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Using the CRC Module on the 
Flexis AC Family

by: Gordon Borland
MSG Applications Engineering. East Kilbride, Scotland
1 Introduction
There are increasing requirements for in-application tests 
and checks upon embedded control software, to ensure it 
will operate without a malfunction that may cause a 
hazard. Peer reviews and following best programming 
practice can help to ensure that the fundamental software 
operation is safe, but it cannot protect an application 
against a corruption of it’s software, for example 
an EMC event. 

The incorporation of a cyclic redundancy check module 
within the Flexis AC family provides a mechanism for 
users to verify, that their program data has not been 
corrupted. 

1.1 Abstract
This document is written to show how the cyclic 
redundancy check module of the Flexis AC family can be 
used to check in-application software for corruption and 
verify data integrity. 
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The Flexis AC CRC Module
1.2 Objective
This application note will explain the fundamental principles behind cyclic redundancy checking, it’s 
implementation in the MC9S08AC128, and how it can be used to meet the embedded control software 
safety requirements by verifying the software integrity. Example code is also provided.

2 The Flexis AC CRC Module

2.1 Advantages of the Flexis AC CRC Module
Whilst it is possible to implement a cyclic redundancy check using software routines only, the Flexis AC 
CRC offers several advantages over a software-only solution.

Software CRC solutions will require certification to show that they fulfill the requirements of the protocol 
being followed. The Flexis AC CRC module already has the compliancy to CRC16-CCITT built in using 
the x16 + x12 + x5 + 1 polynomial and it’s implementation meets the ITU-T (International 
Telecommunication Union Telecommunication Standardization Sector) V.41 recommendation. 

The compliance to CRC16-CCITT means that the Flexis AC CRC module can detect all single, double, 
odd, and most multi-bit errors.

A software solution will require several hundred bus cycles (~700) to process a single byte through the 
CRC algorithm. The Flexis CRC module can shift a byte into the CRC generator in one bus cycle resulting 
in a greatly increased speed of calculation.

For example measurements on the MC9S08AC128 show that a software solution compliant with 
CRC16-CCITT running at 20 MHz bus speed takes approximately 6.7 seconds to perform a cyclic 
redundancy check on 128 K of flash memory. By comparison the same check requires only 170 ms using 
the CRC module, which is significantly faster.

The increased speed of cyclic redundancy calculation of the CRC module over software means that the 
Flexis AC CRC module is ideally suited to perform cyclic redundancy checking on data transmissions with 
minimal additional overhead, when compared to a software solution. 

The Flexis AC CRC modules’ high-speed CRC calculation means that a self check of the application 
software at startup can be performed without significantly adding to the initialization time.

Further, the user can take the advantage of the fast cyclic redundancy calculation to implement a self test 
of the software at regular intervals, whilst the application is running without adversely impacting the 
performance.

In addition to the advantages offered over a software CRC, the Flexis AC CRC module is capable of 
handling programmable seed values and optional augmentation. This flexibility allows the Flexis AC CRC 
module to comply with slightly different ITU-T protocols based upon CRC16-CCITT without any major 
code changes.
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2.2 Cyclic Redundancy Checking
Error detection is important, whenever there is a chance of data getting corrupted. Whether it’s a piece of 
stored code or a data transmission, you can add a piece of redundant information to validate the data and 
protect it against corruption.

The simplest example is a parity bit. Typically one parity bit is used for each byte. For odd parity, the 
number of non-zero bits in a byte are counted. If the number is even the parity bit is set, otherwise it is 
cleared. If one of the nine bits is flipped, the sum will be even and an error will be detected. Of course, if 
two bits are flipped, the error will remain undetected.

Cyclic redundancy checking is a much more robust error-checking algorithm, which is commonly used to 
detect errors either in data transmission or data storage.

