
1 Introduction
Several materials available today have the unique property of
being both transparent at optical frequencies and electrically
conductive. Because of these properties, these materials can be
placed over display panels and used to select options or interact
with graphics displayed on the panel. Pressing or touching a
point on the screen changes the electrical properties of the
material that can be detected by a microcontroller. Several
methods are available to detect this touch. Capacitive touch
senses the change in charge rate caused by touching the panel.
This method is out of scope for this application note and is not
discussed. You can find more details about capacitive touch
sensing at www.freescale.com/proximity.

The more common method is to use two layers of the resistive
material separated by a small distance. When pressed, the two
layers electrically short and form a voltage divider that can be
measured. There are four-wire, five-wire, and eight-wire resistive
touch panels. This application note describes all three methods.
A software example is provided for the four and eight-wire
methods. Modification to a five-wire panel requires only a
minimal amount of software re-work. The sample code can be
found on the same web page as this application note.

© Freescale Semiconductor, 2010 – . All rights reserved.

Document Number: AN4057Freescale Semiconductor
Rev. 0, 3/2010Application Note

Resistive Touchscreen Controller
Using the S08 Family

Andy Juengstby:
Applications Engineer

Contents
Introduction...11

Resistive Touchscreen Fundamentals....................22

Resistive Touchscreen Application
Considerations...4

3

Communication...74

MC9S08QE8 Pin-outs...85

Sample Code Flowchart..96

Reference Material..97

Acronyms..108

2 Resistive Touchscreen Fundamentals
The basic operation of the three different resistive touchscreen methods are described below.

2.1 Four-Wire Touchscreen Interface

X+X-

Y+

Y-

X-

Y+

Y-

Figure 1. Four-wire touchscreen schematic

Figure 1 shows the basic make-up of a four-wire touchscreen interface. A piece of transparent conductive material has contacts
placed on opposite ends. A second piece of the same material with contacts oriented 90° to the first piece is placed over the first
piece with a small gap between the two. By pressing on the film, the two layers are made to come in contact with each other.
The result is a simple voltage divider that can be sensed with a microcontroller. For example to measure the Y coordinate: Y+
is driven to Vdd. Y– is driven to Vss. X– is set to an input with no pull-up or pull-down resistor, which effectively takes it out

of the circuit. X+ is connected to an analog-to-digital input. A reading on X+ gives the voltage at the y– position of the pen-down
point. The voltage ratio of this point to Vdd is the same as the A/D reading to the A/D range. This setup is shown in Figure 2

"(a)". The reading yields how far up the y– axis the point is by the following,

Equation 1:

The A/D resolution is the full-range of the A/D mode, depending on how many bits of resolution the A/D is set for (A/D
resolution = 4096 for 12-bit mode). The height of panel can be any scale the system requires and is a known reference value to
the host microprocessor. One common “ height ” is to use the full scale A/D resolution. The measured A/D reading then
becomes the transmitted value to the host microprocessor, no multiplication or division is required. The host processor knows
the ratio of pixels to A/D points and can then convert the reading into the appropriate pixel count from the edge of the panel.
Another common method is to use the resolution of the LCD panel for the “ height. ” Consequently, the touchscreen controller
sends the host processor the pixel data without any further calculations needed. A similar process is followed to determine the
x coordinate.

Most systems do not need the uC continuously reading the control panel. This is an inefficient use of power because an active
pen-down condition happens a small percentage of the time. The setup in Figure 1 also allows for the uC to go into a sleep mode
and use an active button press to wake the uC causing it to start reading data points. Figure 2 "(b)" shows the configuration
needed to sense a new pen-down condition. X+ changes from an A/D pin into a key board interrupt (KBI) with the weak internal
pull-up resistor enabled. X– and Y+ are set-up as inputs with no pull-up or pull-down enabled. Y– is set as an output driven to
Vss. The uC is put into a low power sleep mode with the KBI enabled on the falling edge of X+. When a pen-down condition

occurs, the resistance to Vss through the Y– pin is low enough to overcome the weak pull-up on X+. As a result, X+ is pulled

low and a KBI interrupt occurs, waking the uC and allowing readings to take place. A similar operation is to continuously read
data points until the pen-up condition is sensed and then go back to sleep.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
Freescale Semiconductor, Inc.2

Resistive Touchscreen Fundamentals

Y+ = Vdd

Y- = Vss

X+ = input w/
Weak
pull -up

2a: A/D Reading 2b: KBI Wakeup

X+ = A/D
reading

X- = floating
input

X- = floating
input

Y+ = floating
input

Y- = Vss

A pen down will pull X+ to
ground thru Vss

Figure 2. (a) A/D reading and (b) KBI wakeup

2.2 Eight-Wire Touchscreen Interface
There are inherent losses in the wires, connections, and inactive areas of the touchscreen. As a result, a value of less than Vdd

and greater than Vss is applied to the points noted above causing an error in the conversion. This error is calibrated out in an

eight-wire touchscreen. Another sense pad is placed on each contact as shown in Figure 3. The Vdd is applied to Y+ and Vss to

Y–. The A/D readings are taken at both Y+ sense and Y– sense. The difference between these two readings is used for the A/D
resolution value in Equation 1. Due to losses in the setup, the full range of A/D values that you might measure for a 12-bit setup
is some value below 4096. A similar reading is taken for the X– axis.

Y+

Y-

X- X+

Y- sense

Y+ sense

X+ sense

X- sense

Figure 3. Eight-wire setup

2.3 Five-Wire Interface
One drawback of these resistive materials is that they can wear down over time. This wearing can affect the A/D readings as
described. One method to overcome this degradation is used in a five-wire setup as shown in Figure 4 . The bottom layer is less
susceptible to wear and has pads at each corner.

