Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine

A virtual machine (VM) is a software implementation of a machine (computer) that executes programs like a real machine. This application note specifies the following:

- The details of how to create a virtual machine using open source software on a Windows machine.
- Installation of Debian Linux on this virtual machine.
- Installation of Linux Target Image Builder (LTIB) on the virtual machine and set up the host to TFTP files on the target.

Contents

1 Introduction .. 2
2 Creating a Virtual Machine 5
3 Installing VM Player .. 9
4 Installing Debian in the Virtual Machine 14
5 Install Freescale LTIB for i.MX Processors .41
Appendix A i.MX51 Bootlog 59
1 Introduction

This document details the following steps using open source tools and Freescale provided board support packages.

- Creating a virtual machine using open source software on a Windows machine
- Installing Debian Linux on this virtual machine
- Installing Linux Target Image Builder (LTIB) on the virtual machine and setting up the host to TFTP files on the target

1.1 Scope

This document is meant to serve as a step-by-step guide for hardware and software engineers to create their own virtual machines, install Linux on it, and create their own Linux image to be downloaded onto i.MX processors.

1.2 Overview

This section includes a brief introduction to virtual machines, discusses different embedded operating systems, and presents how they fit into the i.MX development environment.

1.2.1 Virtual Machines

Virtual machines (VM) allow the sharing of the underlying physical machine resources between different virtual machines, each running its own operating system. The main advantages of virtual machines are:

- Multiple OS environments can co-exist on the same computer, in strong isolation from each other.
- The virtual machine can provide an instruction set architecture (ISA) that is somewhat different from that of the real machine
- Application provisioning, maintenance, high availability and disaster recovery

Virtual machine converters can help the user resize the hard disk space or clone another virtual machine.

In case the board support package (BSP) installation on the virtual machine is corrupt or the operating system fails, the virtual machine can be reinstalled without affecting the host machine.

The disadvantage of virtual machines might be a slower execution compared to the host machine.
1.2.2 Board Support Package (BSP)

A BSP is implementation-specific support code for a given board, for example, the 3-stack platform for i.MX processors that conforms to a given operating system. It is commonly built with a bootloader that contains the minimal device support to load the operating system and device drivers for all the devices on the board. In order to develop applications for the i.MX processors, users can use the standard Freescale WinCE600 or Freescale Linux BSP for i.MX processors. The application development environment requires building customized Operating System images and downloading them onto the i.MX processor.

1.2.3 Operating System

Here we briefly discuss the pros and cons of Embedded Linux and Windows CE.

1.2.3.1 Embedded Linux

Linux is part of the Unix-like operating systems. It was initially developed in 1991 for IBM-compatible personal computer. Over the years Linux has become available for other architectures including Power Architecture® and ARM® technologies. Among the major benefits about Linux stands the fact that it isn’t a commercial operating system since its source code is available under the GPL (GNU General Public License), this means that the code is open source.

Linux is a modular operating system that uses a monolithic kernel. The Linux kernel takes care of the process control, networking, peripheral and file system access. However Linux does not covers applications like file-system utilities or windowing systems and graphical desktops, text editors, system administrators. All these utilities are provided freely under the GPL license too and they can be installed in Linux-based systems.

LTIB stands for Linux Target Image Builder and enables the user to customize the OS image for the i.MX processors.

1.2.3.2 Windows CE

Windows Embedded CE stands for Windows Embedded Consumer Electronics. It is a compact, modular, 32-bit, real-time operating system designed for use on devices with small memory requirements (small footprint devices). Windows Embedded CE is a multitasking, multithreaded OS.

Windows Embedded CE is based on the Win32 API from Microsoft, so programmers that are familiar with programming for traditional Windows platforms like Windows NT can begin programming on Windows Embedded CE applications with very little additional training. The Windows Embedded CE OS is independent of the hardware architecture, and can therefore be ported to a wide variety of CPUs, including ARM processors.
1.2.4 System Description

A personal computer with the following components is required for the procedures described in this document:

- Software
- Windows installed
- Hyperterminal
- Hardware
- Ethernet with internet connectivity
- Serial connector
- CD / USB
- i.MX 3-stack development system / product development kit

Figure 1 shows the various elements of the development environment. The 3-stack platform consists of the CPU card, Personality card and the Debug board. The CPU card has the i.MX processor, the power management chip and memory. The personality card has most of the other peripherals including the display. The debug card has the Ethernet and serial ports which are used to interface with the host machine – in our case the personal computer with virtual machine.

The virtual machine will be installed on a PC with Windows and needs an application such as VM Player to run. LTIB is then installed on the VIRTUAL MACHINE which has Linux installed on it. The Linux image for the ARM cores on the i.MX processors can be ported to the i.MX 3-stack platform by using the Ethernet connection. The Hyperterminal receives the debug messages from the i.MX processor using the serial port.
Detailed documentation describing each of the above mentioned sections can be found in [5].

The development environment for this document has been created on a Windows XP Professional Edition machine. For users installing a different operating system in the virtual machine, differences are noted in the relevant sections.

2 Creating a Virtual Machine

In this section, instructions to create a virtual machine on the PC running Windows are presented. The first step is to create a virtual machine for VMware® Player. VMware Player is a free application which can run multiple operating systems simultaneously on a single PC. Using a web browser, navigate to www.easyvmx.com and the webpage shown in Figure 2 appears.
Click on the button in Figure 2 and a new webpage, “Basic Configuration,” appears on the screen.