Whilst it is not the intention of this document to go into detail regarding the mathematics behind the 
concept of cyclic redundancy, it is worthwhile to explain a few basic principles. Computation of a cyclic 
redundancy check is derived from the mathematics of: 

• polynomial division 

• modulo two arithmetic 

In practice it resembles a long division of the binary message string by a generator polynomial string, 
except that exclusive OR operations replace the subtractions. 

2.2.1 Modulo Two Arithmetic

Modulo two arithmetic is simple single-bit binary arithmetic with all “carries or borrows” ignored. Each 
digit is considered independently.  For example, we can add two binary numbers X and Y as follows:

   10101001 (X)

+ 00111010 (Y)

   10010011 (Z)

From this example the modulo two addition is equivalent to an exclusive OR operation. What is less 
obvious is that modulo two subtraction gives the same results as an addition. From the previous example 
let’s add X and Z:

   10101001 (X)

+ 10010011 (Z)

   00111010 (Y)

In our previous example we have seen how X + Y = Z  therefore Y = Z – X, but the example above shows 
that Z+X = Y also, hence modulo two addition is equivalent to modulo two subtraction, and can be 
performed using an exclusive OR operation.
Using the CRC Module on the Flexis AC Family, Rev. 0
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2.2.2 Polynomial Division

In integer division dividing A by B will result in a quotient Q, and a remainder R.

A / B = Q with remainder R where  R < B. Eqn. 1

Polynomial division is similar except that when A and B are polynomials, the remainder is a polynomial, 
whose degree is less than B.

Thus if the polynomial represented by A = 2x3 + 5x2 + 9x + 5  and B = x2 + 2x + 3 (degree 2), then 

A / B = Q with remainder R Eqn. 2

can be represented as:

(2x3 + 5x2 + 9x + 5)  /  (x2 + 2x + 3)  =  (2x+1)  with remainder x + 2 Eqn. 3

Where  Q = 2x + 1 (degree 2)  and R = x + 2 (degree 1).

If a change is made to polynomial A, then there will be a resultant change in the remainder R.

Let A = 2x3 + 5x2 + 9x + 4

A / B = Q with remainder R Eqn. 4

Is now represented as:

(2x3 + 5x2 + 9x + 4)  /  (x2 + 2x + 3)  =  (2x+1)  with remainder x + 1 Eqn. 5

R is now x + 1.

The key point here is that any change to the polynomial A causes a change to the remainder R. This 
behaviour forms the basis of the cyclic redundancy checking.

If we consider a polynomial, whose coefficients are zeros and ones (modulo two), this polynomial can be 
easily represented by its coefficients as binary powers of two.  

For example 

1x7+ 1x6 + 0x5 + 1x4 + 0x3 + 1x2 + 1x + 1 = 11010111 Eqn. 6

Thus it is apparent that  a polynomial can be represented as a series of bits, and conversely any binary string 
of  bits, such as a data message or software code, can be represented as a polynomial.

In terms of cyclic redundancy calculations, the polynomial A would be the binary message string or data 
and polynomial B would be the generator polynomial. The remainder R would be the cyclic redundancy 
checksum. If the data changed or became corrupt, then a different remainder would be calculated.

2.2.3 Basic CRC Calculation

Now we can begin to perform a basic cyclic redundancy checksum calculation using polynomial division 
and modulo two arithmetic. As described previously, this is basically the division of the data polynomial 
Using the CRC Module on the Flexis AC Family, Rev. 0
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by a generator polynomial. This basic calculation will use a simple piece of data such as 0xD6B5 (in binary 
1101011010110101) and use the polynomial x3 + x2 + 1 as the generator polynomial. 

The data polynomial is divided by the generator polynomial x3 + x2 + 1 (or 1101), using an exclusive OR 
to replace the subtraction (modulo two arithmetic), and we record the remainder, which is the cyclic 
redundancy checksum.

