
Freescale Semiconductor
Application Note

Document Number: AN3904
Rev. 0, 08/2009

Contents

Introduction . 1
1.1 Objective . 1
1.2 Definition of the SPI. 1
Description of the SPI module . 2

2.1 SPI module in MPC5121e . 2
2.2 Serial peripheral interface register list 3
2.3 Signal description and connection scheme 6
Initialization . 7

3.1 PIN muxing . 7
3.2 IPS bus . 8
3.3 MCLK frequency . 8
3.4 Data polling, interrupts, and DMA 9
3.5 PSC and FIFOC initialization. 10
3.6 Interrupt initialization . 15
3.7 Direct memory access. 17
Modes of operation . 19

4.1 SPI configuration . 19
4.2 Master mode . 21
4.3 Slave mode . 24
4.4 Interrupt mode . 26
4.5 DMA mode. 32
References . 36

MPC5121e Serial Peripheral
Interface (SPI)
by: Pavel Bohá ik

Rožnov Czech System Center
Czech Republic

č
1 Introduction
The purpose of this application note is to describe the
serial peripheral interface bus controller (SPI)
implemented on Freescale’s MPC5121e microcontroller.
It describes how to configure and use the programmable
serial controller (PSC) and PSC centralized FIFO
controller (FIFOC) in all supported SPI modes.

1.1 Objective
The objective of this application note is to describe the
necessary steps needed to initialize and configure PSC in
the SPI mode at all supported modes.

1.2 Definition of the SPI
The Serial Peripheral Interface (SPI) protocol is
asynchronous serial data standard, primarily used to
allow a microprocessor to communicate with other
microprocessors or ICs such as memories, liquid crystal

1

2

3

4

5

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Description of the SPI module
diodes (LCD), analog-to-digital converter subsystems, etc.

The SPI is a very simple synchronous serial data, master/slave protocol based on four lines:
• Clock line (SCLK)
• Serial output (MOSI)
• Serial input (MISO)
• Slave select (SS)

Every SPI system consists of one master and one or more slaves, where a master initiates the
communication by asserting the SS line. When a slave device is selected, the master starts clocking out the
data through the MOSI line to the selected slave device. The master sends and receives one bit for every
clock edge. One byte can be exchanged in eight clock cycles. The master finishes communication by
de-asserting the SS line.

The SPI is a primitive protocol without an acknowledgement mechanism for checking received or sent
data. For safe communication, a flow control has to be implemented in the communications protocol on s
a higher level.

2 Description of the SPI module

2.1 SPI module in MPC5121e
The MPC5121e PSC module in SPI mode is capable of master and slave mode as well. The MPC5121e
has a centralized FIFO controller that contains data to be transmitted plus the received data for all twelve
PSC modules. FIFO is divided into twenty-four slices. For each PSC module, one Tx and one Rx FIFO
space is available. The size of each memory slice is fully user-programmable, depending on the free FIFO
space. The FIFO slice is able to allocate maximum available memory but the user has to prevent overlay
of the individual slices in the memory. The available memory space for all slices together is 32b × 1024
(4 KB).
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor2

Description of the SPI module
Figure 1. MPC5121e PSC and FIFOC module system interconnection

The PSC requests new data if the Tx shift register is empty or writes Rx data to FIFOC if the Rx shift
register is full. This communication is independent of external interrupt or request signals. To make sure
the transfer is successful and avoid an overrun/underrun event, both transceiver and receiver must be
always enabled and the core/DMA must make sure that the data slices or Tx or Rx shift registers never
become full/empty.

2.2 Serial peripheral interface register list
The PSC and FIFOC available in the MPC5121e use these registers for self-configuration and for
communication with the connected device. The register address is calculated as the base address for the
relevant PSC plus the offset value. Table 1 shows the register list related to the PSC and Table 2 shows the
register list related to the FIFOC.

For further information and detail on these registers see these chapters in Freescale document
MPC5121ERM, MPC5121e Microcontroller Reference Manual:

• Chapter 30, “Programmable Serial Controller”
• Chapter 31, “PSC Centralized FIFO Controller”

Interrupt
controller

DMA2
engine

Core

Interrupt
control
logic

IPS bus

Memory
interface

logic

Interface control logic

Configuration
register

FIFOC

Internal Memory — 4 KB

PSC0 Tx FIFO slice

PSC0 Rx FIFO slice
PSC1 Tx FIFO slice

PSC1 Rx FIFO slice

PSC9 Tx FIFO slice
PSC9 Rx FIFO slice

.

.

.

IP
B

 in
te

rf
ac

e
Internal clock source

External

Interrupt
control
logic

Internal
channel
control
logic

Serial
communications

channel

Programmable
Tx/Rx clock
generation clock source

SCLK

SS
MOSI
MISO

PSC 0..11
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 3

Description of the SPI module
Table 1. Register list — PSC

Dress Register Name Description

Base Address + 00 Mode Register 1 (MR1) Controls configuration

Base Address + 00 Mode Register 2 (MR2) Controls configuration

Base Address + 04 Status Register (SR) Status of PSC

Base Address + 04 Clock Select Register (CSR) Default

Base Address + 08 Command Register (CR) Provides commands to the PSC

Base Address + 0C Rx Buffer Register (RB) Reads data directly from the Rx shift register

Base Address + 0C Tx Buffer Register (TB) Writes data directly from the Tx shift register

Base Address + 10 Input Port Change Register (IPCR) Default

Base Address + 10 Auxiliary Control Register (ACR) Default

Base Address + 14 Interrupt Status Register (ISR) Status for all potential interrupt sources

Base Address + 14 Interrupt Mask Register (IMR) Selects corresponding bits in the ISR that
cause an interrupt

Base Address + 18 Counter Timer Upper Register (CTUR) Together with CTLR affects delay after transfer

Base Address + 1C Counter Timer Lower Register (CTLR) Together with CTUR affects delay after
transfer

Base Address + 20 Codec Clock Register (CCR) Define DSCKLL delay and SPI baud rate

Base Address + 24 AC97 Slots Register (AC97Slots) Default

Base Address + 28 AC97 Command Register (AC97CMD) Default

Base Address + 2C AC97 Status Data Register
(AC97Data)

Default

Base Address + 30 Reserved Default

Base Address + 34 Input Port Register (IP) Default

Base Address + 38 Output Port 1 Bit Set (OP1) Default

Base Address + 3C Output Port 0 Bit Set (OP0) Default

Base Address + 40 Serial Interface Control Register
(SICR)

Sets the main operation mode
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor4

Description of the SPI module
Table 2. Register list — FIFOC

Address
Register Name Description

11…8 7…0

Base
Address +
0x0n
(n = PSC
number)