The following subsections describe configuration of the virtual machine’s parameters such as the name assigned to it, the hard disk space, networking device, sound and I/O controls, as well as the steps to download this virtual machine onto the personal computer.

2.1 Virtual Hardware

This document is meant to serve as a step by step guide for hardware and software engineers to create their own virtual machines, install Linux on it and create their own Linux image to be downloaded onto i.MX processors.

Under the option "Virtual Hardware," create a name, for example, WinCE_iMXmn or LTIB_iMXmn, based on the OS to be installed in the virtual machine.

CAUTION

For users with a different operating system make sure to choose the one that best describes the operating system in the “Select GuestOS” spin box as shown in Figure 3.
2.2 Hard Disk Drives

Under the option hard disk drive to allow the virtual machine to use up to 10 GB of hard disk space, select “Disk Size 10GB” from the spin box “Disk #1:” as shown in Figure 4. Note that, for WinCE users, more than 40 GB might be a more appropriate disk space.

2.3 Network Configuration

Use the default network settings as shown in Figure 5.

* NAT shares your computer’s address.
* Bridged gives your virtual machine a separate address.
* Host Only only gives network access to your computer.

VirtualDevice: Intel® PRO/1000 and vlance is supported on most operating systems; vmxnet is VMware’s network card.
You need VMware Tools to get the driver for vmxnet.
Use Intel® PRO/1000 for Windows Vista.
2.4 Sound and I/O Port Configuration

To enable USB auto connect on the virtual machine, select “Enable USB Autoconnect” option in the spin box “USB:” as shown in Figure 6 under the option Sound and I/O-Ports Configuration. To enable audio, the appropriate sound card in the system should be selected.

![Figure 6. Virtual Machine Sound and I/O Configuration](image)

Click on the button `Create Virtual Machine` and a new webpage appears as shown in Figure 7.

2.5 Download Virtual Machine

![Figure 7. Download Virtual Machine](image)
Click on the button [Click here to download the virtual machine] to download the virtual machine. Save it on the hard disk and unzip it in a folder whose location is not going to be changed. This creates the virtual machine. Next, proceed to download the VMware Player.

3 Installing VM Player

The virtual machine which was configured in the previous section can be executed using the VM Player which can be downloaded from the VMware website. The appended webpage appears as shown in Figure 8.

![Figure 8. VMware Website Screenshot](image)

The following subsections lead the user through installation of the VM Player on the personal computer.

3.1 Download VM Player

Click the “Download Now” button and follow the steps as directed by the subsequent web pages. Download the VMware-player-2.5.2.exe and save it onto the hard disk drive. See Figure 9.
CAUTION

The version of the VMware Player may be changed. Download this or any later version.

3.2 Install VM Player

Double click on the downloaded file to start the installation process. Next, click the “Run” button to install VMware Player as shown in Figure 10.

Figure 10. VM Player Download
The preparation for installation takes less than 30 seconds, as shown in Figure 11. If the process takes longer than two minutes, verify the integrity of the download file or simply download the VMware Player again.

![Figure 11. VM Player Download Ongoing](image)

Once the preparation process is successful, a new window appears as shown in Figure 12.

![Figure 12. VM Player Installation](image)

Click the “Next>” button in this window, and a “Destination Folder” window appears, as shown in Figure 13.
Figure 13. Virtual Machine Installation Folder

Choose the desired destination folder by clicking on the “Change” button in the “Destination Folder” window. Once the destination folder is selected, click the “Next>” button and the “Configure Shortcuts” window appears, as shown in Figure 14.

Check “Desktop” and then click the “Next >” button in the “Configure Shortcuts” window.
VMware Player proceeds to install all the necessary components onto the computer, as shown in Figure 15.
After the installation process is done, the “Installation Wizard Completed” window appears, as shown in Figure 16. Click on the “Finish” button and reboot the system to end this process.

Figure 16. VM Player Installation Completed

4. Installing Debian in the Virtual Machine

Technical variations of Linux distributions include support for different hardware devices and systems or software package configurations. Organizational differences may be motivated by historical reasons. Other criteria include security, including how quickly security upgrades are available; ease of package management; and number of packages available. A good comparison of the different flavors of Linux can be found in [6].

The following section leads the user through installing Debian Linux onto the virtual machine. Instructions are similar for any other Linux distribution. For users installing WinCE, Windows XP should be installed instead of Debian Linux onto the virtual machine.

This is a lengthy process which needs the Debian net installation CD. The Debian CD can be downloaded from www.debian.org in an ISO image format which has to be burnt onto a DVD. Version 4.0 or later is sufficient.

Start the VMware Player by clicking on the VMware Player shortcut on the desktop. A VMware Player window appears, as shown in Figure 17. Click on the “Open” icon and select the folder where of the unzipped virtual machine.
The following commands can be used at any point:

- To restart the virtual machine, ‘CTRL + ALT + Insert’ should be pressed simultaneously.
- To direct the input to the virtual machine from the Windows environment, ‘CTRL + G’ should be pressed simultaneously.
- To revert back to the Windows environment, ‘CTRL + ALT’ should be pressed simultaneously.

The following subsections enumerate the steps to install Linux on the virtual machine.

