3
4

y
A

Freescale Semiconductor
Application Note

Document

Number: AN4032
Rev. 0, 02/2010

Enabling a Single Global Interrupt
Vector on the RS08 Platform

by: Li Meng
Microcontroller Solution Group
China

1 Introduction

Based on a need for better interrupt support for the RS08 family,
asingle interrupt vector is added. Adding a global single interrupt
vector is optimized for an entry-level application for lower cost
and higher performance. This application note describes how to
use it based on the MCRS08KB12.

2 RS08 Core

The RS08 platform is developed for extremely low cost
applications. Its hardware size is optimized and the overall
system cost is reduced. The interrupt mechanism in the original
RS08 is not used to interrupt the normal flow of instructions,
but to wake the RS08 from wait and stop modes. In run mode,
interrupt events must be polled by the CPU. The original RS08
architecture does not include an interrupt controller with a vector
table lookup mechanism as used on the HC08 and HCS08
devices. The CPU must repeatedly check the status of the
interrupt flag until the desired condition is indicated, therefore
wasting time and increasing the CPU load. The global single
interrupt vector is added, the advantage is that the CPU can enter
sleep mode to reduce power consumption and wakes when
interrupts occur. Please refer to the data sheet for the interrupts
that wake the CPU from various sleep modes. Microcontrollers
can also use interrupts to prioritize the tasks and to ensure that
certain peripheral modules are quickly serviced.

© Freescale Semiconductor, 2009 — . All rights reserved.

C

Introduction....
RS08 Core......

Interrupt

ontents

3.1 Interrupt Operation..........cccoeeerveeerenneenennns

3.2 Interrupt Operation in Wait Mode.................

3.3 Interrupt Operation in Stop Mode.................

Example Code

Conclusion......

-
-

L1

freescale’

semicongucinr



merrupt

The MCRS08KB12 is the first silicon with a single global interrupt vector in the RS08 platform. There are many interrupt
sources, including analog comparator, keyboard interrupt, modulo timer, real-time clock, ADC, IIC, TPM, and SCI. They all
share one interrupt vector and can wake the MCU form wait mode. The KBI, ACMP, and RTI can take the MCU out of stop
when the associated interrupt is enabled.

3 Interrupt

An interrupt is usually defined as an event that alerts the sequence of instructions executed by a processor. The RS08 supports
a single interrupt vector in the same way as the RS08 reset vector is supported. A single global interrupt vector means that all
the modules share the same interrupt vector. When the interrupt occurs, the user application polls the system interrupt pending
registers (SIPx) to determine if an interrupt was pending.

3.1 Interrupt Operation

Most (peripheral) modules have status flags, or interrupt flags that can trigger an interrupt. An interrupt is when a module signals
to the CPU that the flow of the program code execution should be interrupted and a specific interrupt service routine (ISR)
program code must be executed. When IMASK is cleared, a pending interrupt (any flag set in SIP1 or SIP2) forces an interrupt
request to the CPU and the interrupt is serviced immediately after completion of the current instruction. When IMASK is set,
interrupts must be polled as in the original RS08 architecture. When the interrupt is triggered, the CPU executes code from the
internal memory with execution beginning at the address $3FF7. A jump instruction (opcode $BC) at $3FF7 with operand
located at $3FF8-$3FF9 must be programmed into the user application for correct interrupt operation. The operand defines the
location of the user ISR after a pending interrupt is allowed to interrupt the CPU. The IMASK bit is set when the CPU vectors
begin to interrupt servicing. Within the ISR, you can poll SIP1 and SIP2 and service pending interrupts based on application
priority. A number of status bits in the SIP1 and SIP2 registers are referred to as interrupt flags. These interrupt flags provide
information about change of states in the module, for example, a byte that has been received on the SCI. Interrupt flags are set
if the corresponding interrupt is enabled. This makes it possible to poll interrupt flags in the interrupt service routine. Polling
can be preferred in some cases, but are often handled by an ISR which is executed when the event occurs. One advantage of
ISR handling is that important modules can be given immediate attention by temporarily stopping less important tasks. Interrupts
must be cleared manually, typically by writing a logic one to the flag.