0x80 Command register for PSCn Tx slice —
PSCn_Tx_CMD

Provides commands to the FIFOC

0x84 Alarm level for PSCn Tx slice —
PSCn_Tx_ALARM

Defines alarm level

0x88 Status register for PSCn Tx slice —
PSCn_Tx_SR

Shows internal status of the FIFO slice

0x8C Interrupt status register for PSCn Tx slice —
PSCn_Tx_ISR

Status of all potential interrupts

0x90 Interrupt mask register for PSCn Tx slice —
PSCn_Tx_IMR

Selects corresponding bits in the ISR that
cause an interrupt

0x94 FIFO count for PSCn Tx slice —
PSCn_Tx_COUNT

Number of bytes in the FIFO

0x98 FIFO pointer for PSCn Tx slice —
PSCn_Tx_POINTER

Reads or modifies pointer in the FIFO
slice

0x9C FIFO size register for PSCn Tx slice —
PSCn_Tx_SIZE

Sets start address and size of the FIFO
slice

0xBC FIFO data register for PSCn Tx slice —
PSCn_Tx_DATA

FIFO data register

0xC0 Command register for PSCn Rx slice —
PSCn_Rx_CMD

Provides commands to the FIFOC

0xC4 Alarm level for PSCn Rx slice —
PSCn_Rx_ALARM

Defines alarm level

0xC8 Status register for PSCn Rx slice —
PSCn_Rx_STAT

Shows internal status of the FIFO slice

0xCC Interrupt status register for PSCn Rx slice —
PSCn_Rx_INTSTAT

Status of all potential interrupts

0xD0 Interrupt mask register for PSCn Rx slice —
PSCn_Rx_INTMASK

Selects corresponding bits in the ISR that
cause an interrupt

0xD4 FIFO count for PSCn Rx slice —
PSCn_Rx_COUNT

Number of bytes in the FIFO

0xD8 FIFO pointer for PSCn Rx slice —
PSCn_Rx_POINTER

Reads or modifies pointer in the FIFO
slice

0xDC FIFO size register for PSCn Rx slice —
PSCn_Rx_SIZE

Sets start address and size of the FIFO
slice

0xFC FIFO data register for PSCn Rx slice —
PSCn_Rx_DATA

FIFO data register

Base Address + 0xF00 FIFO command Default

Base Address + 0xF04 FIFO interrupt status Shows all PSCs with currently pending
interrupts
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 5

Description of the SPI module
2.3 Signal description and connection scheme
The serial peripheral interface bus has four external lines, described in Table 3. Figure 2 shows how the
slave device is connected to the master in the single master, single slave SPI implementation. Figure 3
shows single master, multiple slave SPI implementations. Multiple slave SPI implementation is not
supported by the MPC5121e without additional external hardware.

Figure 2. Single master, single slave SPI implementation

Base Address + 0xF08 FIFO DMA request Shows all PSCs with currently pending
requests

Base Address + 0xF0C FIFO AXE request Default

Base Address + 0xF10 FIFO debug Default

Table 3. Signal description

Signal Description

SCLK Serial clock signal with direction from master to slave device.

MOSI/SIMO Master-out/slave-in signal for data transmission from master to slave in 8-bit, 12-bit, 16-bit,
20-bit, 24-bit, or 32-bit width (output from master).

MISO/SOMI Master-in/slave-out signal for data transmission from slave to master in 8-bit, 12-bit, 16-bit,
20-bit, 24-bit, or 32-bit width (output from slave).

SS Slave select signal, initiated by master to select slave device.

Table 2. Register list — FIFOC (continued)

Address
Register Name Description

11…8 7…0

Master Slave

SCLK

MOSI

MISO

SS
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor6

Initialization
Figure 3. Multiple slave SPI implementations

3 Initialization
To assure proper PSC-SPI module functionality, each module must be initialized before usage. When
initializing the PSC-SPI module, the user must obey these instructions.

3.1 PIN muxing
External signals of the MPC5121e are grouped (for a pinout diagram showing pin numbers and a listing
of all the electrical and mechanical specifications, refer to Freescale document MPC5121e, MPC5121e
Data Sheet, at www.freescale.com). Any functionality which is not the primary function is multiplexed.
For more detail see Freescale document MPC5121ERM, MPC5121e Microcontroller Reference Manual,
chapter 3, “Signal Descriptions.”

When the user wishes to use MPC5121e and its PSCn pins, it is necessary to set up I/O control registers.
The I/O control block controls the functional muxing and configuration of the pads. Configurable
parameters include slew rate, Schmitt-trigger input, internal pulldown/pullup, and PCI hold timing.

For proper initialization it is necessary to set up I/O control GP and PAD registers.

For further information on how to set up these registers see these chapters in Freescale document
MPC5121ERM, MPC5121e Microcontroller Reference Manual:

• Chapter 3, “Signal Descriptions”
• Chapter 22, “IO Control”

Master Slave 1

Slave 2

Slave 3

SCLK

MOSI

MISO

SS

SCLK

MOSI

MISO

SS1

SS3

SCLK

MOSI

MISO

SS

SCLK

MOSI

MISO

SS

SS2
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 7

Initialization
3.2 IPS bus
When setting up a system with the MPC5121e, proper clocking must be assured. One of the important
clock sources is the IPS bus clock (IPS_CLKFrequency). The IPS bus clock is used as a source for the clock
generation unit CSR and CT registers. This clock can be as high as 83 MHz.

3.3 MCLK frequency
Each PSC can select from multiple clock sources. A single clock input is provided that allows the
PSC_MCLK_IN to be used as a master clock reference by all PSCs. The MCLK frequency source is the
main clock source which is used as the peripheral clock source. Figure 4 shows the circuit which is
replicated for each PSC individually.

Many peripheral clocks may be disabled to reduce power consumption in the system clock control register
(SCCR1, SCCR2). If the user wishes to operate PSC in the SPI mode, the user must enable clocks for the
related PSC and FIFOC in the SCCR1 register.

When PSC and FIFOC clocks are enabled, it is necessary to set up the PSCn clock control (PnCCR)
register, which controls:

• PSCn MCLK divider ratio (PSCn_MCLK_DIV) — the divider determines the FMCLK_Out
frequency, which is used for example for calculating the SPI clock (SCLK) frequency. This value
can only be changed when the value of MCLK_EN = 0. Two examples of the FMCLK_Out are
mentioned in Equation 1 and Equation 4.

• PSCn MCLK divider enable (MCLK0_EN) — enable/disable PSCn divider
• PSCn MCLK divider source (PSCn_MCLK_0_SRC) — define MCLK divider source (SYS_CLK,

REF_CLK, PSC_MCLK_IN, SPDIF_TxCLK)
• PSCn MCLK source (PSCn_MCLK_1_SRC) — define MCLK source (MCLK_DIV,

SPDIF_RxCLK)

PnCCR register sets all parameters shown in Figure 4.