4.1 Open Virtual Machine

Select the `{LTIB.vmx}` file. The name of the virtual machine may vary depending on what name was provided during the creation of the virtual machine. Nonetheless, it still bears the file extension of “vmx.” Insert the Debian net installation CD into the CDROM and click the “Open” button on the Open Virtual Machine window. See Figure 18.
The Debian net installation begins now, as shown in Figure 19.

Figure 18. Selection of Virtual Machine Using VM Player

Figure 19. Installation of Debian Linux on Virtual Machine
4.2 Installing Linux

Linux installation begins with a startup screen as shown in Figure 20 (the VMWARE logo appears in the foreground while the OS is booting up in the background). Place the mouse cursor over in the VMWARE Player window and right click the mouse button to pass control to VMWARE Player. Press the “Enter” key, and the Linux installation proceeds.

![Figure 20. Debian Linux Installation on Virtual Machine](image)

Figure 20. Debian Linux Installation on Virtual Machine

Figure 21, Figure 22, and Figure 23 show, in order, the subsequent windows asking the user to enter configuration information. Choose the appropriate field using the up or down arrow key and press the “Enter” key to go to the next window.
Figure 21. Language Selection

Figure 22. Region Selection
Figure 23. Keyboard Layout Selection

The installation wizard scans the installation CD and loads additional components as shown in Figure 24 and Figure 25.
Figure 24. Debian Installation from CD

Figure 25. Loading Linux Components from CD
This is the network configuration stage. Enter a unique hostname and local domain for this system in each window and press the “Enter” key on the keyboard. See Figure 26 and Figure 27.

Figure 26. Network Configuration—Host Name
Figure 27. Network Configuration—Domain Name

The disk partition stage follows the network configuration stage. Select the options as shown from Figure 28 through Figure 32.
Figure 29. Disk Partitioning IDE master (hda) – 10.7 GB VMware IDE Hard Drive
Figure 30. Disk Partitioning **All files in one partition (recommended for new users)**

Figure 31. Disk Partitioning **Finish Partitioning and Write Changes to Disk**
If you continue, the changes listed below will be written to the disks. Otherwise, you will be able to make further changes manually.

WARNING: This will destroy all data on any partitions you have removed as well as on the partitions that are going to be formatted.

The partition tables of the following devices are changed:
- IDE1 slave (hdb)

The following partitions are going to be formatted:
- partition #1 of IDE1 slave (hdb) as ext3
- partition #5 of IDE1 slave (hdb) as swap

Write the changes to disks?

(Yes) (No)

Figure 32. Disk Partitioning **Yes**
4.3 Setup Time Zone

Select the appropriate time zone with the up or down arrow key and then press the “Enter” key. See Figure 33.

Figure 33. Time Zone Configuration

4.4 Setup Users and Passwords

The next six windows, shown in Figure 34 to Figure 39, show the set-up of root and user passwords and the login name. Make a note of the root and user password. These passwords are required later to login to the system and upgrade user status to super user status.
Figure 34. Root User Configuration

You need to set a password for 'root', the system administrative account. A malicious or unqualified user with root access can have disastrous results, so you should take care to choose a root password that is not easy to guess. It should not be a word found in dictionaries, or a word that could be easily associated with you.

A good password will contain a mixture of letters, numbers and punctuation and should be changed at regular intervals.

Note that you will not be able to see the password as you type it.

Root password:

[Password field]

<Go Back> <Continue>

Figure 35. Root User Configuration—Re-enter Password

Please enter the same root password again to verify that you have typed it correctly.

Re-enter password to verify:

[Password field]

<Go Back> <Continue>
A user account will be created for you to use instead of the root account for non-administrative activities.

Please enter the real name of this user. This information will be used for instance as default origin for emails sent by this user as well as any program which displays or uses the user’s real name. Your full name is a reasonable choice.

Full name for the new user:

<Go Back> <Continue>

Figure 36. User Configuration
Figure 37. User Password Configuration

Figure 38. User Password Configuration
The Debian installer installs the Linux base system on the VM as shown in Figure 40.
4.5 Configure the Package Manager

Debian installer prompts the user through a series of windows, shown in Figure 41 through Figure 44, to configure the package manager. The correct HTTP proxy information should be used in the text entry box provided in Figure 44.

![Figure 41. Package Manager Configuration](image)
Figure 42. Package Manager Mirror Site Location

Figure 43. Package Manager Mirror Website Address
The Debian installer scans the mirror site and configures the applications.
Select “**<YES>**” to participate in the package usage survey, or “**<NO>**” to decline.

Figure 46. Package Usage Survey

4.6 Software Selection

Select “Desktop environment” and “Standard System,” as shown in Figure 47, then press “Enter.”
Debian installer now installs the select software (see Figure 48). This process can take more than an hour depending on the mirror site and the network connection.
Select “<YES>” for the option shown in Figure 49.

Figure 49. Debian Swap Partition Configuration

4.7 Configure XServer Xorg

Configure the video mode appropriately using the up and down arrow key and spacebar. Press “Enter” when certain that the display supports all the modes chosen. See Figure 50.

Figure 50. XServer Screen Resolution
As shown in Figure 51, Debian configures the system based on the information just provided.