After the ISR has been executed, you must follow an ISR exit sequence:

 To re-enable interrupts on return from the ISR, the last two instructions of the ISR must be a clear of the IMASK bit
followed by a jump to IEA. There is a three-cycle delay between the writing to clear the IMASK and enable interrupts to
allow the double jump (JMP IEA, and JMP [IRA]) to a normal program execution to occur before handling any pending
interrupts.

 To continue to mask interrupts on return from the ISR, you must execute the double jump MPIEA, and JMP [IRA] to a
normal program execution without writing to the IMASK.

The condition code register (CCR) contents at the time of the interrupt are also saved in the IRAH, the most-significant two
bits, and are restored on a return from the ISR. No other registers are saved automatically during interrupt vectoring. If you
determine that the ISR will corrupt the accumulator or index registers, then it is up to you to save the contents in RAM and
restore them before a return from the ISR. The program counter (PC) of the instruction that would have been executed by the
interrupt request is saved in the interrupt return address (IRA) register. In this document, the IRA refers to the concatenation
of IRAH and IRAL (IRAH:IRAL). After the ISR code has completed, the address saved in IRA will be used as the return address
to the program, executing prior to servicing the interrupt. A jump instruction is hardware encoded in the user memory map at
the address immediately preceding the IRA register and is referred to as the interrupt exit address (IEA) register. A jump to IEA
is used at the end of the ISR for returning to the program executing prior to servicing the interrupt.

Enabling a Single Global Interrupt Vector on the RS08 Platform, Rev. 0, 02/2010
2 Freescale Semiconductor, Inc.




Example Code

3.2 Interrupt Operation in Wait Mode

Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU enters a low-power
state that is not clocked. The program counter (PC) is halted at the position where the WAIT instruction is executed. The RS08
supports a wakeup from WAIT differently. This depends on the state of IMASK in SIP2. If IMASK = 1, interrupt vectoring is
disabled. When an interrupt pending flag becomes set, the MCU exits wait mode and resumes processing at the next instruction.
If IMASK = 0, interrupt vectoring is enabled. When an interrupt pending flag becomes set, the MCU exits wait mode. The
address of the instruction following the WAIT is stored in IRA. The PC is loaded with 0x3FF7, and code execution begins.

3.3 Interrupt Operation in Stop Mode

Stop mode is entered upon execution of a STOP instruction when the STOPE bit in the SOPTL1 is set. In stop mode, all internal
clocks to the CPU and the modules are halted. If the STOPE bit is not set when the CPU executes a STOP instruction, the MCU
will not enter stop mode and an illegal opcode reset is forced. Stop is exited by asserting RESET or any asynchronous interrupt
that is enabled. If stop is exited by asserting the RESET pin, the MCU will be reset. The program execution starts at location
$3FFD. If exited by means of an asynchronous interrupt, the sequence varies depending on the state of the IMASK in SIP2. If
IMASK =1, the interrupt vectoring is disabled. When an asynchronous interrupt request occurs, the MCU exits stop mode and
resumes processing the next instruction. If IMASK = 0, interrupt vectoring is enabled. When an interrupt pending flag becomes
set, the MCU exits stop mode, the address of the instruction following the STOP is stored in IRA. The PC is loaded with Ox3FF7,
and code execution begins.

4 Example Code

This code must be added in the application program to enable the interrupt vectoring mechanism. You can also use the
macro of Enablelnterrupts that has been defined in the file derivative.h.

SI P2_| MASK=0; /1 enable interrupt

Enable the corresponding bit in the module, such as:

KBl SC_KBMOD =0; /1 Keyboard detects edges only
KBI PE = Oxff; /1l enabl ed KBl pin

KBI ES = 0x0; /1 falling edge

KBl SC_KBI E = 0x1; /1 Enabl e KBl interrupt

The macro below is used to store and restore the data in the accumulator and index register. This has been added to the head
file “derivative.h”., and can be generated automatically by creating the project.