Figure 4. PSC (MCLK) clock generation

Equation 1 and Equation 2 show the calculation of a 1 MHz SCLK frequency derived from the SYS_CLK
frequency.

MCLK_EN

REF_CLK

MCLK_DIV

PSC_MCLK_OUT

MCLK_1_SRC

SPDIF_TXCLK SPDIF_RXCLK

MCLK_0_SRC

PSC_MCLK_IN

SYS_CLK MCLK_DIV

Clock
gate
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor8

Initialization
Eqn. 1

Eqn. 2

CAUTION
IPS frequency must be greater than or equal to PSC_MCLK_OUT
frequency.

The maximum SCLK frequency for SYS_CLK input frequency can be easily calculated as 20 MHz — see
Equation 3 and Equation 4.

Eqn. 3

Eqn. 4

NOTE
The PSC:CCR register contains BCLKDiv (bit clock divider) information.
Note that BCLKDiv bytes in CCR register are swapped.

NOTE
Minimum BCLKDiv for SPI mode equals 3.

3.4 Data polling, interrupts, and DMA
The user can chose how to get the data from the memory to the FIFOC slice or how to put data in the
memory from the FIFOC slice. The user can also choose between active polling, interrupts, and DMA. The
main differences, advantages, and disadvantages are:

• Active polling mode — core periodically checks status of Tx and Rx FIFO slices and writes data
to Tx FIFO slice or reads data from Rx FIFO slice.
Disadvantages — core loading, FIFO slice status does not show the actual status of the serial shift
registers due to a small delay (a few processor ticks). It can happen that data is received in the Rx
shift register and Rx FIFO slice shows as empty. This can cause small difficulties at the end of the
communication.

• Interrupt mode — lower core loading compared to active polling mode. The core is not used for
periodical status checks of the Tx and Rx FIFO slices, but it is used for handling interrupt events
(sending and receiving data). The number of interrupts depends on the user application. Usage of
FIFOC alarm level interrupts can decrease the number of requested interrupts.

• DMA mode — the lowest core loading compared with active polling or interrupt mode. DMA is
used for transfer data (array) from memory to the FIFO slice. The DMA engine takes care of the
FIFOC status as well. The core is used to start Rx and Tx DMA tasks and to handle interrupts
signaling the end of transfer.

PSC_MCLK_OUT SYS_CLK
MCLK_DIV 1+
-------------------------------------- 400 MHz

5 1+
-----------------------= 66.67 MHz IPS_CLK (83 MHz)≤= =

SCLKFrequency
PSC_MCLK_OUT

BCLK_DIV 1+
--- 66.67 MHz

66 1+
--------------------------- 0.995 MHz===

PSC_MCLK_OUT SYS_CLK
MCLK_DIV 1+
-------------------------------------- 400MHz

4 1+
--------------------- 80MHz IPS_CLK 83MHz()≤≡= =

SCLKFrequency
PSC_MCLK_OUT

BCLK_DIV 1+
--- 80MHz

3 1+
------------------ 20MHz= = =
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 9

Initialization
Disadvantages — end of frame mode is not supported in DMA mode. The last data packet has to
be sent using polling or interrupt mode. All data has to be pre-prepared in the array/buffer before
the DMA transfer starts.

The following sections show how to initialize each one of these modes.

3.5 PSC and FIFOC initialization
The MPC5121e has a centralized FIFO controller that contains data to be transmitted plus received data
for all twelve PSC modules. The FIFO is divided into twenty-four slices. For each PSC module, one Tx
and one Rx FIFO space is available. The size of each memory slice is fully user-programmable, depending
on the free FIFO space. The FIFO slice is able to allocate maximum available memory but the user has to
prevent overlay of the individual slices in the memory. The available memory space for all slices together
is 32b × 1024 (4 KB).

If the user wishes to transfer data with the use of the SPI, then the programmable serial controller must be
initialized in SPI mode and the FIFOC must be initialized as well.

3.5.1 PSC initialization

Several steps are necessary for proper initialization of the PSC module in the SPI mode. These steps have
to be done in the proper sequence as shown in Figure 5 (master) and Figure 6 (slave).

1. Disable receiver and transmitter — disable the Tx and Rx part in the PSC-CMD configuration
register, if the PSC was enabled earlier.

2. Set the main operation mode — set the main operation mode in the Serial Interface Control
Register (SICR). For details see Table 4.

3. Define the delay before SCLK (DSCKLL) (not required for slave mode) — when the PSC is in SPI
mode (SICR[SPI] = 1), the FrameSyncDiv divider is used to determine the length of time the PSC
delays after SS goes low/active before the first SCKL transition of the serial transfer. The delay
before SCKL depends on the connected slave device. The delay before SCKL (DSCKLL) can for
example be set to 0.5 μs. Equation 5 determines the actual delay before SCKL and an example of
the calculation as well.

Eqn. 5

4. Define the divider for the bit clock generation (not required for slave mode) — in SPI master mode,
the bit clock frequency BCLK (SCKL) is generated by dividing the MCLK frequency. In addition
to the BCLK generation, the DSCLK delay and the DTL delay must be defined. SCKL is generated
internally by dividing the MCLK frequency, as determined by Equation 6. This equation contains
the example for SCKLFrequency = 1 MHz.

Eqn. 6

DSCKLDelay
FrameSyncDiv 1+

MCLKFrequency
--- 32 1+

66.6 106×
------------------------- 0.5μs= = =

SCKFrequency
MCLKFrequency

BCLKDiv 1+
-------------------------------------- 66.6 106×

66 1+
------------------------- 0.99MHz= = =
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor10

Initialization
NOTE
PSC:CCR register contains BCLKDiv (bit clock divider) information. Note
that BCLKDiv bytes in the CCR register are swapped.

5. Set delay after transfer (not required for slave mode) — the delay between consecutive transfers is
created by dividing the IPS_CLK clock frequency. The delay after transfer is usually set to 2 μs.
Equation 7 determines the actual delay after transfer.

Eqn. 7

where
CT[0:7] = CTUR[0:7]
CT[8:15] = CTLR [0:7]

6. Reset mode registers PSC-MR1 and PSC-MR2 — mode register 1 and mode register 2 must be set
to 0 before SPI communication.

7. Enable receiver and transmitter — enable the Tx and Rx part in the PSC-CMD register.
Table 4. Serial interface control register used in SPI mode

SICR bitfield Description

SHDIR Shift direction

SIM PSC operation mode (8-bit, 16-bit, and 32-bit mode is supported in SPI)

GenClk Generate bit clock and FrameSync — this bit must be set to enable the SPI master mode
and must be cleared to enable SPI slave mode.