![XServer Installation](image1)

Figure 51. XServer Installation

4.8 Install GRUB Boot Loader

Debian now installs GRUB boot loader on the hard disk. Select “<YES>” and then press the “Enter” key. Select “<Continue>” as shown in Figure 52. Then press the “Enter” key.

![Grub Bootloader Installation](image2)

Figure 52. Grub Bootloader Installation
4.9 Finish the Installation

After completing the installation, the Debian installer ejects the installation. It reboots into the new system that has been successfully installed. See Figure 53 through Figure 55.

Figure 53. Launching Debian on Virtual Machine

Figure 54. Reboot of Virtual Machine
Enter the login name and user password as shown in Figure 56 and Figure 57, respectively. At this point, Debian Linux has been successfully installed in the virtual machine. Figure 58 shows the Debian desktop environment.
Figure 56. Debian User Logon

Figure 57. Debian User Password Screen
5 Install Freescale LTIB for i.MX Family of Processors

After installing Linux on the virtual machine, LTIB has to be installed on this virtual machine. LTIB helps the user configure the Linux image to be downloaded on the target, that is, the i.MX 3-stack development platform.

The Freescale version of LTIB for the i.MX family of processors, can be downloaded from the website shown on the back cover of this document. Navigate to the desired i.MX processor, and under Board Support Packages, download “Linux BSPs for Freescale i.MX.” This file can be saved onto a USB drive or directly downloaded into the virtual machine. To be able to access the internet from the virtual machine, Network device setting should be chosen as bridged and proxy settings should be set appropriately as discussed in Section 5.4.

From this point onwards, the “$” sign is the prompt of the Bash shell in the virtual machine and the “=>” sign prompt represents the Redboot prompt on the PDK.

This section obviously does not apply to WinCE users and they should follow the guidelines in the WinCE Software Development Kit.

The following subsections guide the user through installing LTIB, configuring the networking protocols to be able to connect to the target from the virtual machine, and downloading the images from the host, that is, the virtual machine, to the target.
5.1 Installing the Board Support Package

Follow the steps shown in Figure 59 and invoke the Bash shell or terminal window as shown in Figure 60. If the BSP was downloaded into the virtual machine, then it should be installed using the install command as shown below. If the BSP is in ISO format, it should be written to a CD and then the BSP can be installed using the install command as shown below. However, if the BSP was copied into a USB drive, insert the USB drive with the BSP software into the computer’s USB type A connector.

![Figure 59. Launching Bash Shell in Debian](image)
The system detects the USB drive as shown in Figure 61.
The USB drive used may differ; therefore, the \texttt{device name} and the \texttt{user} name should be changed appropriately in the following sections.

Example 1. Mount LTIB in ISO format from USB if no tar.gz available

```
$ mkdir LTIBISO  \(\rightarrow\) creates a directory

$ su              \(\rightarrow\) upgrades to super user to use root commands
Password:        \(\rightarrow\) enters the root password

$ mount -o loop /media/disk/imx\_mn\_ads\_date /home/user/LTIBISO
```

The USB drive LED should flash.

```
$ exit             \(\rightarrow\) returns to non-root status

$ LTIBISO/install  \(\rightarrow\) installs the BSP software
```

The BSP EULA appears; to continue installing, accept the license.

The installation prompts, \textquote{Where do you want to install LTIB? (/home/user).} \textquote{Press the \textbf{Enter} key to choose this and proceed.}

It is important not to install LTIB as the super user to avoid issues with access permissions. In hosts with Ubuntu, the commands should be prepended with \texttt{sudo} to be the superuser.

\section*{5.2 Requirements for Running LTIB}

When LTIB is running, it writes information into /opt/freescale/pkgs and /opt/freescale/ltib. LTIB must have permission to write into this directory. This can be ensured by appending the following command (in blue) is in the file /etc/sudoers.
Example 2. Modify `/etc/sudoers` File

```bash
# /etc/sudoers
#
# This file MUST be edited with the 'visudo' command as root.
#
# See the man page for details on how to write a sudoers file.
#
Defaults env_reset

# Host alias specification

# User alias specification

# Cmd alias specification

# User privilege specification

root ALL=(ALL) ALL

user ALL = NOPASSWD: /usr/bin/rpm, /opt/freescale/ltib/usr/bin/rpm
```

If the command is not in the `sudoers` file, the following instructions can be used to add this command to the file `/etc/sudoers`.

Example 3. Configure LTIB

```bash
$ su  <-> upgrades to super user to use root commands
Password:  <-> enters the root password
```
$ cd /etc ← change to /etc directory

$ nano sudoers ← uses nano text editor to add the command line

$ exit ← returns to non-root status

$ cd ~ ← returns to user home directory

$ cd ltib

$./ltib --configure ← run LTIB

When running LTIB, LTIB detects if all the required software packages are present in the system. If any software component is missing, LTIB generates a list of the missing software components needed for this process as shown in Figure 62.
The missing software components are as follows:

1) glibc-headers \(\leftarrow \) for 1 to 5 search for gcc and g++
2) glibc-devel selects gcc, gcc 3.4 and 4.1, g++ and g++ 4.1
3) libstd++.devel
4) gcc-c++
5) zlib-devel \(\leftarrow \) search zlib and select zlibg-dev
6) rpm
7) rpm-build
8) ncurses-devel \(\leftarrow \) search ncurses and select libncurses-dev
9) bison
10) patch
11) tcl
12) m4

The Synaptic Package Manager can be used to install the missing software components. See Figure 63.