                 1000010000100 (Q)

1101 ) 1101011010110101 (A)

(B)      1101xxxxx

                 001101

                     1101xxxxx

                           001101

                               1101xx

                                     001  (R, the CRC)

Thus in this example the remainder (cyclic redundancy checksum) is 001. If any of the bits in the dividend 
(binary message) were to change, then a different cyclic redundancy checksum would be calculated. Using 
the previous data, let’s assume that bit one of the data has been corrupted. The data will now read 0xD6B7 
instead of 0xD6B5.

                 1000010000100  (Q)

1101 ) 1101011010110111  (A)

(B)      1101xxxxx

                 001101

                     1101xxxxx

                           001101

                               1101xx

                                     011  (R, the CRC)

Thus to determine, whether any corruption of data has occurred, it is a simple matter to repeat the division 
using the same generator polynomial, and compare the remainder (cyclic redundancy checksum) produced 
against the one calculated previously. If they are the same, then no corruption of the data has occurred and 
the integrity of data is intact.  

2.2.4 Null Cyclic Redundancy Checksum

It has already been demonstrated, how the integrity of data can be verified by calculating the cyclic 
redundancy checksum and comparing it to one calculated previously. An alternate method is to add the 
cyclic redundancy checksum to the data and perform the cyclic redundancy checksum calculation. If the 
data is not corrupted, then the result will be null (0x00). In the earlier analogy with integer division, 
dividing A by B will result in a quotient Q, and a remainder R.
Freescale Semiconductor 5
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For example:

A / B = Q with remainder R Eqn. 7

We defined A to be the data polynomial and B the generator polynomial.

If 

A / B = Q with remainder R Eqn. 8

then 

(A – R) / B = Q with no remainder Eqn. 9

No remainder = 0x00  = Null CRC result. Eqn. 10

Let’s illustrate this using our previous example. Using 0xD6B5 = 1101011010110101 as our data 
polynomial, and x3 + x2 + 1 = 1101 as the generator polynomial, we calculate a checksum of 001.

                 1000010000100 (Q)

1101 ) 1101011010110101 (A)

(B)      1101xxxxx

                 001101

                     1101xxxxx

                           001101

                               1101xx

                                     001  (R) 

Now let’s add the checksum to the data polynomial using modulo two arithmetic. Remember that in 
modulo two arithmetic, addition is the same as subtraction.

Data polynomial = 0xD6B5 = 1101011010110101

 + CRC                                                           001

                                                 1101011010110100 = 0xD6B4

Calculating the cyclic redundancy checksum for the data + checksum we get:

                 1000010000100 (Q)

1101 ) 1101011010110100 (A-R)

(B)      1101xxxxx

                 001101

                     1101xxxxx

                           001101

                               1101xx

                                     000   NULL CRC
Freescale Semiconductor6
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As shown the result is 0x00 or null.

2.2.5 Augmentation

Augmentation is a technique used to produce a null CRC result, whilst preserving both the original data 
and the CRC checksum. 

No augmentation is required with the Flexis AC Family CRC. A null CRC result can be obtained by 
writing the CRC result to the CRC module after the data. Augmentation is mentioned only to explain the 
concept and assist users of other cyclic redundancy implementations, using augmentation migrate to the 
Flexis AC Family CRC.

In a communications system using cyclic redundancy checking, it would be desirable to obtain a null CRC 
result for each transimission, as the simplified verification will help to speed up the data handling. 

The previous section demonstrated, how to produce a null CRC result by adding the cyclic redundancy 
checksum (0b001) to the data (0xD6B5), and calculating the CRC on the new data (0xD6B4). Whilst this 
simplifies the verification, it has the unfortunate side effect of changing the data. Any node receiving 
0xD6B4 will be able to verify that no corruption has occurred, but will be unable to extract the original 
data, because the checksum (0b001) is not known. This can be overcome by transmitting the checksum 
along with the modified data, but any data-handling advantage gained in the verfication process is offset 
by the additional steps needed to recover the original data.

Augmentation allows the data to be transmitted along with its checksum, and still obtain a null CRC result. 