ClkPol Bit clock polarity

SPI PSC behaves like an SPI

MSTR SPI master mode
Takes effect only when bit SICR[SPI] equals 1. Also, the GenClk bit must be set to enable
the clock generation behavior of the SPI master mode.
MSTR bit is used to define master or slave SPI mode.

CPOL SPI clock polarity
Takes effect only when bit SICR[SPI] equals 1. This bit selects an inverted or non-inverted
SPI clock.

CPHA SPI clock phase
This bit is used to shift the SCKL serial clock.

UseEOF Use end-of-frame flag
Takes effect only when bit SICR[SPI mode] equals 1. Multiple bytes are transferred while
maintaining SS low, up to and including the next byte read from the Tx FIFO that has its
EOF flag set.

EN_OutBuf Enable output buffer
The output logic can be enabled by setting this bit or by the Command Register (CR). After
setting this bit, the internal generated signals are visible on the output of the device.

DTL CT 2+
IPS_CLKFrequency
--- 3

MCLKFrequency
-------------------------------------- 132 2+

66.6 106×
------------------------- 2μs= = = =
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 11

Initialization

Figure 5. PSC SPI master initialization
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor12

Initialization
Figure 6. PSC SPI slave initialization

3.5.2 FIFOC initialization

Several steps are necessary for proper initialization of the FIFOC module as well. These steps have to be
done in the proper sequence as shown in Figure 8. For a better understanding of the process of setting
FIFOC parameters, see Figure 7.

1. Set the start address for Tx/Rx FIFO slice — PSC-FIFOC:Size register defines the start address for
the transmitter’s and receiver’s FIFO slices. The user must take care not to allow overlap in the
memory areas to appear. The start address of the FIFO memory is 0x0. The PSC, CPU, and DMA
can access this memory, but it is reserved for the PSC’s FIFO, and users cannot store their own data
or code there.

2. Set the size for Tx/Rx FIFO slice — PSC-FIFOC:Size register defines the size of the FIFO slice as
well. Several slices can be located in the FIFO memory area. User software defines the size of the
FIFO slices depending on the usage current slice.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 13

Initialization
NOTE
The allocated area does not depend on the defined transfer mode — in other
words, it does not depend on whether 8-, 16-, or 32-bit data will be stored in
the FIFO slice. When the user defines the size of the slice, always define n
× 32-bit words.

3. Set an alarm level for the Tx/Rx FIFO slice — the alarm level defines the number of data bytes in
the FIFO when the alarm status appears. For the Tx FIFO area, the alarm status appears if the
amount of data in the Tx FIFO is below this alarm level. For the Rx FIFO area, the alarm status
appears if the amount of data in the Rx FIFO is above this alarm level. The alarm level and the
request lines deassert if the amount of data crosses this level again.

4. Reset Tx/Rx FIFO slice — The reset FIFO slice command mainly clears all data in the FIFO slice
and resets the slice’s internal pointer. It also clears the underrun, overrun, and memory access error
bits.

NOTE
If the reset FIFO slice command is used, then the FIFO slice becomes
disabled.

5. Enable Tx/Rx FIFO slice — Enable FIFO slice command enables the slice. The FIFO controller
provides the data for the transmitter and stores the data from the receiver. If the size of the FIFO
slice is zero, it is not possible to enable the FIFO.

Figure 7. FIFOC setting parameters

NOTE
For better debugging of user code, the internal pointer register FIFOC:PTR
is very useful. This register shows the current write and read positions in the
FIFO memory without the offset for the slice number, and is writable in
debug mode.

FIFO 32-bit × 1024

Tx alarm level

Tx FIFO slice

Rx alarm level

Rx FIFO slice

Tx FIFO slice

Rx FIFO slice

Tx slice — start address

Rx slice — start address = 0x0
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor14

Initialization
Figure 8. FIFOC SPI initialization

For further information on how to set up FIFOC and PSC in the SPI mode see these chapters in Freescale
document MPC5121ERM, MPC5121e Microcontroller Reference Manual:

• Chapter 30, “Programmable Serial Controller”
• Chapter 31, “PSC Centralized FIFO Controller”

3.6 Interrupt initialization
If the user wishes to use interrupts instead of polling mode, then the ability to pass external interrupts to
the core must be enabled. The user must also enable interrupt from the FIFO controller in the internal
programmable interrupt controller (IPIC). Specific interrupt sources must be enabled in the Interrupt Mask
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 15

Initialization
register (IMR) in the FIFO controller. Figure 9 shows that initial sequence. The interrupts are used to
detect:

• MEM ERROR — memory access error (access to the data register)
• DATA READY — data ready status
• ORERR — overrun error
• URERR — underrun error
• ALARM — FIFO alarm
• FULL — FIFO full
• EMPTY — FIFO empty

Interrupts are enabled by writing one to the proper position in the interrupt mask register in the FIFO host
controller and also in the IPIC.

Figure 9. SPI interrupt mode initialization

For an example and description of how to use SPI in the interrupt mode, see Section 4.4, “Interrupt mode.”

For further information on how to enable and handle interrupts, see these chapters in Freescale document
MPC5121ERM, MPC5121eMicrocontroller Reference Manual:

• Chapter 20, “Integrated Programmable Interrupt Controller”
• Chapter 30, “Programmable Serial Controller”
• Chapter 31, “PSC Centralized FIFO Controller”
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor16

Initialization
3.7 Direct memory access
If the user wishes to use direct memory access (DMA) instead of polling mode or interrupt mode, several
steps are necessary for proper DMA task initialization. These steps are given in the section below and in
Figure 10 as well.

• Enable external interrupts to be passed to the core.
• Enable interrupt from the DMA2 in the internal programmable interrupt controller (IPIC) and

enable the request to the DMA engine in the IPIC:SIMSR register. The FIFO controller generates
a request for this slice to the DMA engine if this slice is enabled and the current data pointer reaches
the alarm level.

• Fill the transfer control descriptor (TCD). Each DMA channel requires a 32-byte transfer control
descriptor for defining the desired data movement operation.

• Clear the specified channel’s DONE bit in its TCD. The DMACDNE register provides a simple
memory-mapped mechanism to perform this operation.

• Enable the specific interrupt sources in the TCD (TCDn-Word 7, INT_Maj) in the DMA module.
It enables an interrupt when major iteration count completes. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the DMAINT register when the
current major iteration count reaches zero.

