
Freescale Semiconductor
Application Note

Document Number: AN3797
Rev. 0, 03/2009

Contents

Introduction . 1
Register Summary. 17
Programming Example Steps . 20

3.1 Assign the Relative Priorities of the Interrupts in. . 20
3.2 System Global Interrupt Configuration Register . . 26
Using the IPIC Control and Status Registers 28
Forcing Interrupts . 29
Summary . 30

Understanding the Integrated
Programmable Interrupt
Controller (IPIC)
by: Charles Melear

Application Engineer, Automotive
Austin, Texas
1 Introduction
The purpose of the integrated programmable interrupt
controller (IPIC) is to receive interrupt requests from the
peripheral modules of a microcontroller, prioritize these
interrupts through the use of various programmable
registers, and provide the vector number of the current
highest priority pending interrupt. Generally speaking,
most of the interrupts can be individually masked. In
some cases an interrupt from a peripheral module can be
programmed to cause different types of interrupts
(normal, system management, and critical) to the CPU
core.

It is important to know the IPIC is a standard module. A
block diagram of the IPIC is shown in Figure 1. The IPIC
can receive 128 interrupting sources and prioritize them
according to how various registers within the IPIC are
programmed. In the present example, using the
MPC5121e, only 56 interrupting sources are brought into
the IPIC module.

1
2
3

4
5
6

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Introduction
Figure 1. Integrated Peripheral Interrupt Controller

Global

DDR SDRAM
Controller

USB 2.0

CSB
Arbiter

PCI
controller

I2C

NAND Flash

8

int

cint

IRQ[1:0]

Controller

DMA

MU

Local Plus
Controller

PowePC

PSC

4

Timers

WDT

RTC

smi

mcp

2

Core

12

INTA

PATA

SDHC

2

MCP_OUT

3

GPIO

DMA2

PMC

SPDIF

BDLC

CAN

FEC

4

SATA

FIFOC

2

MBX

DIU

TEMP
2

IIM

2

MPC5121e
Interrupt

Controller
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor2

Introduction
The IPIC assigns some of the various interrupting sources into sets. Other interrupts are individually
assigned to fixed priority levels. The sets defined for the IPIC, as used in the MPC5121e are MIXA,
MIXB, SYSA, SYSB, SYSC, and SYSD. Each interrupt source is either assigned to one of these sets or
to a fixed interrupt priority level. The assignment of interrupts to the various sets is unique for each device
and is specified by the integrated circuit system designer. This application note uses the MPC5121e as an
example. The assignment of the interrupting sources to the various sets or to fixed priority levels is at the
discretion of the integrated circuit system designer. Therefore, the assignment of the interrupts are unique
for each device where the IPIC is used.

Each set can accommodate eight interrupt sources. Within a set, the priority of the eight sources is
programmable with respect to the other members of the set. Using the MPC5121e as an example, the
members of the various sets are shown in Table 1.

A partial block diagram of the IPIC is shown in Figure 2. The six sets, MIX A, MIX B, SYS A, SYS B,
SYS C, and SYS D are on the left side of the diagram. Each set is routed to a Grouped and a Spread
decoder. Only one decoder for each set can be active at any time. Each of the eight outputs of the Group
and Spread decoders are assigned one of 128 priority levels. For examle, MIXA0 (Spread) is priority 1.
MIXA1 (Spread) is priority 11. MIXA0 – MIXA3 (Grouped) are priorities 2 – 5. The entire priority table
is shown in Table 4. A particular set, such as MIXA, can only have active Grouped or Spread entries. If a
set is programmed to be Spread, the Grouped entries are inactive and vice versa.

Table 1. Interrupting Sources per Set

MIXA MIXB SYSA SYSB SYSC SYSD

0 DIU PSC0 PSC4 FIFOC PCI I2C1

1 DMA PSC1 PSC5 SPCIF PCI DMA I2C2

2 MBX PSC2 PSC6 AXE PCI MU I2C3

3 RESERVED_0 PSC3 PSC7 USB ULPI FEC MSCAN1

4 IRQ0 RESERVED_3 PSC8 USB UTMI PATA MSCAN2

5 IRQ1 RESERVED_4 PSC9 SATA NFC BDLC

6 RESERVED_1 RESERVED_5 PSC10 RESERVED_7 LPC GPT0

7 RESERVED_2 RESERVED_6 PSC11 RESERVED_8 SDHC GPT1
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 3

Introduction
Figure 2. Partial IPIC Block Diagram

Each set is composed of eight preassigned peripheral interrupt sources. Relative priorities are programmed
via the system mixed interrupt group A priority register, the system mixed interrupt group B priority
register, the system internal interrupt group A priority register, the system internal interrupt group B
priority register, the system internal interrupt group C priority register, and the system internal interrupt
group D priority register. In the present example using the MPC5121e, MIXA consists of the DIU, DMA,
MBX, Reserved_0, IRQ0, IRQ1, Reserved_1, and Reserved_2.

1

8

1

8

1

8

1

8

1

8

1

8

MIX A

MIX B

GROUPED

SPREAD

GROUPED

SPREAD

GROUPED

SPREAD

GROUPED

SPREAD

GROUPED

SPREAD

GROUPED

SPREAD

SYS A

SYS B

SYS C

SYS D

1

2

3

4

5

6

7

8

9

10

11

MIXA0
SPREAD

MIXA0
GROUPED

MIXA1
GROUPED

MIXA2
GROUPED

MIXA3
GROUPED

MIXB0
SPREAD

SYSB0
GROUPED

SYSB1
GROUPED

SYSB2
GROUPED

SYSB3
GROUPED

MIXA1
SPREAD
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor4

Introduction
The sets, MIXA, MIXB, SYSA, SYSB, SYSC, and SYSD remain constant between the various devices
where the IPIC module is used. However, the interrupt sources assigned to each set can (almost certainly)
vary between the various devices where the IPIC module is used.

Each set has eight possible entries. For instance, the set SYSA has the following fields: SYSA0P, SYSA1P,
SYSA2P, SYSA3P, SYSA4P, SYSA5P, SYSA6P, and SYSA7P. The same pattern is true for the other sets
listed in Table 1.

Figure 3 shows the system internal interrupt group A priority register (SIPRR_A) that defines the priority
between PSC4, PSC5, PSC6, PSC7, PSC8, PSC9, PSC10, and PSC11 internal interrupt signals. For
example, PSC4 can be programmed to any of the eight SYSA priority levels. Likewise, any of the PSCs
in the SYSA group can be programmed to any of the eight SYSA priority levels.

NOTE
No interrupt source for example, SYSAxP, can be used more than once and
each interrupting source (PSCx) must be used, including the reserved
entries.