In the previous example to obtain a null CRC result, the data changed from 0xD6B5 to 0xD6B4, when the 
checksum was added. Augmentation avoids this by shifting the data left or augmenting it with a number 
of zeros, equivalent to the degree of the generator polynomial. When the CRC result for the shifted data is 
added, both the original data and the checksum are preserved.

In our previous example, our generator polynomial (x3 + x2 + 1 or 1101) is of degree 3, so the data 
(0xD6B5) is shifted to the left by three places or augmented by three zeros. 

0xD6B5 = 1101011010110101 becomes 0x6B5A8 = 1101011010110101000.

Note that the original data is still present within the augmented data.

                         0x6B5A8 = 1101011010110101000

                                            Data = D6B5      Augmentation = 000

Calculating the CRC result for the augmented data (0x6B5A8) using our generator polynomial (1101), 
gives a remainder of 101 (degree 2). If we add this to the augmented data, we get:

                          0x6B5A8 + 0b101 = 1101011010110101000 + 101

                                                         = 1101011010110101101

                                                         = 0x6B5AD

We know from Section 2.1, “Advantages of the Flexis AC CRC Module” that calculating the cyclic 
redundancy checksum for 0x6B5AD will result in a null checksum, simplifying the verification. What is 
less apparent is that the original data is still preserved intact. 
Freescale Semiconductor 7
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                                                        0x6B5AD = 1101011010110101101

                                                                                Data = D6B5     CRC = 101

The degree of the remainder or cyclic redundancy checksum is always less than the degree of the generator 
polynomial. By augmenting the data with a number of zeros equivalent to the degree of the generator 
polynomial, we ensure that the addition of the checksum does not affect the augmented data.

In any communications system using cyclic redundancy checking, the same generator polynomial will be 
used by both transmitting and receiving nodes to generate checksums and verify data. As the receiving 
node knows the degree of the generator polynomial, it is a simple task for it to verify the transmission by 
calculating the checksum and testing for zero, and then extract the data by discarding the last three bits. 

Thus augmentation preserves the data, whilst allowing a null cyclic redundancy checksum for faster 
verification and data handling.

2.3 Flexis AC CRC Implementation
Although the algorithm for cyclic redundancy calculations looks complicated, it only involves shifting and 
exclusive OR operations. Using modulo two arithmetic, division is just a shift operation and subtraction is 
an exclusive OR operation. 

Cyclic redundancy calculations can therefore be efficiently implemented in hardware, using a shift register 
modified with XOR gates. The shift register should have the same number of bits as the degree of the 
generator polynomial and an XOR gate at each bit, where the generator polynomial coefficient is one.

The Flexis AC family use a generator polynomial of degree 16; x16 + x12 + x5 + 1. This is often represented 
by the hexadecimal  number 0x1021, where each coefficient in the polynomial is represented by it’s 
equivalent power of two. As the highest coefficient in a polynomial is always one, it is assumed and not 
recorded in the hexadecimal representation.

The generator polynomial used by the Flexis AC family is commonly known as CRC16-CCITT, and is 
used in communication protocols such as CDMA, Bluetooth, and V.41 to name a few. 

The hardware implementation of the cyclic redundancy check using the generator polynomial is 
represented in the block diagram shown in Figure 1.
Using the CRC Module on the Flexis AC Family, Rev. 0
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Figure 1. Cyclic Redundancy Check (CRC) Module Block Diagram

 It can be seen from the block diagram that the CRC module contains only two registers, CRC High and 
CRC Low, which combine to create a 16-Bit CRC seed and result register (CRCH:L).

At the start of any CRC calculation, a programmable seed value is written into register CRCH:L. Using a 
programmable seed value allows the user to pre-configure the shift register. 

The seed value is programmable to allow the CRC module to meet the seed value requirements of different 
communication protocols.  The CRC16-CCITT standard uses a seed value of 0xFFFF.

At the end of a CRC calculation, the result is stored in CRCH:L. The procedure to calculate a CRC 
checksum using the CRC module is very simple.

