(uint8_t channel, uint24_t normal_end_angle)
	4.2.4 int32_t fs_etpu_fuel_set_recalc_offset_angle(uint8_t channel, uint24_t recalc_offset_angle)
	4.2.5 int32_t fs_etpu_fuel_set_compensation_time(uint8_t channel, uint24_t compensation_time_us)
	4.2.6 int32_t fs_etpu_fuel_set_minimum_injection_time(uint8_t channel, uint24_t minimum_injection_time_us)
	4.2.7 int32_t fs_etpu_fuel_set_minimum_off_time(uint8_t channel, uint24_t minimum_off_time_us)
	4.2.8 int32_t fs_etpu_fuel_switch_off(uint8_t channel)
	4.2.9 int32_t fs_etpu_fuel_switch_on(uint8_t channel)

	4.3 Value Return Functions
	4.3.1 uint24_t fs_etpu_fuel_get_sum_of_injection_time(void)
	4.3.2 uint24_t fs_etpu_fuel_get_CPU_real_injection_time(uint8_t channel)

	5 Examples of Function Usage
	5.1 Example 1
	5.1.1 Program Output

	5.2 Example 2
	5.2.1 Program Output

	6 Summary and Conclusions