For a particular group, such as MIXA or SYSA, a software selection must be made that only activates a
set’s Grouped entries or Spread entries. If a set is programmed to be Grouped, then the Spread entries in
the priority table are treated as, don’t cares. Likewise, if a set is programmed to be SPREAD, then
GROUPED entries in the priority table are treated as, don’t cares. Each set can individually be
programmed to be SPREAD or GROUPED.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 5

Introduction
Table 3 shows the interrupt vector numbers for each of the interrupting sources. This table is unique to the
MPC5121e. Other microcontrollers that use the IPIC module may, and probably assigns different interrupt
vector numbers to each or some of the interrupting sources. The interrupt vector number is not to be
confused with the interrupt priority number. For the MPC5121e, the PCI module could be any one of eight
priority levels within system group C. However, no matter what the interrupt priority level is for the PCI
module, it always returns an interrupt vector number of 0x000_0001. The interrupt vector number is
hard-coded into the interrupting peripheral element. The interrupt vector number may change between
different microcontrollers where the IPIC module is used.

Offset 0x10Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSA0P SYSA1P SYSA2P SYSA3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSA4P SYSA5P SYSA6P SYSA7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 3. System Internal Interrupt Group A Priority Register (SIPRR_A)

Table 2. SIPRR_A Field Descriptions

Field Description

SYSA0P -
SYSA7P

SYSA0 Priority Order. Defines which interrupt source asserts its request in the (x) priority position. Do not
program the same code to more than one priority position (0–7). These bits can be changed dynamically.
The definition of SYSA(x)P is shown as follows:
000 PSC4 asserts its request in the SYSA(x) position.
001 PSC5 asserts its request in the SYSA(x) position.
010 PSC6 asserts its request in the SYSA(x) position.
011 PSC7 asserts its request in the SYSA(x) position.
100 PSC8 asserts its request in the SYSA(x) position.
101 PSC9 asserts its request in the SYSA(x) position.
110 PSC10 asserts its request in the SYSA(x) position.
111 PSC11 asserts its request in the SYSA(x) position.

Each field in this register must have a unique value. This means all 8 codes must be used. It is a
programming error to use any of the 3-bit codes multiple times.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor6

Introduction
Table 3. IVEC Field Values (Sheet 1 of 3)

Peripheral
Interrupt

Vector Number
(binary)

Interrupt Vector
Number

(decimal)

Default Group
Programing

Error (No Interrupt) 0x000_0000 0 —

PCI 0x000_0001 1 SYSC0(Grouped)

PCI DMA 0x000_0010 2 SYSC1(Grouped)

PCI MU 0x000_0011 3 SYSC2(Grouped)

FEC 0x000_0100 4 SYSC3(Grouped)

PATA 0x000_0101 5 SYSC4(Grouped)

NFC 0x000_0110 6 SYSC5(Grouped)

LPC 0x000_0111 7 SYSC6(Grouped)

SDHC 0x000_1000 8 SYSC7(Grouped)

I2C1 0x000_1001 9 SYSD0(Grouped)

I2C2 0x000_1010 10 SYSD1(Grouped)

I2C3 0x000_1011 11 SYSD2(Grouped)

MSCAN1 0x000_1100 12 SYSD3(Grouped)

MSCAN2 0x000_1101 13 SYSD4(Grouped)

BDLC 0x000_1110 14 SYSD5(Grouped)

GPT0 0x000_1111 15 SYSD6(Grouped)

GPT1 0x001_0000 16 SYSD7(Grouped)

IRQ1 0x001_0001 17 MIXA5(Grouped)

Reserved 0x001_0010 18 MIXA6(Grouped)

Reserved 0x001_0011 19 MIXA7(Grouped)

Reserved 0x001_0100 20 MIXB4(Grouped)

Reserved 0x001_0101 21 MIXB5(Grouped)

Reserved 0x001_0110 22 MIXB6(Grouped)

Reserved 0x001_0111 23 MIXB7(Grouped)

Reserved 0x001_1000 24 Fixed priority

Reserved 0x001_1001 25 Fixed priority

Reserved 0x001_1010 26 Fixed priority

Reserved 0x001_1011 27 Fixed priority

Reserved 0x001_1100 28 Fixed priority

Reserved 0x001_1101 29 Fixed priority

Reserved 0x001_1110 30 Fixed priority

Reserved 0x001_1111 31 Fixed priority

PSC4 0x010_0000 32 SYSA0(Grouped)
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 7

Introduction
PSC5 0x010_0001 33 SYSA1(Grouped)

PSC6 0x010_0010 34 SYSA2(Grouped)

PSC7 0x010_0011 35 SYSA3(Grouped)

PSC8 0x010_0100 36 SYSA4(Grouped)

PSC9 0x010_0101 37 SYSA5(Grouped)

PSC10 0x010_0110 38 SYSA6(Grouped)

PSC11 0x010_0111 39 SYSA7(Grouped)

FIFOC 0x010_1000 40 SYSB0(Grouped)

SPDIF 0x010_1001 41 SYSB1(Grouped)

AXE 0x010_1010 42 SYSB2(Grouped)

USB ULPI 0x010_1011 43 SYSB3(Grouped)

USB UTMI 0x010_1100 44 SYSB4(Grouped)

SATA 0x010_1101 45 SYSB5(Grouped)

reserved 0x010_1110 46 SYSB6(Grouped)

reserved 0x010_1111 47 SYSB7(Grouped)

IRQ0 0x011_0000 48 MIXA4(Grouped)

Reserved 0x011_0001–
0x011_1111

49–63 Reserved

DIU 0x100_0000 64 MIXA0

DMA2 0x100_0001 65 MIXA1

MBX 0x100_0010 66 MIXA2

Reserved 0x100_0011 67 MIXA3

PSC0 0x100_0100 68 MIXB0

PSC1 0x100_0101 69 MIXB1

PSC2 0x100_0110 70 MIXB2

PSC3 0x100_0111 71 MIXB3

GPT2 0x100_1000 72 Fixed priority

GPT3 0x100_1001 73 Fixed priority

GPT4 0x100_1010 74 Fixed priority

GPT5 0x100_1011 75 Fixed priority

GPT6 0x100_1100 76 Fixed priority

GPT7 0x100_1101 77 Fixed priority

GPIO 0x100_1110 78 Fixed priority

RTC SEC 0x100_1111 79 Fixed priority

Table 3. IVEC Field Values (Sheet 2 of 3) (continued)

Peripheral
Interrupt

Vector Number
(binary)

Interrupt Vector
Number

(decimal)

Default Group
Programing
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor8

Introduction
The purpose of Table 4 is to show the priority of each set and each member within a set. Each set can be
designated as Spread or Grouped. Some interrupting sources have a fixed priority. The MIX and SYS sets
can be individually designated as either Grouped or Spread. If a particular set is designated as Grouped,
the Spread entries for that set are not recognized and vice versa. Also, as a programming note within each
set, each member of the group must be assigned a unique priority. Even though it is possible to do so, it is
a programming violation to assign the same module within a set to two or more different priority levels.
All reserved entries in a set must be used and given a unique priority in the set’s priority register.