Firstly to enable the CRC function, a seed value should be written into the CRCH:L. The seed value is 
placed directly into bits 15:0 of the CRC generator shift register. Writing a byte to CRCH triggers the start 
of the seed mechanism and loads the value written to CRCH into the upper byte of the CRC generator shift 
register. The CRC then requires a write to the CRCL to prime the lower byte of the CRC generator shift 
register, and completes the seed mechanism.

Now that the CRC seed has been loaded, the first byte of the data on which a CRC calculation is to be 
performed, can be passed to the CRC module. This is achieved by writing the byte of data to CRCL. This 
will cause the CRC module to begin the cyclic redundancy calculation by shifting the bits in CRCL into 
the CRC generator shift register, MSB first. This step should be repeated until all of the data bytes have 
been written to CRCL.
Using the CRC Module on the Flexis AC Family, Rev. 0
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After each byte has been written, a new CRC result can be read from the CRCH:L registers one-bus cycle 
after the previous write to CRCL.

Once all of the data bytes have been written to CRCL, the result of the CRC calculation or cyclic 
redundancy checksum is available in CRCH:L.

The process can be restarted by writing a new seed value to CRCH:L, to initiate the seed mechanism and 
a new CRC calculation will begin.

2.4 How to Use the CRC Module
There are increasing requirements for in-application tests and checks, to ensure that embedded control 
software will operate reliably and safely. Examples include:

• Checking for bit errors in the program code.

• Ensuring there is no corruption of a specific string of data.

The CRC module offers a means to meet these requirements simply and efficiently, without making 
excessive demands on the CPU or memory resources. 

Four simple steps are all that is required to use the CRC to verify the embedded software.

1. Write the seed value into CRCH:L.

2. Write the data, byte by byte to CRCL, until the end of the data to be checked.

3. Augment the data with zeros. This step is dependent upon the CRC implementation and is optional.

4. Verify the calculated cyclic redundancy checksum against a stored value.

To illustrate this, an example using the MC9S08AC128 has been included in this document (See 
Section Appendix A, “Cyclic Redundancy Check Software”). The MC9S08AC128 memory map has an 
extended address memory, which can only be accessed through a paging window, unlike other Flexis AC 
family MCUs, which can access all of their memory directly.
Using the CRC Module on the Flexis AC Family, Rev. 0
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Figure 2. MC9S08AC128 Memory Map

The HCS08 core architecture limits the available CPU addressable space to 64 KB. The addressable space 
can be extended to 128 KB using a paging window scheme controlled by a memory management unit 
(MMU). A full description of the memory management unit and the paging window scheme is available 
in the MC9S08AC128 data sheet. 

The procedures and example software provided for the MC9S08AC128 use it’s memory management unit 
to access the data, though they can be readily adapted for use on other Flexis AC family MCUs.

2.4.1 Seeding the CRC

The example calculates a cyclic redundancy checksum for the flash memory of the AC128. Writing a seed 
value is easily performed as the function init_crcCCITT shown below.
void init_crcCCITT(void)

{
CRCH = 0xFF;  // CRC seeded 0xFFFF
CRCL = 0xFF;  // CRC seeded 0xFFFF

}

As the CRC module complies with CRC16-CCITT, the seed value used in the example is 0xFFFF, though 
other values can be used to allow the CRC module to be compatible with different communication 
protocols, which use CRC16-CCITT. Other common seed values include 0x102D and 0x0000. If greater 
flexibility is required, the seed value could be passed to the function as a variable.
Using the CRC Module on the Flexis AC Family, Rev. 0
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2.4.2 Writing the Data

The functions crc_flash and update_crcCCITT demonstrate how to write the data, or in this case the 
embedded software contained in the non-volatile memory of the MCU to the CRC module for inclusion in 
the checksum calcuation.