DMA initialization is shown in Figure 10.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 17

Initialization
Figure 10. SPI DMA mode initialization

For further information on how to enable interrupts and handle interrupts and enable DMA see these
chapters in Freescale document MPC5121ERM, MPC5121eMicrocontroller Reference Manual:

• Chapter 11, “Direct Memory Access”
• Chapter 20, “Integrated Programmable Interrupt Controller”
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor18

Modes of operation
• Chapter 30, “Programmable Serial Controller”
• Chapter 31, “PSC Centralized FIFO Controller”

4 Modes of operation
This section describes the operation of the SPI, focusing on:

• Features
— PSC bit width
— End of frame mode
— Bit clock polarity, clock phase and polarity
— Shift direction

• Mode of operation
— Polling mode (master and slave)
— Interrupt mode (master and slave)
— DMA mode (master and slave)

 All PSCs operates in master and slave mode and support a full duplex SPI mode. Master and slave modes
support polling, interrupt, and DMA mode as well. For the proper functionality perform the steps given in
Section 4.1, “SPI configuration,” Section 4.2, “Master mode,” Section 4.3, “Slave mode,” and Section 4.4,
“Interrupt mode.”

4.1 SPI configuration

4.1.1 PSC operation mode

All PSCs support 8-, 16-, and 32-bit PSC operational mode for SPI mode. Also 12-, 20-, and 24-bit PSC
operational modes are supported for SPI mode. When 20-bit operational mode is used, the user writes
32-bit data to the Tx FIFO slice. The SPI module sends the first 20 bits only — the second part of the word
is cut. A similar situation occurs when the 12-bit or 24-bit PSC operational mode is used.

NOTE
When 8-bit operational mode is selected and 32-bit data is written to the Tx
FIFO slice, the SPI module sends this data in 4 × 8-bit packets. When
4 × 8-bit data is received by the Rx FIFO slice, the user may use 32-bit read
access to read data in one command. When 5 × 8-bit data is received, the
user has to avoid FIFO slice underrun and may use 32-bit read access once
only. The rest of the data may be read by 8-bit access.

CAUTION
When the operating mode is changed, all Rx/Tx and error statuses are reset.
Rx and Tx are disabled.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 19

Modes of operation
4.1.2 End of frame mode

EOF mode is supported to enable the user to transfer an increased quantity of data in one frame. When
using EOF mode the PSC reads data out of the Tx FIFO, the SS signal is driven low (asserted), and the SPI
continues to transmit. The last data of the frame is sent when the EOF flag is set. This presence of the EOF
flag shows that the last data in the frame has been reached. The EOF flag is set before the last data is written
to the Tx FIFO slice. The FIFO controller automatically sends this information to the Tx shift register and
stops the transfer after the data is sent.

EOF mode should not be used for single data transfers, and is limited by data packages which must be
bigger than the chosen codec size. When using EOF mode, the next data EOF frame flag should not be
used to toggle the SS signal after every individual transfer. If the SPI is used to transmit data packages in
single codec size packages, the useEOF bit in the SICR register should be cleared (0), and the value of the
SICR[SIM] field should be set for the appropriate data transfer size.

4.1.3 Bit clock polarity, clock phase and polarity

It is possible to select the SPI bit clock polarity, SPI clock polarity and SPI clock phase in which the data
shift actually occurs. These selections are performed by ClkPol, CPOL and CPHA bits located in the serial
interface control (SICR) register.

CPOL — this bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the
SPI modules must have identical CPOL values.

CPHA — this bit is used to shift the SCKL serial clock. To transmit data between SPI modules, the SPI
modules must have identical CPHA values.

A master/slave pair must use the same parameter values to communicate. For detailed information see
Table 5.

4.1.4 Shift direction

The SPI support MSB and LSB shift direction. This direction can be set by the SHDIR bit in the SICR
register. For more detail see Table 6.

Table 5. Possible configuration of bit clock polarity, clock phase and polarity

Parameter Value Description

ClkPol
0 Data in is sampled on the falling edge of the BCLK and data out is shifted on the rising edge

1 Data in is sampled on the rising edge of the BCLK and data out is shifted on the falling edge

CPOL
0 Active-low clocks selected; SCKL idles high

1 Active-high clocks selected; SCKL idles low

CPHA
0 Data transfer starts with assertion of SS

1 Data transfer starts with the first edge of SCKL
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor20

Modes of operation
CAUTION
The bit clock polarity PSC-SICR[ClkPol] has to be set to 0 when PSC
behaves as an SPI device. Bit clock polarity is used for other protocols of
the codec mode.

4.2 Master mode
In master mode (SICR[MSTR] = 1), the SPI provides the serial clock on the SCLK pin for the entire serial
communication network. Data is output on the MOSI pin and latched from the MISO pin. The CCR
register determines both transmit and receive bit transfer rates for the network.

Data written to the FIFOC[Tx DATA] register initiates data transmission on the MOSI pin, when the
transmission is enabled. Simultaneously, received data is shifted through the MISO pin into the PSC[RB].
When the selected number of bits has been transmitted, the received data is transferred to the FIFOC where
the user can use the FIFOC[Rx DATA] register for reading this data.

When the specified number of data bits has been shifted through FIFOC[Tx/Rx DATA], the following
events occur:

1. FIFOC data register FIFOC[Data] transfers data to/from PSC’s transfer/receiver buffer
PSC[TB/RB].

2. FIFOC pointer register FIFOC[PTR] is changed.
3. FIFOC counter register FIFOC[Tx and Rx Count] is changed.

4.2.1 SPI transfer in active polling master mode

It is recommended to use interrupt mode or DMA mode to service SPI data requests, instead of the polling
mode. The status byte returned on the Tx/Rx FIFO SR register can be polled at a given rate after strobing
the transmitter or receiver, to see if there is free space for more bytes in the Tx slice or more bytes to read
form the Rx slice. If the user wishes to use the polling mechanism to service an SPI data request, then the
user is advised to use SR[Empty] or SR[ALARM] instead of SR[FULL]. When SR[FULL] is used, an
overrun may occur.

NOTE
The PSC will not write to a full FIFO, so as to avoid data loss. Therefore a
PSC access can’t generate an ORERR situation. To see an ORERR event
during a PSC transmission the SW must check the ORERR bit in the PSC
ISR register.

The master SPI communication in the polling mode is summarized in Figure 11 and in the following
paragraphs:

Table 6. Possible configuration shift direction

Parameter Value Description

SHDIR
0 MSB first

1 LSB first
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 21

Modes of operation
Emptying Tx FIFO and filling of Rx FIFO occurs simultaneously in master and in slave.
1. Clock initialization — see Section 3.2, “IPS bus” and Section 3.3, “MCLK frequency.”
2. PSC master initialization — see Section 3.5.1, “PSC initialization.”
3. FIFOC initialization — see Section 3.5.2, “FIFOC initialization.”
4. If EOF mode is used, then the EOF flag has to be set. This flag defines the next data written to the

data register as the last in this frame.
5. The user application writes data to the Tx FIFO data register.
6. Test if the Rx FIFO slice is empty. If the Rx FIFO slice contains data then this data has to be read

by the application.
7. Before sending the next set of data to the Tx FIFO, test if the Tx FIFO slice’s ALARM is reached.