RTC ALARM 0x101_0000 80 Fixed priority

DDR 0x101_0001 81 Fixed priority

SBA 0x101_0010 82 Fixed priority

PMC 0x101_0011 83 Fixed priority

USB ULPI WKUP 0x101_0100 84 Fixed priority

USB UTMI WKUP 0x101_0101 85 Fixed priority

SATA CMD 0x101_0110 86 Fixed priority

TEMP 105C 0x101_0111 87 Fixed priority

IIM 0x101_1000 88 Fixed priority

PRIOMON 0x101_1001 89 Fixed priority

MSCAN3 0x101_1010 90 Fixed priority

MSCAN4 0x101_1011 91 Fixed priority

Reserved 0x101_1100 92 Fixed priority

Reserved 0x101_1101 93 Fixed priority

Reserved 0x101_1110 95 Fixed priority

Reserved 0x101_1111 95 Fixed priority

Table 3. IVEC Field Values (Sheet 3 of 3) (continued)

Peripheral
Interrupt

Vector Number
(binary)

Interrupt Vector
Number

(decimal)

Default Group
Programing
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 9

Introduction
Table 4. Grouped, Spread and Fixed Priority Assignments

Priority Level Interrupt Source Description Multiple Events

0 Highest —

1 MIXA0 (Spread) Yes (No for ext. interrupts)

2 MIXA0 (Grouped) Yes (No for ext. interrupts)

3 MIXA1 (Grouped) Yes (No for ext. interrupts)

4 MIXA2 (Grouped) Yes (No for ext. interrupts)

5 MIXA3 (Grouped) Yes (No for ext. interrupts)

6 MIXB0 (Spread) Yes (No for ext. interrupts)

7 SYSB0 (Grouped) Yes

8 SYSB1 (Grouped) Yes

9 SYSB2 (Grouped) Yes

10 SYSB3 (Grouped) Yes

11 MIXA1 (Spread) Yes (No for ext. interrupts)

12 SYSB4 (Grouped) Yes

13 SYSB5 (Grouped) Yes

14 SYSB6 (Grouped) Yes

15 SYSB7 (Grouped) Yes

16 MIXB0 (Grouped) Yes (No for ext. interrupts)

17 MIXB1 (Grouped) Yes (No for ext. interrupts)

18 MIXB2 (Grouped) Yes (No for ext. interrupts)

19 MIXB3 (Grouped) Yes (No for ext. interrupts)

20 MIXB1 (Spread) Yes (No for ext. interrupts)

21 SYSA0 (Grouped) Yes

22 SYSA1 (Grouped) Yes

23 SYSA2 (Grouped) Yes

24 SYSA3 (Grouped) Yes

25 MIXA2 (Spread) Yes (No for ext. interrupts)

26 SYSA4 (Grouped) Yes

27 SYSA5 (Grouped) Yes

28 SYSA6 (Grouped) Yes

29 SYSA7 (Grouped) Yes

30 MIXA4 (Grouped) Yes (No for ext. interrupts)

31 MIXA5 (Grouped) Yes (No for ext. interrupts)

32 MIXA6 (Grouped) Yes (No for ext. interrupts)
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor10

Introduction
33 MIXA7 (Grouped) Yes (No for ext. interrupts)

34 MIXB2 (Spread) Yes (No for ext. interrupts)

35 SYSC0 (Grouped) Yes

36 SYSC1 (Grouped) Yes

37 SYSC2 (Grouped) Yes

38 SYSC3 (Grouped) Yes

39 MIXA3 (Spread) Yes (No for ext. interrupts)

40 SYSC4 (Grouped) Yes

41 SYSC5 (Grouped) Yes

42 SYSC6 (Grouped) Yes

43 SYSC7 (Grouped) Yes

44 MIXB4 (Grouped) Yes (No for ext. interrupts)

45 MIXB5 (Grouped) Yes (No for ext. interrupts)

46 MIXB6 (Grouped) Yes (No for ext. interrupts)

47 MIXB7 (Grouped) Yes (No for ext. interrupts)

48 MIXB3 (Spread) Yes (No for ext. interrupts)

49 SYSD0 (Grouped) Yes

50 SYSD1 (Grouped) Yes

51 SYSD2 (Grouped) Yes

52 SYSD3 (Grouped) Yes

53 MIXA4 (Spread) Yes (No for ext. interrupts)

54 SYSD4 (Grouped) Yes

55 SYSD5 (Grouped) Yes

56 SYSD6 (Grouped) Yes

57 SYSD7 (Grouped) Yes

58 MIXB4 (Spread) Yes (No for ext. interrupts)

59 GPT2 Yes

60 SYSB0 (Spread) Yes

61 SYSA0 (Spread) Yes

62 GPT3 Yes

63 SYSC0 (Spread) Yes

64 SYSD0 (Spread) Yes

65 Reserved No

Table 4. Grouped, Spread and Fixed Priority Assignments (continued)

Priority Level Interrupt Source Description Multiple Events
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 11

Introduction
66 GPT4 Yes

67 MIXA5 (Spread) Yes (No for ext. interrupts)

68 GPT5 Yes

69 SYSB1 (Spread) Yes

70 SYSA1 (Spread) Yes

71 GPT6 Yes

72 SYSC1 (Spread) Yes

73 SYSD1 (Spread) Yes

74 Reserved No

75 GPT7 Yes

76 MIXB5 (Spread) Yes (No for ext. interrupts)

77 GPIO Yes

78 SYSB2 (Spread) Yes

79 SYSA2 (Spread) Yes

80 RTC SEC Yes

81 SYSC2 (Spread) Yes

82 SYSD2 (Spread) Yes

83 Reserved No

84 RTC ALARM Yes

85 MIXA6 (Spread) Yes (No for ext. interrupts)

86 DDR Yes

87 SYSB3 (Spread) Yes

88 SYSA3 (Spread) Yes

89 SBA Yes

90 SYSC3 (Spread) Yes

91 SYSD3 (Spread) Yes

92 Reserved No

93 PMC Yes

94 MIXB6 (Spread) Yes (No for ext. interrupts)

95 USB ULPI WKUP Yes

96 SYSB4 (Spread) Yes

97 SYSA4 (Spread) Yes

Table 4. Grouped, Spread and Fixed Priority Assignments (continued)

Priority Level Interrupt Source Description Multiple Events
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor12

Introduction
The MIXA set consists of eight entries, three of which are reserved. The entries are DIU, DMA, MBX,
RESERVED_0, IRQ0, IRQ1, RESERVED_1, and RESERVED_2.