A start and stop memory address indicating the range of the memory to be checked is passed to crc_flash. 
The function then accesses the data contents at each location within the specified memory range, and 
passes the data to the function update_crcCCITT, which in turn writes the data to the CRC module via 
register CRCL.

There is no difficulty using the function crc_flash should the non-volatile memory or the embedded 
software not be contained within a single continuous block. To perform the CRC calculation for all of the 
desired memory locations, call crc_flash more than once, each time specifying a different memory range, 
until all of the non-volatile memory or embedded software has been accounted for.
void crc_flash (long start_addr, long stop_addr)
{ 
      /* Put base address of flash into the LAP registers */
      LAP2 = (byte) (start_addr>>16);
      LAP1 = (byte) (start_addr>>8);
      LAP0 = (byte) start_addr;
      
  /* increment through the memory array passed */

 for ( 1; start_addr <= stop_addr; start_addr++ ) 
{
         update_crcCCITT ( LBP ); // send a char to the CRC
}
}  /* end of crc_flash function */

void update_crcCCITT (char ch)
{
    CRCL = ch;
}     /* end of update_crcCCITT function */

2.4.3 Augmentation with Zeros

It is not necessary to augment the data with zeros when using CRC16-CCITT, and when using the Flexis 
AC Family CRC module, though some protocols require this. One common variation of CRC-CCITT 
requires the message to be augmented with zeros and a SEED = 0xFFFF. The Flexis AC Family CRC 
module will give the same results of this alternative implementation, when SEED = 0x1D0F, and no 
message augmentation. 

If the Flexis AC Family CRC module is being used to verify data transmissions with another CRC system, 
which uses augmentation, then this step may be necessary to ensure the requirements of the 
communicating system are met. 

Shown below is the function augment_message_for_crc_16, which augments the CRC data with zeros by 
writing 0x00 to register CRCL twice.
void augment_message_for_crc_16()
{
    CRCL=0x00;
    CRCL=0x00;
}

Freescale Semiconductor12
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2.4.4 Verifying the Calculated Checksum

Once the checksum has been calculated, it is necessary to compare it against a previously stored value.

The function crc_check provides an example of how this can be achieved. A pointer to the memory 
location of the stored checksum is passed to the function. The calculated value in CRCH:L is then 
compared against the stored value. If the two checksums are the same, no action is taken and the software 
is safe to continue executing. If there is a difference, the function sys_error is called, which is used to place 
the MCU in a safe state.
void crc_check(short *blog) 
{
  short CRC = ((CRCH<<8)|CRCL);
      if (CRC != (short)*blog)  sys_error();
      /* else return as CRC check is OK */
}

When the CRC result has been calculated using a Flexis AC Family CRC module, then a null CRC result 
can be obtained by writing the CRC result to the CRC module after the data.

2.4.5 Practical Example

Section A.1, “Main.c” contains a complete program, which shows how the routines shown above and the 
four steps can be combined, and put into a program to check the embedded software before starting 
executing of the application software.

In the example program, a declaration at the start of the software stores the checksum (0xFBF9) at location 
0xFF80 (0x0FF80 in extended addressing). On the MC9S08AC128, this is an unused vector address, 
which may be used by the software. Similar locations can be used for other members of the Flexis AC 
family.

The example program seeds the CRC, writes the contents of the flash memory into the CRC, and then 
compares the CRC output to the checksum stored at location 0xFF80. 

The software starts by using init_crcCCITT to seed the CRC with 0xFFFF.  

The flash memory contents are written to the CRC module by calling the function crc_flash twice. In the 
example program, the checksum is stored at location 0xFF80, which is in the middle of the flash memory 
address area (0x00000 to 0x1FFFF extended addressing). 

The stored checksum should not be included in the CRC calculation, as this will affect the calculated result, 
causing it to differ from the stored checksum. This is because the calculation to determine the value of the 
stored checksum does not take the contents of the stored checksum memory location into account. By 
effectively splitting the flash into two blocks, at either side of the stored checksum location, it is possible 
to avoid including it in the CRC calculation.