![Synaptic Package Manager](image)

Figure 63. Synaptic Package Manager

After all the missing software components are found and installed, LTIB should be run again.

Example 4. Configure LTIB after installation of missing packages

```
$ ./ltib --configure  \ run LTIB
```
When LTIB has successfully completed installation, the message in Figure 64 is shown.

![Figure 64. LTIB Build Successful](image)

5.3 TFTP Host Setup

The Synaptic Package Manager should be used to install the TFTP and the NFS servers. The NFS server can be installed by using the NFS kernel server package.

The tftpboot directory should be created for tftp transfers between the host and the target.

Example 5. Create tftpboot folder

```
$ su
   \rightarrow upgrades to super user to use root commands
Password: \rightarrow enters the root password

$ cd /

$ mkdir -p /tftpboot
```

Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine, Rev. 1
Freescale Semiconductor
For convenience, the tftpboot/rootfs directory can be symbolically linked to an exportable directory.

Example 6. Link LTIB rootfs folder to tftpboot rootfs folder

```bash
$ ln -s /home/user/ltib/rootfs /tftpboot/rootfs
```

Copy over the kernel, boot loader, devices tree and root file system image to the /tftpboot directory

Example 7. Copy OS image and root file system to tftpboot folder

```bash
$ su ← upgrades to super user to use root commands
Password: ← enters the root password

$ cp /home/user/ltib/rootfs/boot/zImage /tftpboot
$ cp /home/user/ltib/rootfs/boot/rootfs.jffs2 /tftpboot
```

5.4 Setup Host IP Address

Under the Ethernet option of the VMware Player, the Ethernet should be connected and set to “Bridged” mode as shown in Figure 65. Next the following steps should be followed.

Example 8. Configure Ethernet

```bash
$ su ← upgrades to super user to use root commands
Password: ← enters the root password

$ ifconfig eth0:0 192.168.1.xx netmask 255.255.0.0 up
```

The 192.168.1.xx address can be used when both the target and the host are connected to an Ethernet hub or router. If not connected to a hub, the router can assign an IP address. See Figure 65.
5.5 Setup TFTP and NFS Server

The following line should be added to the file /etc/exports. If the exports file does not exist, it should be created.

Example 9. Modify /etc/exports File

```
tftpboot/rootfs/*(rw,no_root_squash,async)
```

NOTE

Make sure there is not space in between from the “*” to “)”.

The file `/etc/xinetd.d/tftp` should be edited to enable tftp as appended. If the tftp file does not exist, it should be created.

If the directory xinetd.d does not exist, `xinetd` is probably not installed. The Synaptic Package Manager should be used to install `xinetd` if required.
Example 10. Modify /etc/xinetd.d/tftp File

```
service tftp
{
    disable = no
    socket_type = dgram
    protocol = udp
    wait = yes
    user = root
    server = /usr/sbin/in.tftpd
    server_args = /tftpboot
}
```

The server args parameter specifies the path for files to be tftpd from host to target.

5.6 Restart TFTP and NFS Server

Restart the TFTP and NFS server on the host virtual machine as follows:

Example 11. Restart nfs and xinetd servers

```
$ su               ← upgrades to super user to use root commands
Password:          ← enters the root password

$ /etc/init.d/xinetd restart
$ /etc/init.d/nfs-kernel-server restart
```
5.6.1 Connect to TFTP Server

Sometimes the tftp server might not be connected to the host ipaddress. This can be verified by the following set of commands.

Example 12. Tftp status check

```bash
$ tftp
> status
Not connected
```

If the tftp server is not connected, the following commands should be used to connect to the tftp server and verify the connection status.

Example 13. Connect to tftp server on virtual machine

```bash
> connect 192.168.1.xx
> status
Connected to 192.168.1.xx
> get zImage
File transferred in 12 seconds.
```

In case tftp does not work, ensure file and folder permissions in the tftpboot folder are set to 777 using chmod. Also, the file sizes should be greater than 0.

5.7 Target Setup

The system should now be setup as shown in Figure 1 earlier. Power supplies are not shown in the diagram and should be connected as well.

a. Connect i.MX PDK 3-stack board as in the Quick Start guide.

b. Connect debug board to the network via the Ethernet port.
c. Connect the debug board power supply.

d. Connect the debug board to the host machine via serial port.

e. Start a serial communication program. Serial settings are 115200 baud, 8 data bits, none parity, one stop bit and none flow control.

g. Power up the PDK board and see the redboot messages on the hyperterminal as follows:

 Example 14. Redboot Log on Hyperterminal

 ++Searching for BBT table in the flash ...

 Found version 1 Bbt0 at block 8191 (0x7ffc0000)
 Total bad blocks: 0
 ... Read from 0x07ec0000-0x07f00000 at 0x00080000: ..
 ... Read from 0x07eb3000-0x07eb4000 at 0x000bf000: .