98 USB UTMI WKUP Yes

99 SYSC4 (Spread) Yes

100 SYSD4 (Spread) Yes

101 Reserved No

102 SATA CMD Yes

103 MIXA7 (Spread) Yes (No for ext. interrupts)

104 TEMP 105C Yes

105 SYSB5 (Spread) Yes

106 SYSA5 (Spread) Yes

107 IIM Yes

108 SYSC5 (Spread) Yes

109 SYSD5 (Spread) Yes

110 Reserved No

111 PRIOMON Yes

112 MIXB7 (Spread) Yes (No for ext. interrupts)

113 MSCAN3 Yes

114 SYSB6 (Spread) Yes

115 SYSA6 (Spread) Yes

116 MSCAN4 Yes

117 SYSC6 (Spread) Yes

118 SYSD6 (Spread) Yes

119 Reserved No

120 Reserved Yes

121 Reserved Yes

122 SYSB7 (Spread) Yes

123 SYSA7 (Spread) Yes

124 Reserved Yes

125 SYSC7 (Spread) Yes

126 SYSD7 (Spread) Yes

127 Reserved No

128 Reserved Yes

Table 4. Grouped, Spread and Fixed Priority Assignments (continued)

Priority Level Interrupt Source Description Multiple Events
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 13

Introduction
The SMPRR_A defines the priority between DIU, DMA2, MBX, Reserved_0, IRQ0, IRQ1, Reserved_1,
and Reserved_2. See Figure 4.

By default, the system mixed interrupt group A priority register (SMPRR_A) is programmed such that
MIXA0P – MIXA7P fields are programmed to DIU, DMA, MBX, RESERVED_0, IRQ0, IRQ1,
RESERVED_1, and RESERVED_2, respectively. The relative priorities of this set can be changed. The
only requirement is each field must be written with a unique value. This means all eight values must be
used.

Offset 0x30Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventio
nal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MIXA0P MIXA1P MIXA2P MIXA3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventio
nal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MIXA4P MIXA5P MIXA6P MIXA7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 4. System Mixed Interrupt Group A Priority Register (SMPRR_A)

Table 5. SMPRR_A Field Descriptions

Field Description

MIXA0P MIXA0 Priority order. Defines which interrupt source asserts its request in the MIXA0 priority position. Do not
program the same code to more than one priority position (0–7). These bits can be changed dynamically. The
definition of MIXA0P is as follows:
000 DIU asserts its request to the MIXA0 position.
001 DMA2 asserts its request to the MIXA0 position.
010 MBX asserts its request to the MIXA0 position.
011 Reserved asserts its request to the MIXA0 position.
100 IRQ0 asserts its request to the MIXA0 position. This field for MIXA0 position is valid (must not be

ignored) if IRQ0 signal configured as an external maskable interrupt (SEMSR[SIRQ0] = 0).
101 IRQ1 asserts its request to the MIXA0 position.
110 Reserved asserts its request to the MIXA0 position.
111 Reserved asserts its request to the MIXA0 position.

MIXA1P–
MIXA7P

Same as MIXA0P, but for MIXA1P–MIXA7P.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor14

Introduction
For the present example assume the MIXA set is programmed to be in the GROUPED mode and the
default value is being used for the system mixed interrupt group A priority register. The resulting priorities
are shown in Table 6.

When the MIXA set is programmed as Grouped, the MIXA0 – MIXA7 fields are assigned interrupt
priority numbers of 2, 3, 4, 5, 30, 31, 32, and 33. When a set is programmed to be Grouped, the Spread
entries are not used and are treated as, don’t cares.

When the MIXA set is programmed as Spread, the MIXA0 – MIXA7 fields are assigned interrupt priority
numbers of 1, 11, 25, 39, 53, 67, 85, and 103 as shown in Table 7. When a set is programmed to be Spread,
the Grouped entries are not used and are treated as, don’t cares.

Table 6. Priority Assignments for System Interrupt Group A Mixed

Priority Level Interrupt Source Description

0 Highest

2 MIXA0 (Grouped)

3 MIXA1 (Grouped)

4 MIXA2 (Grouped)

5 MIXA3 (Grouped)

30 MIXA4 (Grouped)

31 MIXA5 (Grouped)

32 MIXA6 (Grouped)

33 MIXA7 (Grouped)

Table 7. Priority Assignments for System Interrupt Group A Spread

Priority Level Interrupt Source Description

0 Highest

1 MIXA0 (Spread)

11 MIXA1 (Spread)

25 MIXA2 (Spread)

39 MIXA3 (Spread)
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 15

Introduction
The interrupt priority levels (Table 7) and interrupt vector numbers (Table 3) are totally independent of
each other. Interrupt vector numbers are assigned to each peripheral and they do not change. Interrupt
priority levels are programmable. To illustrate this point, an example is presented in Table 8, showing
interrupt priority numbers and interrupt vector numbers for the system interrupt group A. MIXA5 Spread
is interrupt priority number 67. MIXA5 Group is interrupt priority number 31. In both cases, when MIXA5
is programmed to IRQ1, the default programming case, the interrupt vector number is 17.

Notice, IRQ1 could have been programmed to MIXA6 changing the priority number but not the interrupt
vector number.

53 MIXA4 (Spread)

67 MIXA5 (Spread)

85 MIXA6 (Spread)

103 MIXA7 (Spread)

Table 8. Interrupt Vector Number and Priority Assignments for System Interrupt Group A

Interrupt
Priority
Number

Interrupt
Vector

Number
Meaning

Default Group
Programing

67 17 IRQ1 MIXA5(Spread)

31 17 IRQ1 MIXA5(Grouped)

85 18 Reserved MIXA6(Spread)

32 18 Reserved MIXA6(Grouped)

103 19 Reserved MIXA7(Spread)

33 19 Reserved MIXA7(Grouped)

53 48 IRQ0 MIXA4(Spread)

30 48 IRQ0 MIXA4(Grouped)

49–63 Reserved Reserved

1 64 DIU MIXA0(Spread)

2 64 DIU MIXA0(Grouped)

11 65 DMA2 MIXA1(Spread)

3 65 DMA2 MIXA1(Grouped)

25 66 MBX MIXA2(Spread)

4 66 MBX MIXA2(Grouped)

Table 7. Priority Assignments for System Interrupt Group A Spread (continued)

Priority Level Interrupt Source Description
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor16

Register Summary
2 Register Summary
The registers of the integrated programmable interrupt controller (IPIC) are fully documented in the
MPC5121e Reference Manual. Remember, for the purposes of this application note, the MPC5121e is
being used as an example. However, the registers for this module are always the same regardless of which
particular microcontroller and where it is used. The assignments of the interrupting sources to the various
sets or fixed priorities change from device to device. This section is simply to provide a quick overview
of the purpose and function of each register. For exact programming details, consult the MPC5121e
Reference Manual.