If the ALARM level is reached then you cannot send any data to the Tx FIFO, due to the possibility
of overflow.

8. If you want send more data, then go to step 4; otherwise continue to step 9.
9. There is a possibility that the Tx FIFO contains some data which has to be sent out to the SPI shift

register. You have to test if the Tx FIFO slice is empty or contains data waiting for transfer. If the
Tx FIFO slice contains data then you have to wait. An Rx FIFO slice overflow may occur in this
wait time, and you have to test if the Rx FIFO slice is empty in this wait time.

10. When step 7 goes to step 8, then the Tx FIFO slice does not contain any data. However, we have
to count with the delay (a few processor ticks) between the Tx/Rx FIFO slices and the Tx/Rx shift
register in the SPI module. There are a few possible ways to do this. The simplest way to cover it
is to compare the amount of transmitted data and amount of received data. This is why polling
mode is not recommended for SPI mode.

NOTE
In SPI master mode the PSC controls the serial data transfers. If the Tx FIFO
becomes empty (underrun) or the Rx FIFO becomes full (overflow) in the
middle of a multi-byte transfer, rather than set the Tx underrun or Rx
overflow status bits, the PSC keeps the slave select signal low/active and
stops the SCKL serial clock. When the Tx FIFO is no longer empty and the
Rx FIFO no longer full, the transfer proceeds.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor22

Modes of operation
Figure 11. SPI master polling mode
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 23

Modes of operation
4.3 Slave mode
In slave mode (SICR[MSTR] = 0), data shifts out on the SOMI pin and in on the SIMO pin.

The SCLK pin is used as the input for the serial shift clock, which is supplied from the external network
by the master. The transfer rate is defined by this clock. Data written to the FIFOC[Tx DATA] register is
transmitted to the network when appropriate edges of the SCLK signal are received from the network
master.

To receive data, the SPI waits for the network master to send the SCLK signal and then shifts the data on
the SIMO pin into the FIFOC[Rx DATA] register.

The slave select pin allows the transfer described above. An active-low signal on the SS pin allows the
slave SPI to transfer data to the serial data line; an inactive-high signal causes the slave SPI serial shift
register to stop and its serial output pin to be put into the high-impedance state. This allows many slave
devices to be tied together on the network, although only one slave device is selected at a time.

When the specified number of data bits has been shifted through FIFOC[Tx/Rx DATA], the following
events occur:

1. The FIFOC data register FIFOC[Data] transfers data to/from PSC’s transfer/receiver buffer
PSC[TB/RB].

2. FIFOC pointer register FIFOC[PTR].
3. FIFOC counter register FIFOC[Tx and Rx Count] is changed.

NOTE
In SPI slave mode, the MCLK must be running/enabled even though it is not
used to generate the serial clock SCLK, which is provided by the external
master SPI device. The frequency of MCLK is not critical, as long as it is
faster than the SCLK frequency.

4.3.1 SPI transfer in active polling slave mode

The slave SPI communication in the polling mode is summarized in Figure 12 and in the following
paragraphs:

Emptying Tx FIFO and filling of Rx FIFO occurs simultaneously as in master and in slave.
1. Clock initialization — see Section 3.2, “IPS bus,” and Section 3.3, “MCLK frequency.”
2. PSC slave initialization — see Section 3.5.1, “PSC initialization.”
3. FIFOC initialization — see Section 3.5.2, “FIFOC initialization.”
4. It is necessary to pre-fill the Tx FIFO slice to forestall underflow. The condition can minimally test

the alarm level or whether the FIFO count register equals 1. (This is not recommended if using high
SPI baud rate and with EOF mode used on the master side, due to delay between Tx/Rx FIFO slices
and Tx/Rx shift register in the SPI module.)

5. Test if the Rx FIFO slice is empty. When the Rx FIFO slice contains data then this data has to be
read by the core.

6. If all data has been sent to the Tx FIFO slice, then continue to step 7; otherwise go to step 4.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor24

Modes of operation
7. When the last data has been sent, then the slave tests if the Rx FIFO slice is empty. If the Rx FIFO
slice still contains data then this data has to be read by the core.

8. Test if the Tx FIFO slice is empty.
9. When step 7 goes to step 8 then the Tx FIFO slice does not contain any data. However, we have to

count with the delay (a few processor tics) between the Tx/Rx FIFO slices and the Tx/Rx shift
register in the SPI module. There are a few possible ways to cover it. The simplest way to cover it
is to compare the amount of transmitted data and the amount of received data. This is why polling
mode is not recommended for SPI mode.

NOTE
To identify a URERR event during a PSC transmission, the SW must check
the URERR bit in the PSC SR or ISR register.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 25

Modes of operation
Figure 12. SPI slave polling mode

4.4 Interrupt mode
The PSC and FIFOC modules generate interrupts which are addressed to the IPIC module. Interrupt
vectors are provided on two levels — IPIC and peripheral levels. The IPIC module generally provides
information about the peripheral which requested interrupt handling. Interrupts are enabled using the
System Internal Interrupt Mask register (SIMSR) located in the IPIC where the user allows the IPIC to
receive interrupt requests from the peripheral; and using the Interrupt Mask register (IMR) located in the
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor26

Modes of operation
PSC and FIFOC where the user enables the type of interrupt event for the peripheral. When SPI transfer
in the interrupt mode is used:

• FIFOC interrupts are used to service the SPI transfer.
• PSC interrupts are used to service an overrun/underrun error.

CAUTION
When an overrun or underrun situation occurs, the PSC does not write data
to a full FIFO, so as to avoid data loss. Therefore the core will not receive
information about an overrun or underrun situation from the FIFOC.
Corresponding registers provided by the core are not re-read, and the user
has to look into the interrupt status register provided by the PSC.

When an interrupt is received, the interrupt controller sets the corresponding bit in the System Internal
Interrupt Pending registers (SIPNR). Each bit corresponds to an internal interrupt source. The user has two
possibilities: check an internal interrupt source by SIPNR register and take care of priority management
manually, or read the currently pending interrupt source with the highest priority level provided by the
IPIC in the System Global Interrupt Vector register (SIVCR).

SIVCR provides a 7-bit code that represents the interrupt source to be handled/executed. Table 7 shows
important codes and sources for the SPI interrupt mode. Possible interrupt events for the FIFO controller
are shown in Table 8.