 LAN92xx Driver version 1.1
 SMSC LAN9217: ID = 0x117a REV = 0x0
 [Warning] FEC not connect right PHY: ID=0001c
 FEC: [HALF_DUPLEX] [disconnected] [10M bps]:
 ... waiting for BOOTP information
 DHCP reply: 2, not 5
 Ethernet eth0: MAC address 00:04:9f:00:8d:a0
 IP: 192.168.1.xy/255.255.255.0, Gateway: 10.193.102.254
Default server: 0.0.0.0

Reset reason: Power-on reset
fis/fconfig from NAND
Boot switch: UNKNOWN

NAND: ADDR CYCLES:4: MLC: 128B spare (4-bit ECC):
PAGE SIZE: 2K: BUS WIDTH: 8

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version FSL 200845 - built 07:05:22, Nov 10 2008

Platform: MX51 3-Stack (Freescale i.MX51 based) PASS 1.1 [x32 DDR]
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x00000000-0x07f00000, [0x00095368-0x07eb1000] available
FLASH: 0x00000000 - 0x80000000, 8192 blocks of 0x00040000 bytes each.
== Executing boot script in 1.000 seconds - enter ^C to abort
^C
RedBoot>

It is essential for the target to get an IP address during redboot to be able to TFTP files onto the target. Follow steps listed in Sections 5.3 – 5.7 to ensure the target gets an IP address. Sometimes it might be necessary to reset the Ethernet hub for this.
5.8 TFTP files onto Target and Store in Flash

The kernel image and the root file system can be tftped to the target from the redboot prompt on the hypterminal. The hypterminal can be either on the Windows machine or on the virtual machine. This section walks through the steps for this. First, the flash should be erased.
Example 15. Initialize Flash and tftp OS image onto target RAM

```
RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x00080000-0x000c0000: .
... Program from 0x07ec0000-0x07f00000 at 0x00080000: ..

RedBoot> load -r -b 0x100000 zImage.mx51 -h 192.168.1.xx (host IP address)
Using default protocol (TFTP)
    Raw file loaded 0x00100000-0x002b11d7, assumed entry at 0x00100000
```

The tftped file is then copied from RAM into flash.

Example 16. Copy OS image from RAM onto Flash

```
RedBoot> fis create kernel
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Erase from 0x000c0000-0x00280000: .......
... Program from 0x00100000-0x002b11d8 at 0x000c0000: ........
... Erase from 0x00080000-0x000c0000: .
... Program from 0x07ec0000-0x07f00000 at 0x00080000:..
```

The same process is repeated for the Root file system.

Example 17. TFTP root file system onto RAM and copy into Flash

```
RedBoot> load -r -b 0x100000 rootfs_mx51_dual_display.jffs2 -h 192.168.1.xx (host IP address)
Using default protocol (TFTP)
```
Raw file loaded 0x00100000-0x0598f95f, assumed entry at 0x00100000

RedBoot> fis create -f 0x600000 root
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..
... Erase from 0x00600000-0x05ec0000:
..
..
..

..
..
..

... Program from 0x00100000-0x0598f960 at 0x00600000:
..
..
..

..
..
..

... Erase from 0x00080000-0x000c0000: .
... Program from 0x07ec0000-0x07f00000 at 0x00080000: ..

Now the kernel image and the root file system are resident on the target Flash.

5.9 Redboot Configuration

Before running Linux, the redboot environment variables should be set correctly using the fconfig command. A detailed list of Redboot commands is listed in [3].

Setting the correct boot script allows redboot to invoke Linux after redboot has finished execution. The timeout should always be \(> 0 \) seconds.

Example 18. Redboot configuration

RedBoot> fconfig
Run script at boot: true
Boot script:
 fis load kernel
exec -c "noinitrd console=ttymxc0,115200 root=/dev/mtdblock2 rw rootfstype=jffs2 ip=none"

Enter script, terminate with empty line

>> fis load kernel

>> exec -c "noinitrd console=ttymxc0,115200 root=/dev/mtdblock2 rw rootfstype=jffs2 ip=none" (If no IP address is required in Linux, ip=none)

>>

Boot script timeout (1000ms resolution): 1

Use BOOTP for network configuration: true

Default server IP address:

Board specifics: 0

Console baud rate: 115200

Set eth0 network hardware address [MAC]: false

Set FEC network hardware address [MAC]: false

GDB connection port: 9000

Force console for special debug messages: false

Network debug at boot time: false

Default network device: lan92xx_eth0

Update RedBoot non-volatile configuration - continue (y/n)? y

... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..

... Erase from 0x00080000-0x000c0000: .

... Program from 0x07ec0000-0x07f00000 at 0x00080000: ..

Redboot>
5.10 Running Linux on Target

Now that Linux has been loaded onto flash and redboot has been configured to load Linux, Linux can be invoked from either the Redboot prompt or by doing a reset. The commands to invoke Linux from the Redboot prompt are the same as in the Redboot boot script. The log has been included in Appendix A.

5.11 References

6 Revision History

Table 1 provides a revision history for this application note.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Substantive Changes</th>
</tr>
</thead>
</table>
| 1 | 8/12/2009| Added missing slash to path shown in Example 9, "Modify /etc/exports File."
| | | Added clarification after Example 13, "Connect to tftp server on virtual machine." |
| 0 | 7/2/2009 | Initial release |

Appendix A i.MX51 Bootlog

RedBoot> reset

... Resetting.

++Searching for BBT table in the flash ...

Found version 1 Bbt0 at block 8191 (0x7ffc0000)
Total bad blocks: 0

... Read from 0x07ec0000-0x07f00000 at 0x00080000: ..

... Read from 0x07eb3000-0x07eb4000 at 0x000bf000: .