In the following discussion, PowerPC bit numbering notation is used.

System Global Interrupt Configuration Register (SICFR) – 0x00

The HPI field specifies one interrupting source to be promoted to the highest priority interrupt.

The HPIT field determines the type of interrupt the highest priority interrupt generates, normal,
system management, or critical interrupt.

The MPSA-B and IPSA-D bits determine whether each individual set of interrupting sources
(MIXA, MIXB, SYSA, SYSB, SYSC, and SYSD) are Grouped or Spread. Each individual set
must be either Grouped or Spread. All members of a set must be configured the same way.

System Global Interrupt Vector Register (SIVCR) – 0x04

The lower seven bits of this register provide the vector number of the highest, unmasked pending
interrupt to the CPU core.

NOTE
Bits 0 – 24 of this register are reset to a logic 0 from the release of reset.
However, these bits change during device operation. Therefore, when using
the contents of this register as an offset or for any other purpose, it is
necessary that bits 0 – 24 be masked.

System Internal Interrupt Pending Registers High (SIPNR_H) – 0x08

The SIPNR_H and SIPNR_L registers contain one bit for each interrupting module. If a module is
currently asserting an interrupt, its bit is set in the SIPNR_H or SIPNR_L registers.

System Internal Interrupt Pending Register Low (SIPNR_L) – 0x0C

The SIPNR_H and SIPNR_L registers contain one bit for each interrupting module. If a module is
currently asserting an interrupt, its bit is set in the SIPNR_H or SIPNR_L registers.

39 67 Reserved MIXA3(Spread)

5 67 Reserved MIXA3(Grouped)

Table 8. Interrupt Vector Number and Priority Assignments for System Interrupt Group A (continued)

Interrupt
Priority
Number

Interrupt
Vector

Number
Meaning

Default Group
Programing
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 17

Register Summary
System Internal Interrupt Group A Priority Register (SIPRR_A) – 0x10

This register specifies the priority order of the modules included in the system internal interrupt
group A priority register. There are eight entries for each group. All eight entries must be used. No
entry can be used more than once.

System Internal Interrupt Group B Priority Register (SIPRR_B – 0x14

This register specifies the priority order of the modules included in the system internal interrupt
group B priority register. There are eight entries for each group. All eight entries must be used. No
entry can be used more than once.

System Internal Interrupt Group C Priority Register (SIPPR_C) – 0x18

This register specifies the priority order of the modules included in the system internal interrupt
group C priority register. There are eight entries for each group. All eight entries must be used. No
entry can be used more than once.

System Internal Interrupt Group D Priority Register (SIPPR_D) – 0x1C

This register specifies the priority order of the modules included in the system internal interrupt
group D priority register. There are eight entries for each group. All eight entries must be used. No
entry can be used more than once.

System Internal Interrupt Mask Register High (SIMSR_H) – 0x20

The SIMSR_H and SIMSR_L registers provide an individual interrupt mask bit for the internal
peripheral modules. For an interrupt to be passed to the CPU, the interrupt’s respective bit in either
the SIPNR_H or SIPNR_L register must be set and the interrupt’s respective mask bit in either the
SIMSR_H or SIMSR_L must be unmasked.

System Internal Interrupt Mask Register Low (SIMSR_L) – 0x24

The SIMSR_H and SIMSR_L registers provide an individual interrupt mask bit for the internal
peripheral modules. For an interrupt to be passed to the CPU, the interrupt’s bit in either the
SIPNR_H or SIPNR_L register must be set and the interrupt’s respective mask bit in either the
SIMSR_H or SIMSR_L must be unmasked.

System Internal Interrupt Control Register (SICNR) – 0x28

This register allows the highest two priority interrupting sources in SYSA, SYSB, SYSC, and
SYSD to be individually programmed as normal interrupts, system management interrupts, or
critical interrupts.

System External Interrupt Pending Register (SEPNR) – 0x2C

These two bits in this register provide an indication that IRQ0 and/or IRQ1 have been asserted.

System Mixed Interrupt Group A Priority Register (SMPRR_A) – 0x30

This register is used to assign the relative priorities of the peripheral elements assigned to system
group A.

System Mixed Interrupt Group B Priority Register (SMPRR_B) – 0x34

This register is used to assign the relative priorities of the peripheral elements assigned to system
group B.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor18

Register Summary
System External Interrupt Mask Register (SEMSR) – 0x38

This register is used as a mask register for IRQ0 and IRQ1. Also, it determines whether IRQ0
generates an external interrupt to the CPU or generate a machine check exception.

System External Interrupt Control Register (SECNR) – 3C

This register allows the highest two priority interrupting sources in MIXA and MIXB to be
individually programmed as normal interrupts, system management interrupts, or critical
interrupts. This register also specifies whether the MIXA and MIXB interrupts are low active or
negative edge active.

System Error Status Register (SERSR) – 0x40

Each bit in the SERSR register corresponds to a non-maskable error source that generates a
machine check exception (MCP). These bits are cleared by writing the bit location with a logic 1.
The interrupting source must be cleared before clearing the interrupts error status bit.

System Error Mask Register (SERMR) – 0x44

When a machine check exception is signaled from one of the peripheral modules, its corresponding
flag bit in this register is set. Any of the interrupting sources can be individually masked.

System Error Control Register (SERCR) –0x48

This register contains a single bit that causes a machine check exception to be routed to the
MPC_OUT pin or the INTA pin.

System Internal Interrupt Force Register High (SIFCR_H) – 0x50

Writing a logic 1 to any bit in this register forces an interrupt for the peripheral. The peripheral does
not have to actually be asserting an interrupt itself. The priority and vector number are the same as
though the peripheral had asserted the interrupt.

System Internal Interrupt Force Register Low (SIFCR_L) – 0x54

Writing a logic 1 to any bit in this register forces an interrupt for the peripheral. The peripheral does
not have to actually be asserting an interrupt itself. The priority and vector number are the same as
though the peripheral had asserted the interrupt.