Once the flash memory contents have been written to the CRC, the data can be augmented with zeros at 
this point if required. The example program uses augment_message_for_crc_16 to perfrom this task.

Finally the program calls the function crc_check, to read the calculated checksum and compare it to the 
stored checksum value. If they match, then the program can continue to execute the application software.
Using the CRC Module on the Flexis AC Family, Rev. 0
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In this example the CRC check of the embedded software is performed at the start of the application 
program. This will execute each time the application is started or reset. Alternatively, the CRC verification 
software could be included in a separate function, which is called by a periodic interrupt, allowing for 
a regular verification of the embedded software throughout the time that the application is running.

2.4.6 Calculating a Stored Checksum Value

If the cyclic redundancy checking is being used to verify non-volatile memory, then a checksum value can 
be calculated prior to final programming by running the CRC verification software without including the 
memory location where the checksum will be stored, and noting the calculated value. This value is then 
stored in the skipped memory location.

It is important not to include the checksum memory location, when verifying the embedded software in an 
active application. Including the stored checksum memory location in the CRC calculation will affect the 
calculated result, causing it to differ from the stored checksum. This is because the original calculation to 
determine the value of the stored checksum did not take the contents of its memory location into account. 

This has the advantage that the software used by the application to verify it’s embedded software can also 
be used to determine the value of the stored checksum.

Returning to the example program in Section A.1, “Main.c,” the value of the stored checksum can be 
readily obtained by running the code using a debugger with a breakpoint set at the call to function 
crc_check.

When the program halts at the breakpoint, the registers CRCH:L will contain the calculated checksum, 
which can be read out from the debugger memory window. This value should be noted and stored in the 
checksum memory location as a declaration at the start of the software.

3 Conclusion
Freescale’s Flexis AC CRC module represents an evolutionary step in error detection, offering improved 
performance and enhanced features over a software solution. 

The user is advised to read the relevant chapters of the latest reference manual for the particular Flexis AC 
microcontroller, to ensure that all of the features and operation of the CRC module have been fully 
captured.

4 References

MC9S08AC128 Reference Manual www.freescale.com

ITU-T V.41 Recommendation: Code-Independent Error Control System, available at 
http://www.itu.int/publications/index.html.

ITU-T X.25 Recommendation: Interface between Data Terminal Equipment (DTE) and Data 
Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public 
data networks by dedicated circuit, available at http://www.itu.int/publications/index.html.

ITU-T T.30 Recommendation: Procedures for document facsimile transmission in the general switched 
telephone network, available at http://www.itu.int/publications/index.html
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5 Glossary
CRC — cyclic redundancy check

CRC16 — CCITT — A cyclic redundancy-checking algorithm based on the polynomial x16 + x12 + x5 + 1.

CHECKSUM — A number that has been calculated as a function of some data, which can be used to verify 
its authenticity. 

ITU-T — International Telecommunication Union Telecommunication Standardization Sector

Appendix A  
Cyclic Redundancy Check Software
The code shown within this appendix is only intended as an example for the CodeWarrior compiler and 
the MC9S08AC128. It has only been given a minimum level of test. It is provided as seen with no 
guarantees and promise of support.

A.1 Main.c
#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */

long  start1_address ;    // start1 address to pass to crc_flash();
long  stop1_address;      // end1 address to pass to crc_flash();
long  start2_address ;    // start2 address to pass to crc_flash();
long  stop2_address;      // end2 address to pass to crc_flash();

/* This 16bit constant resides in the unused vector space outwith the main program */
const short CRC16signature @0xFF80 = (0xFBF9); 
                          