Table 7. SIVCR code used for SPI interrupt transfer

Source Code

FIFOC 0x28

PSC0 0x44

PSC1 0x45

PSC2 0x46

PSC3 0x47

PSC4 0x20

PSC5 0x21

PSC6 0x22

PSC7 0x23

PSC8 0x24

PSC9 0x25

PSC10 0x26

PSC11 0x27
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 27

Modes of operation
CAUTION
When a pending interrupt is managed, it is necessary to clear the
corresponding interrupt pending bit in the Interrupt Status register
PSC[ISR] by writing 1 to this register. When the interrupt handler is left and
a pending interrupt is not cleared, the core immediately goes to the interrupt
routine again.

An example of the interrupt SPI communication is shown in Figure 13, Figure 14, and Figure 15, and is
summarized in the following paragraphs.

SPI interrupt mode receiving — Rx alarm level interrupt is used for managing received data. When alarm
level is set to one then the alarm level interrupt is similar to the data ready interrupt. Increasing the alarm
level decreases the number of Rx interrupt events. The amount of data which the user wishes to receive
has to be dividable by the alarm level to ensure that all data is received correctly.

SPI interrupt mode transferring — Tx empty interrupt is used for managing the transfer of data. The
command to enable empty interrupt source is used to start the data transfer. When an empty interrupt
occurs, a data packet equal to the alarm level can be sent to the Tx FIFO slice. When all data is sent to the
Tx FIFO slice and an empty interrupt occurs, then the user has to disable empty interrupt source to avoid
an infinite loop situation.

SPI interrupt transfer — main loop:
1. Clock initialization –— see Section 3.1, “PIN muxing,” and Section 3.2, “IPS bus.”
2. PSC initialization — see Section 3.5.1, “PSC initialization.”
3. FIFOC initialization — see Section 3.5.2, “FIFOC initialization.”
4. SPI interrupt initialization — see Section 3.3, “MCLK frequency.”

Table 8. Possible interrupt events for FIFO controller

Interrupt event Description

MEM error Memory access error interrupt
The access to the data register generates an access error interrupt.

Data ready Data ready interrupt
The FIFOC generates a data ready interrupt when the FIFO contains one or more data words.

ORERR Overrun error interrupt
The FIFOC generates an overrun error interrupt when an overrun error occurs (overrun = write
access to an already full FIFO). See caution above.

URERR Underrun error interrupt
The FIFOC generates an underrun error interrupt when underrun error occurs (underrun =
read access from an already empty FIFO). See caution above.

Alarm Alarm interrupt
The FIFOC generates an alarm interrupt when the amount of data in the FIFO reaches the
alarm level.

Full Full interrupt
the FIFOC generates a full interrupt when the FIFO is full.

Empty Empty interrupt
The FIFOC generates an empty interrupt when the FIFO is empty.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor28

Modes of operation
5. SPI transfer starts by enabling a Tx empty interrupt.
6. Enable Tx FIFO empty interrupt source.
7. Wait till SPI transfer is complete.

Figure 13. SPI interrupt mode example — main loop

SPI interrupt handler:
1. Check global interrupt vector number for FIFOC interrupt number. The global interrupt vector

specifies a 7-bit unique number that represents the interrupt source to be handled/executed. When
an interrupt request occurs, the System Global Interrupt Vector register (SIVCR) can be read and
latches the highest priority interrupt. Interrupt vector numbers are assigned to each module and
cannot be changed. FIFOC always returns 0x28 as its interrupt vector regardless of its relative
priority in the SYSC group.

2. Detect the number of PSC and type of the slice with currently pending interrupt. One bit per PSC
FIFO shows all PSCs with currently pending interrupts separately for Tx and Rx slice.

3. Get the reason for the interrupt for the Rx FIFO slice — the Interrupt Status register (ISR) shows
the reason for the interrupt event. For descriptions of the possible interrupt events see Table 8.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 29

Modes of operation
4. If the interrupt reason from step 3 is an alarm interrupt, read data from the Rx FIFO slice by the
core until the Rx FIFO slice is empty.

5. When a pending interrupt is managed, clear the corresponding bit in the interrupt status register
PSC[ISR] by writing a one to this register.

6. Get the reason for the interrupt for the Tx FIFO slice — the Interrupt Status register (ISR) shows
the reason for the interrupt event. For descriptions of the possible interrupt events see Table 8.

7. If the interrupt reason from step 6 is an empty interrupt, test to see if some data needs to be sent. If
data is waiting for transfer to the FIFO slice, then go to step 11. Otherwise, go to step 8.

8. Set the global semaphore to signal “transfer complete.”
9. When a pending interrupt is managed, clear the corresponding bit in the interrupt status register

PSC[ISR] by writing one to this register.
10. Disable the Tx FIFO empty interrupt source.
11. Calculate the remaining data for transfer. A data packet for which the size equals the alarm level is

always transferred in the interrupt routine. This step calculates which data packet has to be sent
next.

12. Steps 12–14 handle the data packet transfer. If the amount of sent data equals the alarm level, go
to step 15. Otherwise, go to step 13.

13. If end of frame mode is used, send command EOF to the FIFOC before the last data is written to
the FIFO slice.

14. Write data to the Tx FIFO slice.
15. When a pending interrupt is managed, clear the corresponding bit in the Interrupt Status register

PSC[ISR] by writing one to this register.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor30

Modes of operation
Figure 14. SPI interrupt mode example – interrupt handler
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 31

Modes of operation
Figure 15. SPI interrupt mode example – interrupt handler (continued)

4.5 DMA mode
The FIFOC supports a DMA to transmit and receive data. It is recommended to use the DMA for data
transfers, to decrease the number of interrupts and core loading.

When the DMA engine is used, the DMA transfers a packet of data located in the memory (variable or
array) to the FIFOC or back. The FIFOC module is automatically controlled by the DMA engine. For
proper functionality of the DMA transfer the SPI DMA initialization is required — see Section 3.7, “Direct
memory access.”

A DMA transfer begins by starting a DMA Rx or Tx task. The DMA transfers/receives data until the alarm
level is reached. The Tx FIFO slice is filled to the alarm level, and the DMA task has finished its first loop.
The next loop starts when the Tx FIFO slice reports an empty status. When all data has been sent, the DMA
sends a transfer complete interrupt request to the IPIC module.

The Rx FIFO slice is filled to the alarm level by the PSC. When the alarm level is reached, the DMA starts
to transfer data from the Rx FIFO slice to the memory. When the Rx FIFO slice is empty, the DMA task
has finished the first loop. The Next loop starts when the Rx FIFO slice reaches the alarm level. When all
data has been received, the DMA sends a transfer complete interrupt request to the IPIC module.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor32

Modes of operation
NOTE
The amount of transferred or received data is set in the TCD structure. The
DMA module does not send a transfer complete interrupt request to the IPIC
module unless the amount of data set in the TCD has not been moved.