System External Interrupt Force Register (SEFCR) – 0x58

Writing a logic 1 to any bit in this register forces an interrupt for the external interrupt. The
peripheral does not have to actually be asserting an interrupt itself. The priority and vector number
are the same as though the respective peripheral had asserted the interrupt.

System Error Force Register (SERFR) – 0x5C

Writing a logic 1 to any bit in this register forces a machine check exception for the peripheral. The
respective peripheral does not have to actually be asserting an interrupt itself. The priority and vector
number are the same as though the respective peripheral had asserted the interrupt.

System Critical Interrupt Vector Register (SCVCR) – 0x60
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 19

Programming Example Steps
The lower seven bits of this register specifies the vector number of the highest pending critical
interrupt source. Notice bits 0 – 24 are set to a logic 0 at the release of reset; however, these bits
change during device operation.

NOTE
Bits 0 – 24 of this register are reset to a logic 0 from the release of reset.
However, these bits change during device operation. Therefore, when using
the contents of this register as an offset or for any other purpose, it is
necessary bits 0 – 24 be masked.

System Management Interrupt Vector Register – 0x60

The lower seven bits of this register specifies the vector number of the highest pending system
management interrupt source.

NOTE
Bits 0 – 24 of this register are reset to a logic 0 from the release of reset.
However, these bits change during device operation. Therefore, when using
the contents of this register as an offset or for any other purpose, it is
necessary bits 0 – 24 be masked.

3 Programming Example Steps

3.1 Assign the Relative Priorities of the Interrupts in MIXA, MIXB,
SYSA, SYSB, SYSC, and SYSD

To begin, the relative priorities of each set must be assigned by the system designer. A hypothetical
applications example showing the relative priorities for each of the six sets is shown in Table 9. These
priorities were chosen to demonstrate a programming example. In an actual design, the system designer
assigns these priorities.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor20

Programming Example Steps
The assignment of priorities in Table 9 is used to populate Table 10. Each module of each set has both a
Spread and a Grouped entry. Therefore, there are be two entries in Table 10 for each module. In the present
example, IRQ0, MBX, and IRQ1 are the three highest priority items in MIXA. Looking at Table 10, IRQ0
(Grouped) is priority 2, MBX (Grouped) is priority 3, and IRQ1 (Grouped) is priority 4. When looking at
the spread column, IRQ0 (Spread), MBX (Spread), and IRQ1 (Spread) are priorities 1, 11, and 25.

Table 9. Interrupting Sources per Set Example

MIXA MIXB SYSA

Relative
Priority

Module
Relative
Priority

Module
Relative
Priority

Module

0 IRQ0 0 PSC2 0 PSC6

1 MBX 1 PSC0 1 PSC8

2 IRQ1 2 PSC1 2 PSC10

3 DMA 3 PSC3 3 PSC4

4 DIU 4 RESERVED_3 4 PSC11

5 RESERVED_0 5 RESERVED_4 5 PSC7

6 RESERVED_1 6 RESERVED_5 6 PSC5

7 RESERVED_2 7 RESERVED_6 7 PSC9

SYSB SYSC SYSD

Relative
Priority

Module
Relative
Priority

Module
Relative
Priority

Module

0 USB ULPI 0 PCI 0 I2C1

1 USB UTMI 1 PCI DMA 1 MSCAN1

2 AXE 2 PCI MU 2 I2C2

3 SATA 3 SDHC 3 MSCAN2

4 SPCIF 4 NFC 4 I2C3

5 FIFOC 5 FEC 5 BDLC

6 RESERVED_7 6 LPC 6 GPT1

7 RESERVED_8 7 PATA 7 GPT0

Table 10. Interrupting Sources Example

Priority
Level

Interrupt Source
Description

Spread Grouped

0 Highest

1 MIXA0 (Spread) IRQ0

2 MIXA0 (Grouped) IRQ0

3 MIXA1 (Grouped) MBX

4 MIXA2 (Grouped) IRQ1
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 21

Programming Example Steps
5 MIXA3 (Grouped) DMA

6 MIXB0 (Spread) PSC2

7 SYSB0 (Grouped) USB ULPI

8 SYSB1 (Grouped) USB UTMI

9 SYSB2 (Grouped) AXE

10 SYSB3 (Grouped) SATA

11 MIXA1 (Spread) MBX

12 SYSB4 (Grouped) SPDIF

13 SYSB5 (Grouped) FIFOC

14 SYSB6 (Grouped)

15 SYSB7 (Grouped)

16 MIXB0 (Grouped) PSC2

17 MIXB1 (Grouped) PSC0

18 MIXB2 (Grouped) PSC1

19 MIXB3 (Grouped)

20 MIXB1 (Spread) PSC0

21 SYSA0 (Grouped) PSC6

22 SYSA1 (Grouped) PSC8

23 SYSA2 (Grouped) PSC10

24 SYSA3 (Grouped) PSC4

25 MIXA2 (Spread) IRQ1

26 SYSA4 (Grouped) PSC11

27 SYSA5 (Grouped) PSC7

28 SYSA6 (Grouped) PSC5

29 SYSA7 (Grouped) PSC9

30 MIXA4 (Grouped) DIU

31 MIXA5 (Grouped) x

32 MIXA6 (Grouped) x

33 MIXA7 (Grouped) x

Table 10. Interrupting Sources Example (continued)

Priority
Level

Interrupt Source
Description

Spread Grouped
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor22

Programming Example Steps
34 MIXB2 (Spread) PSC4

35 SYSC0 (Grouped) PCI

36 SYSC1 (Grouped) PCI DMA

37 SYSC2 (Grouped) PCI MU

38 SYSC3 (Grouped) SDHC

39 MIXA3 (Spread) DMA

40 SYSC4 (Grouped) NFC

41 SYSC5 (Grouped) FEC

42 SYSC6 (Grouped) LPC

43 SYSC7 (Grouped) PATA

44 MIXB4 (Grouped) X

45 MIXB5 (Grouped) X

46 MIXB6 (Grouped) X

47 MIXB7 (Grouped) X

48 MIXB3 (Spread) PSC3

49 SYSD0 (Grouped) I2C1

50 SYSD1 (Grouped) MSCAN1

51 SYSD2 (Grouped) I2C2

52 SYSD3 (Grouped) MSCAN2

53 MIXA4 (Spread) DIU

54 SYSD4 (Grouped) I2C3

55 SYSD5 (Grouped) BDLC

56 SYSD6 (Grouped) GPT1

57 SYSD7 (Grouped) GPT0

58 MIXB4 (Spread) X

59 GPT2

60 SYSB0 (Spread) USB ULPI

61 SYSA0 (Spread) PSC6

62 GPT3

63 SYSC0 (Spread) PCI

64 SYSD0 (Spread) I2C2

65 Reserved

Table 10. Interrupting Sources Example (continued)