#define | SR WRAPPER(nane) void | SR(voi d)

{
asm( STA $50); /lstore the content of A in the adress of $50
asn( STX $51); //store the content of Index register in the adress of $51
asm MOV $1F, $52) //store the content of Pagesel register in the adress of $52
asn( SHA) ; /'l swap shadow PC H gh with A
asm( STA $53); /'l Sore the content of shadow PC High in the adress of $53
asn( SLA) ; /1 swap shadow PC Low with A
asm( STA $54); /! Sore the content of shadow PC Low in the adress of $54
asn(JSR nane ); /1 jump into the user”s | SR
asm(LDA $54);
asn( SLA) ; /!l Restore the content of the shadow PC Low
asm(LDA $53);
asn( SHA) ; /'l Restore the content of the shadow PC Hi gh
asnm( MOV $52, $1F); /! Restore the content of the Pagesel register
asm LDX $51); /! Restore the content of the index register
asn( LDA $50); /! Restore the content of the A
asm(BCLR 7, SIP2); // enable the interrupt
asn( JW | EA); /1 return formroutine
}

Enabling a Single Global Interrupt Vector on the RS08 Platform, Rev. 0, 02/2010
Freescale Semiconductor, Inc. 3




A 4

4\ .|
example Code
The wrapper for the interrupt routine which is the user's interrupt handler name is the parameter:
ISR_WRAPPER(myISR) ;

The user’s interrupt handler name must be the same name as defined in the wrapper. You can lookup the status of the pending
interrupt in SIP1 or SIP2. The sequence depends on the priority, so you can implement a prioritized interrupt mechanism in the
software. Code can be deleted or added according to your situation.

voi d nyl SR(voi d)

/* Place Interrupt handl er code here */
if (SIP1_KBI)

{ i f (( PTAD_PTAD2==0) &&( Key1_Fl ag==0))

{
Keyl Fl ag =1;
PTBD_PTBD4 ~=1,
Enabl e_Timer1();

i}f (( PTAD_PTAD3==0) &&( Key2_Fl ag==0))

Key2_ Fl ag =1;
PTBD_PTBD5 ~=1;
Enabl e_Ti mer 2() ;

}

KBI SC_KBACK = 0x1;
}
i f (S| P2_TPMCHL)

TPMC1SC_CH1F=0;
TPMC1SC = 0x00;
TPMSC = 0x00;

}
i f(SIPL_MTI M)
{
MI' MLSC TCOF = 0;
Ti melCount er ++;
i f(Ti melCounter>=100)

Di sabl e_Tiner1();
Keyl Fl ag =0;
PTBD_PTBD4 "=1,
Ti melCount er =0;

}

i f(SIPL_MTI M)

M MSC TOF = 0;
Ti me2Count er ++ ;
i f(Ti me2Count er >=100)
{
Di sabl e_Ti mer2();
Key2_Fl ag =0;
PTBD_PTBD5 ~=1,
Ti me2Count er =0;
}
}
i f (Sl P1_ADC)
{
ADCSC1_COCO =1;
}
i f(SIP1L_RTI)
{
SRTI SC_RTI ACK =1;
}
if(SIPL_IIC
{
I1CS 11 CF=1;
}
Enabling a Single Global Interrupt Vector on the RS08 Platform, Rev. 0, 02/2010
4 Freescale Semiconductor, Inc.




h o
g |

Conclusion
i f (SIP1_LVD)
{ SPMBC1_LVDACK =1;
i}f(SI P1_ACMP)
{ ACMPSC_ACF = 1;
i}f (Sl P2_TPMCHO)
{ TPMOOSC_CHOF=1;
i}f (Sl P2_TPMCH1)
{ TPMC1SC_CH1F=1;
i}f(SI P2_TPM
{ TPMSC_TOF =1;
i}f (Sl P2_SCI E)

{
PTCD_PTCD1 ~=1;

5 Conclusion

A single global vector can easily be used. It can be used to handle anticipated and unanticipated events, to implement a prioritized
interrupt mechanism in the software, helps reduce power consumption, and the CPU load.

Enabling a Single Global Interrupt Vector on the RS08 Platform, Rev. 0, 02/2010
Freescale Semiconductor, Inc. 5




g |

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor

Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4032
Rev. 0, 02/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. “Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental ~ Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc.2010. All rights reserved.

-

Z “freescale

semicongucinr



	Introduction
	RS08 Core
	Interrupt
	Interrupt Operation
	Interrupt Operation in Wait Mode
	Interrupt Operation in Stop Mode

	Example Code
	Conclusion