The DMA module generates interrupts which are addressed to the IPIC module. Interrupt vectors are
provided on two levels: IPIC and peripheral.

Interrupts are enabled using the System Internal Interrupt Mask register (SIMSR) located in the IPIC and
command register (CMD) located in the FIFOC. All interrupts from the FIFOC and PSC are disabled.

When an interrupt is received, the interrupt controller sets the corresponding System Internal Interrupt
Pending registers (SIPNR). Each bit corresponds to an internal interrupt source. The user has two
possibilities: check an internal interrupt source by SIPNR register and take care of priority management in
that way, or read currently pending interrupt source with the highest priority level provided by the IPIC in
the System Global Interrupt Vector register (SIVCR). The SIVCR provides 7-bit code representing the
unmasked interrupt source of the highest priority level. When a DMA interrupt has to be managed, the
SIVCR provides code 0x41.

CAUTION
The DMA engine has limited support for a transfer which uses the end of
frame mode. The DMA engine does not send an EOF command to the
FIFOC command register. The EOF command defines the next data written
to the data register as the last data of this frame. When the user wishes to use
end of frame mode, the TCD structure for the Tx channel needs to be
changed. The current major iteration count needs to be set one loop less and
the last source address adjustment needs to be re-counted as well. The DMA
Tx transfer (minor × major interaction counts) is decreased for the last loop.
Data from the last loop plus the EOF flag needs to be transferred using
polling or interrupt mode. The DMA task for the Rx channel remains
without any change.

An example of the DMA SPI communication is show in Figure 16 and Figure 17, and is summarized in
the following paragraphs.

SPI DMA transfer — main loop:
1. Clock initialization — see Section 3.1, “PIN muxing,” and Section 3.2, “IPS bus.”
2. PSC initialization — see Section 3.5.1, “PSC initialization.”
3. FIFOC initialization — see Section 3.5.2, “FIFOC initialization.”
4. SPI DMA initialization — see Section 3.4, “Data polling, interrupts, and DMA.”
5. When proper SPI DMA initialization is done and all data is ready to be sent, the user can start the

SPI DMA transfer by writing the specified Rx channel number to the DMA channel register, then
set the Enable Request (DMASERQ) register. The DMA starts the transfer, which is controlled by
the FIFOC module, and transfers data from the Rx FIFO slice to the defined memory automatically,
without core loading. Dma_int_cntRx variable is set and shows the Rx transfer in progress.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 33

Modes of operation
6. When the Rx DMA transfer is in progress, the Tx DMA transfer can be started by writing the
specified Tx channel number to the DMASERQ register. The DMA starts the transfer which is
controlled by the FIFOC module, and transfers data from the defined memory to the Tx FIFO slice.
The dma_int_cntTx variable is set and shows the Tx transfer in progress.

7. In the main loop, the user is informed about the finished Tx transfer by global variable
dma_int_cntTx = 0.

8. When SPI master mode and EOF mode is used, the EOF flag has to be set. The program continues
on to step 10.

9. In the main loop, the user is informed about the finished Rx transfer by global variable
dma_int_cntRx = 0.

10. When EOF mode is used, the current major iteration count is set to one loop less. One loop needs
to be sent in interrupt or polling mode.
Let’s use polling mode for the transfer. The first step is to calculate the position in the transferred
array, where the DMA finished the transfer. The size of the one loop equals the Tx alarm level and
the specified position equals the size of the transferred array — the Tx alarm level. This data will
be sent using polling mode.

11. Test if the Tx FIFO slice reports an alarm event.
12. When the last data should be sent to the FIFOC, send an EOF command to the FIFOC command

register.
13. Write data to the Tx FIFO slice.
14. When another data packet needs to be sent, go to step 11. Otherwise, go to step 9.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor34

Modes of operation
Figure 16. SPI DMA mode example – main loop

SPI DMA transfer — interrupt handler:
1. Check the global interrupt vector number for the DMA interrupt number. The global interrupt

vector specifies a 7-bit unique number of the IPIC’s highest priority interrupt source pending to the
core. When an interrupt request occurs, the System Global Interrupt Vector register (SIVCR) can
be read and latches the highest priority interrupt. Interrupt vector numbers are assigned to each
module and cannot be changed. DMA always returns 0x41 as its interrupt vector regardless of its
relative priority in the SYSC group.
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 35

References
2. Detect the DMA channel with a currently pending interrupt. One bit per DMAINTH or DMAINTL
register shows all DMA channels with currently pending interrupts.

3. If an Rx channel interrupt is handled, clear the dma_int_cntRx flag which follows the status of the
DMA transfer.

4. When a pending interrupt is managed, clear the DMA pending interrupt in the DMA Clear Interrupt
Request register DMACINT[CINT] by writing the channel number to this register.

5. If Tx channel interrupt is handled, clear the dma_int_cntTx flag which follows the status of the
DMA transfer.

6. When a pending interrupt is managed, clear the DMA pending interrupt in the DMA Clear Interrupt
Request register DMACINT[CINT] by writing the channel number to this register.

Figure 17. SPI DMA mode example – interrupt handler

5 References
1. MPC5121ERM, MPC5121e Microcontroller Reference Manual
2. MPC5121E, MPC5121e/MPC5123 Data Sheet
3. HCS08 Unleashed: Designer’s Guide to the HCS08 Microcontrollers. Fábio Pereira. 2008.

ISBN: 1-4196-8592-9
4. http://embedded.com
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor36

THIS PAGE IS INTENTIONALLY BLANK
MPC5121e Serial Peripheral Interface (SPI), Rev. 0

Freescale Semiconductor 37

Document Number: AN3904
Rev. 0
08/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 Objective
	1.2 Definition of the SPI

	2 Description of the SPI module
	2.1 SPI module in MPC5121e
	2.2 Serial peripheral interface register list
	2.3 Signal description and connection scheme

	3 Initialization
	3.1 PIN muxing
	3.2 IPS bus
	3.3 MCLK frequency
	3.4 Data polling, interrupts, and DMA
	3.5 PSC and FIFOC initialization
	3.5.1 PSC initialization
	3.5.2 FIFOC initialization

	3.6 Interrupt initialization
	3.7 Direct memory access

	4 Modes of operation
	4.1 SPI configuration
	4.1.1 PSC operation mode
	4.1.2 End of frame mode
	4.1.3 Bit clock polarity, clock phase and polarity
	4.1.4 Shift direction

	4.2 Master mode
	4.2.1 SPI transfer in active polling master mode

	4.3 Slave mode
	4.3.1 SPI transfer in active polling slave mode

	4.4 Interrupt mode
	4.5 DMA mode

	5 References