Priority
Level

Interrupt Source
Description

Spread Grouped
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 23

Programming Example Steps
66 GPT4

67 MIXA5 (Spread) X

68 GPT5

69 SYSB1 (Spread) USB UTMI

70 SYSA1 (Spread) PSC8

71 GPT6

72 SYSC1 (Spread) PCI DMA

73 SYSD1 (Spread) MSCAN1

74 Reserved

75 GPT7

76 MIXB5 (Spread) X

77 GPIO

78 SYSB2 (Spread) AXE

79 SYSA2 (Spread) PSC10

80 RTC SEC

81 SYSC2 (Spread) PCI MU

82 SYSD2 (Spread) I2C2

83 Reserved

84 RTC ALARM

85 MIXA6 (Spread) X

86 DDR

87 SYSB3 (Spread) SATA

88 SYSA3 (Spread) PSC4

89 SBA

90 SYSC3 (Spread) SDHC

91 SYSD3 (Spread) MSCAN2

92 Reserved

93 PMC

94 MIXB6 (Spread) X

95 USB ULPI WKUP

96 SYSB4 (Spread) SPDIF

97 SYSA4 (Spread) PSC11

Table 10. Interrupting Sources Example (continued)

Priority
Level

Interrupt Source
Description

Spread Grouped
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor24

Programming Example Steps
98 USB UTMI WKUP

99 SYSC4 (Spread) NFC

100 SYSD4 (Spread) I2C3

101 Reserved

102 SATA CMD

103 MIXA7 (Spread) X

104 TEMP 105C

105 SYSB5 (Spread) SPDIF

106 SYSA5 (Spread) PSC7

107 IIM

108 SYSC5 (Spread) FEC

109 SYSD5 (Spread) BDLC

110 Reserved

111 PRIOMON

112 MIXB7 (Spread) X

113 MSCAN3

114 SYSB6 (Spread) X

115 SYSA6 (Spread) PSC5

116 MSCAN4

117 SYSC6 (Spread) LPC

118 SYSD6 (Spread) GPT1

119 Reserved

120 Reserved

121 Reserved

122 SYSB7 (Spread) X

123 SYSA7 (Spread) PSC9

124 Reserved

125 SYSC7 (Spread) PATA

126 SYSD7 (Spread) GPT0

127 Reserved

128 Reserved

Table 10. Interrupting Sources Example (continued)

Priority
Level

Interrupt Source
Description

Spread Grouped
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 25

Programming Example Steps
After Table 10 has been filled in using the values in Table 9, some decisions can be made about whether
to use the Spread or Grouped programming for the respective sets.

Table 11 presents the possible priorities for the two highest priority modules chosen in each set as shown
in Table 9. For the MIXA set, IRQ0 and MBX were chosen as the two highest priority items. If the MIXA
set is programmed as Grouped, then these two modules are assigned to priorities 2 and 3. When
programmed as Spread, IRQ0 and MBX are assigned to priorities 1 and 11. In this case, the two highest
priority items in MIXA have relatively high priorities. At this point, the system designer needs to
determine if either MBX or IRQ0 can have a priority as low as 11. If there is an issue that adversely affects
assigning either of these modules to priority 11, then the MIXA set needs to be programmed to Group.

As a practical matter, choosing whether a particular set is programmed to Spread or Grouped may be as
simple as looking at the two or three highest priority modules within a set.

Now, consider the SYSA set. In the present example, PSC6 and PSC8 are chosen as the two highest
priority peripherals. When programmed as Group, these two peripherals are priority levels 21 and 22.
when programmed as Spread, these modules are assigned to priority levels 61 and 70. In this case, the
system designer probably has a very clear idea about whether these two PSC modules can operate correctly
with priority levels as low as 61 and 70.

In this manner, each set can be evaluated and some determination made as to whether the two highest
priority items in each set can operate effectively at the priority levels imposed by the IPIC hardware. Then
a choice must be made regarding Group or Spread encoding to obtain the optimal system performance.

3.2 System Global Interrupt Configuration Register
At this point, the assignment of relative priorities within each set and whether each respective set is
designated as Grouped or Spread has been executed. Programming the remainder of the IPIC control

Table 11. SPREAD vs. GROUPED Priorities

SET Module GROUP Priorities
SPREAD
Priorities

MIX A IRQ0 2, 3 1, 11

MBX

MIX B PSC2 16, 17 6, 20

PSC0

SYS A PSC6 21, 22 61, 70

PSC8

SYS B USB ULPI 7, 8 60, 69

USB UTMI

SYS C PCI 35, 36 63, 72

PCI DMA

SYS D I2C1 49, 50 64, 73

MSCAN1
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor26

Programming Example Steps
registers is more or less like filling out a table. To program the system global interrupt configuration
register, use the following steps.

1. Of all interrupting sources, choose the highest priority interrupt.

2. Specify the type of interrupt the highest priority interrupt is to generate; normal, system
management, or critical. There is a priority scheme between these three types of interrupts. Critical
is the highest priority, system management is the second highest priority, and normal interrupt is
the lowest priority. If SYSD is programmed as SPREAD then SYSD1 is priority 71. However, if
SYSD1, which is programmed to MSCAN1 in the present example is specified to generate a
critical interrupt, the CPU (not the IPIC) essentially treats it is as having a higher priority than all
of the modules programmed to system management or normal interrupts. The IPIC has a vector
register for critical interrupts, system management interrupts, and all interrupts. This adds another
level of complexity when assigning both priority levels and interrupt types to a particular module
capable of generating interrupts to the IPIC.

3. Specify whether the MIXA, MIXB, SYSA, SYSB, SYSC, and SYSD sets are to be programmed
as Spread or Grouped. In general, for the SYSA, SYSB, SYSC, and SYSD sets, programming any
of them to Spread results in the modules in the sets to have a relatively low priority. For instance,
for these four sets when programmed in Spread, the highest possible priority is SYSB0 which is
priority 60. After filling out Table 11, it is usually obvious whether Spread or Grouped priorities
are better suited for a particular application.

System Internal Interrupt Group A Priority Register

System Internal Interrupt Group B Priority Register

System Internal Interrupt Group C Priority Register

System Internal Interrupt Group D Priority Register

System MIXED Interrupt Group A Priority Register

System MIXED Interrupt Group B Priority Register

For each of the above six sets, assign the relative priorities of each set’s members. This job should have
been executed early in system design and now it is a matter of properly programming these registers.