LAN92xx Driver version 1.1

SMSC LAN9217: ID = 0x117a REV = 0x0

[Warning] FEC not connect right PHY: ID=0001c

FEC: [HALF_DUPLEX] [disconnected] [10M bps]:

... waiting for BOOTP information

Ethernet eth0: MAC address 00:04:9f:00:8d:a0

IP: 192.168.1.xx/255.255.255.0, Gateway: 192.168.1.1

Default server: 0.0.0.0

Reset reason: WDOG reset

fis/fconfig from NAND

Boot switch: UNKNOWN

 NAND: ADDR CYCLES:4: MLC: 128B spare (4-bit ECC):

PAGE SIZE: 2K: BUS WIDTH: 8

RedBoot(tm) bootstrap and debug environment [ROMRAM]

Non-certified release, version FSL 200845 - built 07:05:22, Nov 10 2008

Platform: MX51 3-Stack (Freescale i.MX51 based) PASS 1.1 [x32 DDR]

Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited
RAM: 0x00000000-0x07f00000, [0x00095368-0x07eb1000] available

FLASH: 0x00000000 - 0x80000000, 8192 blocks of 0x00040000 bytes each.

== Executing boot script in 1.000 seconds - enter ^C to abort

RedBoot> fis load kernel

... Read from 0x07ec0000-0x07eff000 at 0x00080000: ..

... Read from 0x00100000-0x002b11d8 at 0x000c0000:

RedBoot> exec -c "noinitrd console=ttymxc0,115200 root=/dev/mtdblock2 rw rootfstype=jffs2 ip=dhcp"

entry=0x90008000, target=0x90008000

Using base address 0x00100000 and length 0x001b11d8

Uncompressing Linux... ..
..
..
........ done, booting the kernel.

Linux version 2.6.26-00238-gb424051-dirty (r62914@sdclx4) (gcc version 4.1.2) #46 PREEMPT Tue Dec 2 12:20:10 CST 2008

CPU: ARMv7 Processor [412fc081] revision 1 (ARMv7), cr=00c5387f
Machine: Freescale MX51 3-Stack Board
Memory policy: ECC disabled, Data cache writeback
CPU0: D VIPT write-back cache
CPU0: cache: 768 bytes, associativity 1, 8 byte lines, 64 sets
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 32512
Kernel command line: noinitrd console=ttymxc0,115200 root=/dev/mtdblock2 rw rootfstype=jffs2 ip=dhcp
MXC IRQ initialized
Building a Linux Image and Downloading onto i.MX Processors Using a Virtual Machine, Rev. 1

Freescale Semiconductor

PID hash table entries: 512 (order: 9, 2048 bytes)
MXC GPT timer initialized, rate = 8000000
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)
Memory: 128MB = 128MB total
Memory: 126128KB available (3360K code, 298K data, 108K init)
SLUB: Genslabs=12, HWalign=32, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
Mount-cache hash table entries: 512
CPU: Testing write buffer coherency: ok
net_namespace: 192 bytes
NET: Registered protocol family 16
CPU is i.MX51 Revision 1.1
MXC GPIO hardware
3-Stack Debug board detected, rev = 0x0200
IRAM READY
Using SDMA I.API
MXC DMA API initialized
SCSI subsystem initialized
CSPI: mxc_spi-0 probed
usbc core: registered new interface driver usbfs
usbc core: registered new interface driver hub
usbc core: registered new device driver usb
MXC I2C driver
MXC HS I2C driver
ASoC version 0.20
MC13892 regulator successfully probed
mc13892 1-0008: Loaded
NET: Registered protocol family 2
IP route cache hash table entries: 1024 (order: 0, 4096 bytes)
TCP established hash table entries: 4096 (order: 3, 32768 bytes)
TCP bind hash table entries: 4096 (order: 2, 16384 bytes)
TCP: Hash tables configured (established 4096 bind 4096)
TCP reno registered
NET: Registered protocol family 1
LPMode driver module loaded
Static Power Management for Freescale i.MX51
PM driver module loaded
usb: Host 1 host (isp1504) registered
usb: DR host (utmi) registered
usb: DR gadget (utmi) registered
JFFS2 version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
msgmni has been set to 246
io scheduler noop registered
io scheduler anticipatory registered
io scheduler deadline registered
io scheduler cfq registered (default)
mxc_ipu mxc_ipu: Channel already uninitialized 9
mxc_sdc_fb mxc_sdc_fb.0: mxcfb: Error initializing panel.
Console: switching to colour frame buffer device 30x20
mxc_sdc_fb mxc_sdc_fb.0: fb registered, using mode <NULL>
mxc_sdc_fb mxc_sdc_fb.1: fb registered, using mode <NULL>
mxc_sdc_fb mxc_sdc_fb.2: fb registered, using mode <NULL>