/* Error Routine If the CRC fails then the MCU will get locked in here!!!! */
 void sys_error(void)
  {
  for (;;) ;
    /* At this point the MCU system should be placed in a safe state */
     __RESET_WATCHDOG(); 
  }

void main(void) {

  EnableInterrupts; 
  SOPT = 0x53; // Disable Watchdog

/* START OF FLASH CRC CHECK *****************************************************************/

/* Test H/W CRC engine by 
    1) Initialise the CRC engine with 0xFFFF
    2) update the CRC engine from start_address to stop_address
    3) check the calculated result compares with expected result
*/
 start1_address = 0x00000;    // Start of Program code given to 16bit pointer
Using the CRC Module on the Flexis AC Family, Rev. 0
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 stop1_address = 0x0FF7F;       // End of Program code give to 16bit pointer

 start2_address = 0x0FF82;    // Start of Program code given to 16bit pointer
 stop2_address = 0x1FFFF;       // End of Program code give to 16bit pointer

 init_crcCCITT();    // 0xFFFF seed CRC engine

 crc_flash (start1_address,stop1_address);    // calculate CRC signature
 crc_flash (start2_address,stop2_address);    // calculate CRC signature
  
 augment_message_for_crc_16(); // shift 16 0's to comply with CCITT algorithm (this is optional)
 
 crc_check (&CRC16signature); // check calculated CRC against CRC16signature
/* Send the address of the constant CRC16signature to this function */
  
/* END OF FLASH CRC CHECK *****************************************************************/

/* The application software can begin from here */

  for(;;) {
    __RESET_WATCHDOG(); /* feeds the dog */
  } /* loop forever */
  /* please make sure that you never leave main */
}

A.2 init_crcCCITT
void init_crcCCITT(void)

{
CRCH = 0xFF;  // CRC seeded 0xFFFF
CRCL = 0xFF;  // CRC seeded 0xFFFF

}

A.3 crc_flash
void crc_flash (long start_addr, long stop_addr)
{ 
      /* Put base address of flash into the LAP registers */
      LAP2 = (byte) (start_addr>>16);
      LAP1 = (byte) (start_addr>>8);
      LAP0 = (byte) start_addr;
      

/* increment through the memory array passed */
for ( 1; start_addr <= stop_addr; start_addr++ ) 

      {
         update_crcCCITT ( LBP ); // send a char to the CRC
      }
}  /* end of crc_flash function */

A.4 update_crcCCITT
void update_crcCCITT (char ch)
{
    CRCL = ch;
}     /* end of update_crcCCITT function */
Using the CRC Module on the Flexis AC Family, Rev. 0
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A.5 augment_message_for_crc_16()
void augment_message_for_crc_16()
{
    CRCL=0x00;
    CRCL=0x00;
}

A.6 crc_check
void crc_check(short *blog) 
{
  short CRC = ((CRCH<<8)|CRCL);
      if (CRC != (short)*blog)  sys_error();
      /* else return as CRC check is OK */
}

Using the CRC Module on the Flexis AC Family, Rev. 0

Freescale Semiconductor 17



Document Number: AN3795
Rev. 0
04/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022 
China 
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality 
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free 
counterparts. For further information, see http://www.freescale.com or contact your 
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to 
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Abstract
	1.2 Objective

	2 The Flexis AC CRC Module
	2.1 Advantages of the Flexis AC CRC Module
	2.2 Cyclic Redundancy Checking
	2.2.1 Modulo Two Arithmetic
	2.2.2 Polynomial Division
	2.2.3 Basic CRC Calculation
	2.2.4 Null Cyclic Redundancy Checksum
	2.2.5 Augmentation

	2.3 Flexis AC CRC Implementation
	2.4 How to Use the CRC Module
	2.4.1 Seeding the CRC
	2.4.2 Writing the Data
	2.4.3 Augmentation with Zeros
	2.4.4 Verifying the Calculated Checksum
	2.4.5 Practical Example
	2.4.6 Calculating a Stored Checksum Value


	3 Conclusion
	4 References
	5 Glossary
	A.1 Main.c
	A.2 init_crcCCITT
	A.3 crc_flash
	A.4 update_crcCCITT
	A.5 augment_message_for_crc_16()
	A.6 crc_check