System Internal Interrupt Mask Register High

System Internal Interrupt Mask Register Low

Specify which interrupts are to be masked and which interrupts are to be passed along to the CPU.
From the release of reset most interrupts are masked. This register can be used to dynamically
program what interrupts can be recognized and which need to be held off. There are cases where
some jobs must run to completion with out interruption. In such a case, the system internal interrupt
mask register high / low can be used to hold off interrupts.

System Internal Interrupt Control Register

Specify the type of interrupt, normal, system management, or critical, the two top priority
interrupts of SYSA, SYSB, SYSC, and SYSD are to generate. For each set, both interrupts have to
generate the same type of interrupt. However, each set can generate any of the three types of
interrupts. Normal, system management, and critical have a priority between themselves also to the
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 27

Using the IPIC Control and Status Registers
priority assigned by the IPIC for the various interrupting sources. Programming a low priority
source to the IPIC to generate a critical interrupt results in the CPU giving that interrupting source
a priority higher than normal and system management interrupts.

System External Interrupt Mask Register

Specify whether IRQ0 and IRQ1 are masked. Specify whether IRQ0 generates an external interrupt
or machine check exception. A machine check can be programmed to cause the CPU to jump to
the machine check exception handler or cause program execution to halt.

System External Interrupt Control Register

Specify the type of interrupt (normal, system management, or critical) the two top priority
interrupts of MIXA and MIXB are to generate. For each set, both interrupts have to generate the
same type of interrupt. However, each set can generate any of the three types of interrupts.

Also, specify whether the interrupting sources of MIXA and MIXB are active, low level active or
negative edge active.

System Error Mask Register

Specify which of the following sources are to signal a machine check exception: IRQ0, watchdog
timer, SBA, MU, and 125° C.

System Error Control Register

Specify whether a machine check exception causes the MCP_OUT pin or the INTA pin to assert.

4 Using the IPIC Control and Status Registers
System Global Interrupt Vector Register

System Critical Interrupt Vector Register

System Management Interrupt Vector Register

These three registers supply the vector number of the highest priority pending interrupt, the highest
priority pending critical interrupt, and the highest priority pending system management interrupt.
This programming methodology allows the CPU to determine what peripheral needs to be serviced
immediately without polling all the possible interrupting sources.

When the CPU responds to an interrupt, the program flow jumps to the appropriate exception
handler. From this point, the exception handler interrogates the appropriate vector register to read
the vector offset used to jump to the exception handler for a particular interrupting source. For
instance, if the CPU responds to a critical interrupt, the program jumps to the critical interrupt
exception handler, reads the system critical interrupt vector register, masks off the upper 23 bits,
and then uses the resulting seven bits as a branch offset into a table that has the address of the
individual interrupting source's exception handler.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor28

Forcing Interrupts
NOTE
The upper 23 bits of the system global, system critical, and system
management interrupt vector registers are not part of the particular vector
number. These bits are reset to zero but during program execution, they can
and will change. The upper 23 bits of these three registers must be masked
off by software to obtain the particular vector offset value.

System Internal Interrupt Pending Register High

System Internal Interrupt Pending Register Low

System External Interrupt Pending Register

These three registers contain status bits for all of the individual interrupt sources. When reading
one of the three vector registers, only the highest priority pending interrupt in each class can be
determined. In some cases, it may be beneficial for the program to determine when multiple
interrupt sources are present. These registers provide that capability.

As a general programming method, real time operating systems (RTOS) are many times used in
systems using the MPC5121e and other processors of this class. In general, the PowerPC
architecture is not designed to use nested interrupts. When an interrupt is recognized by the CPU,
only a very minimal amount of information is placed on the stack. The PowerPC architecture does
provide minimal support for stacking information in response to an interrupt, but this is usually
limited to a return address and some status information. When using an RTOS, the CPU responds
to an interrupt and then schedules a routine for service via the real time operating system. In this
case, the RTOS determines when the interrupt handler is executed with respect to other program
modules. Then the status bit of the interrupt is cleared. Using this programming method, there is
rarely more than one or two interrupt status bits set at any one time.

By providing interrupt pending registers, the programmer is free to write any type of exception
handler and respond to an interrupt in any way deemed appropriate. It is not necessary to use an
RTOS. These registers provide the status information about what interrupts are currently asserted.
The software writer can use this information in any manner they want to attain maximum system
performance.

5 Forcing Interrupts
System Internal Interrupt Force Register High

System Internal Interrupt Force Register Low

System External Interrupt Force Register

System Error Force Register

These registers contain bits for all the interrupting sources. Setting a bit in one of these registers
for a particular interrupt source causes an interrupt for that source to be asserted without having the
conditions present to make the source assert the interrupt, itself. For instance, a programmable
serial controller 0 may be idle. However, the PSC0 bit can be asserted in the system internal
interrupt force register and the software responds as if PSC0 was actually receiving or transmitting
data. Many times this feature is simply used to test hardware. However, there are actual conditions
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 29

Summary
where devices external to the MPC5121e may need to be addressed to put them into an active
condition. By forcing an interrupt, the software can be directed to service a particular module as if
that module had actually generated the interrupt.

6 Summary
The IPIC is used to supply exception vector software with the vector number of the highest priority
pending interrupt, critical interrupt, or system management interrupt. This is an effective time saving step
for software exception handlers. It is not necessary to poll all peripherals in a particular class to see what
peripherals need service. The IPIC can also manage which interrupting sources are passed to the CPU by
masking or unmasking the interrupting source’s interrupt.

After initialization, the priorities assigned to each interrupting module probably remain fixed. It is possible
to change the priorities. However, all of the interrupting sources to a particular set must be disabled at the
source before reprogramming the relative priorities for a particular set.

During system operation, various registers can be used to mask and unmask interrupts as necessary.
However, after system operation begins, the other IPIC registers are not usually modified.
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor30

THIS PAGE IS INTENTIONALLY BLANK
Understanding the Integrated Programmable Interrupt Controller (IPIC), Rev. 0

Freescale Semiconductor 31

Freescale™ and the Freescale logo are trademarks of
Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

AN3797
Rev. 0
03/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

	1 Introduction
	2 Register Summary
	3 Programming Example Steps
	3.1 Assign the Relative Priorities of the Interrupts in MIXA, MIXB, SYSA, SYSB, SYSC, and SYSD
	3.2 System Global Interrupt Configuration Register

	4 Using the IPIC Control and Status Registers
	5 Forcing Interrupts
	6 Summary