Serial: MXC Internal UART driver
mxcintuart.0: ttymxc0 at MMIO 0x73fbc000 (irq = 31) is a Freescale MXC
console [ttymxc0] enabled
mxcintuart.1: ttymxc1 at MMIO 0x73fc0000 (irq = 32) is a Freescale MXC
mxcintuart.2: ttymxc2 at MMIO 0x7000c000 (irq = 33) is a Freescale MXC
loop: module loaded

eth%d: SMSC911x MAC Address: 00:04:9f:00:8d:a0

Linux video capture interface: v2.00
MXC Video Output MXC Video Output.0: Registered device video16
Driver 'sd' needs updating - please use bus_type methods
MXC MTD nand Driver 2.5
NAND device: Manufacturer ID: 0xec, Chip ID: 0xd3 (Samsung NAND 1GiB 3,3V 8-bit)
RedBoot partition parsing not available
Creating 5 MTD partitions on "NAND 1GiB 3,3V 8-bit";
0x00000000-0x00100000 : "bootloader"
0x00100000-0x00600000 : "nand.kernel"
0x00600000-0x08600000 : "nand.rootfs"
0x08600000-0x18600000 : "nand.userfs1"
0x18600000-0x40000000 : "nand.userfs2"
Initializing USB Mass Storage driver...
usbccore: registered new interface driver usb-storage
USB Mass Storage support registered.

MXC keypad loaded

clk: Unable to get requested clock: kpp_clk

input: mxckpd as /class/input/input0

mxc_rtc mxc_rtc.0: rtc core: registered mxc_rtc as rtc0

i2c /dev entries driver

MXC WatchDog Driver 2.0

clk: Unable to get requested clock: wdog_clk

MXC Watchdog # 0 Timer: initial timeout 60 sec

clk: Unable to get requested clock: scc_clk

SCC2: Driver Status is OK

Sahara base address: 0xfc2f8000

Sahara HW Version is 0x00000000

Sahara HW Version was not expected value.

Sahara going into cleanup

VPU initialized

Registered led device: pmic_ledsr

Registered led device: pmic_ledsg

Registered led device: pmic_ledsb

Advanced Linux Sound Architecture Driver Version 1.0.16.

DMA Sound Buffers Allocated: UseIram=1 buf->addr=1ffe9000 buf->area=c88b8000 size=24576

DMA Sound Buffers Allocated: UseIram=1 buf->addr=97e58000 buf->area=fdf2d000 size=24576

asoc: wm8903-hifi-dai <-> imx-ssi-3 mapping ok

wm8903-i2c 1-001a: WM8903 revision 0

ALSA device list:
#0: i.MX_3STACK (WM8903)

TCP cubic registered

NET: Registered protocol family 17

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

ieee80211: 802.11 data/management/control stack, git-1.1.13

ieee80211: Copyright (C) 2004-2005 Intel Corporation <jketreno@linux.intel.com>

VFP support v0.3: implementor 41 architecture 3 part 30 variant c rev 2

input: mxc_ts as /class/input/input1

mxc input touchscreen loaded

mxc_rtc mxc_rtc.0: setting system clock to 1970-01-01 00:00:00 UTC (0)

eth0: SMSC911x/921x identified at 0xc881e000, IRQ: 256

eth0: link down

Sending DHCP requests .<6>eth0: link up, 100Mbps, full-duplex, lpa 0x45E1

., OK

IP-Config: Got DHCP answer from 0.0.0.0, my address is 192.168.1.xy

IP-Config: Complete:

device=eth0, addr=192.168.1.xy, mask=255.255.255.0, gw=192.168.1.254,

host=192.168.1.xy, domain=ap.freescale.net, nis-domain=(none),

bootserver=0.0.0.0, rootserver=0.0.0.0, rootpath=

JFFS2 doesn't use OOB.

VFS: Mounted root (jffs2 filesystem).

Freeing init memory: 108K

init started: BusyBox v1.6.1 () multi-call binary

starting pid 939, tty ":\'/etc/rc.d/rcS"
Setting the hostname to freescale
Mounting /proc and /sys
Starting the hotplug events dispatcher udevd
Synthesizing initial hotplug events
Mounting filesystems
Rootfs is read-only, mounting rw filesystem
mount: mounting usbfs on /proc/bus/usb failed
Starting syslogd and klogd
Setting up networking on loopback device:

Warning: no IPADDR is set, please set this from the ltib config screen, or directly in /etc/rc.d/rc.conf.
IP address setup bypassed

Starting inetd:
Starting the dropbear ssh server:
modprobe: cannot parse modules.dep
starting pid 1897, tty ': /sbin/getty'
JFFS2 doesn't use OOB.

arm-none-linux-gnueabi-gcc (GCC) 4.1.2
root filesystem built on Wed, 19 Nov 2008 11:17:02 +0800
Freescale Semiconductor, Inc.

freescale login: bt_fd is 4
bind: No such file or directory
DeviceManager: no battery device
CHIP_TYPE=IMX 51
modprobe: cannot parse modules.dep

arm-none-linux-gnueabi-gcc (GCC) 4.1.2
root filesystem built on Wed, 19 Nov 2008 11:17:02 +0800
Freescale Semiconductor, Inc.

freescale login: root

BusyBox v1.6.1 () Built-in shell (ash)
Enter 'help' for a list of built-in commands.

root@freescale ~$
How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200380 (English)
+49 89 92103 559 (German)
+33 1 69 36 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3875
Rev. 1
08/2009

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc., in the U.S. and other countries. All other product or service names are the property of their respective owners. Screenshots of VMware Player and the VMware website are used with permission of VMware, Inc., copyrights © 2009 VMware, Inc. VMware, VMware Player, and the VMware logo are registered trademarks or trademarks of VMware, Inc., in the United States and/or other jurisdictions. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The ARM Powered Logo is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2009. All rights reserved.