Figure 4. Five-wire setup

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
3Freescale Semiconductor, Inc.

Resistive Touchscreen Fundamentals

These pads are labeled UL, UR, LL, and LR. The entire top sheet is the sense pad. Scratches and wear have minimal impact.
In a similar method as with the four-wire setup, the x– coordinate can be determined by applying Vdd on both UR and LR while

applying Vss on both UL and LL. Taking an A/D reading on the sense pad yields the x coordinate. Similarly, the y coordinate

is obtained by putting Vdd on UL and UR while putting Vss on LL and LR.

In a similar manner to the four-wire setup, the device can be put in a low-power sleep mode and woken with a keyboard interrupt.
Three of the pads on the bottom sheet are set-up as high-impedance floating inputs. The fourth is a KBI with a weak pull-up,
the sense pad is set to Vss. When a pen-down condition occurs, the pin set as a KBI is pulled low to ground through the sense

pin forcing a KBI.

3 Resistive Touchscreen Application Considerations
How a touchscreen is implemented is affected by both the application and the environment the touchscreen will be used in.
Several key parameters to pay attention to are described below.

3.1 Conversion Resolution
The resolution of the touchscreen is determined by the application. Most applications that use large selection buttons on the
display can get by with an 8-bit resolution or less. Applications that use smaller selection buttons, or that have buttons displayed
very close or adjacent to each other, may require a 10-bit resolution. For applications that require the ability to follow the pen
as it moves around the screen a 12-bit resolution may be required. The software provided did not test for a moving pen. The
principles used are the same for this type of application. Some modifications may need to be made to sampling rates, filtering,
and so on. The sample code is set for a 10-bit resolution.

3.2 Environment Impact
The environment, a touchscreen is placed in and can adversely affect the proper operation of the touchscreen. Improper use can
result in bad coordinate value reads, readings missing, or readings taken when a pen-down condition does not exist. All of these
result in a bad user experience.

3.2.1 Noise
Anyone who has used analog-to-digital converters knows that these readings are very susceptible to electrical noise in a system.
Any voltage bounce in the power rails, or on the A/D lines can cause significant error in the A/D reading. This results in the
wrong location calculated for the pen-down condition. As a result, care must be taken to isolate the touchscreen system from
any noise source. In most cases, following good design practices for EMI is enough to obtain good performance. In extreme
environments, isolated power rails and shielded A/D signals may be required.

3.2.2 Coordinate Median Filtering
Even with aggressive noise abatement techniques, there is always the chance of a spurious noise bounce within a system.
Consequently, many touchscreen applications choose to implement a software filter on the readings. This application implements
a simple median filter. Five consecutive readings are taken and the median value is chosen as the pen-down value. Depending
on the application, more (or less) readings, an average, running-average, or a more advanced algorithm can be implemented.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
Freescale Semiconductor, Inc.4

Resistive Touchscreen Application Considerations

3.2.3 Sampling Delay
Due to the parasitic capacitance of the system, there can be a delay between configuring the system for a reading and seeing
the correct voltage on the A/D pin. Again, the amount of time required depends on each implementation, but for most systems
this delay is small and may be ignored. This application does include a small delay between configuring the ports and starting
the reading. The delay can be increased or eliminated as needed.

Even with the delay, the first reading on a new pen-down condition often results in inaccurate coordinates. As a result, the
sample code does not transmit the first data points and therefore results in a 20 ms delay between pen-down and the first data
transmission. This is considered small enough for most applications.

3.2.4 Pen-Up, Pen-Down Debounce
A KBI is used to wake the system from its low-power sleep mode. This is done by setting a pad on the first layer to a KBI with
a weak pull-up. A pad on the second layer is tied to ground. When a pen-down occurs, the KBI is pulled low to ground through
the second layer. The KBI controller typically responds to an interrupting signal within a clock cycle or two. As a result any
noise spike on this pin can wake the system. A method needs to be implemented to avoid sending false pen-down conditions
to the main microprocessor.

The system needs to detect when a pen-up condition occurs. This is managed in a similar fashion, except that the first pad is
set to an input with a weak pull-up, KBI is not required. If the input is low, a pen-down condition still exists. A debounce method
needs to be implemented to ignore false pen-up conditions.

The sample code provided manages both of these functions with the same debounce routine. The code does not actually perform
a debounce on a pen-down condition prior to entering the main control loop. When a KBI is sensed, the uC wakes and reads
the coordinates. It then enters a loop waiting for the timer described in Chapter 3.4 Coordinate Refresh Rate to expire before
transmitting the coordinates. During the loop, the code continuously performs a pen-up debounce. When the timer expires, it
determines if it has a valid pen-down condition and reacts accordingly. If pen-up is detected on the first code pass through, no
data is transmitted and the uC goes back to sleep (a false KBI trigger). When pen-down is detected, it transmits the measured
coordinates and goes back to the top of the loop to measure the coordinates again. It stays in the loop until a pen-up occurs. At
the end of the loop that detects pen-up, the last valid pen-down data is transmitted and sleep mode is entered.

There are many methods to perform a debounce on an input. The method that best fits your system requirements should be
implemented. The system chosen in this application weighs heavily towards a pen-up condition. While in the debounce loop,
the state of the Input pin is monitored. During this loop, any low value (pen-down condition) increments a counter. When a
high value (pen-up condition) is read, the counter is reset. At the end of the transmit interval, when the code leaves this loop;
pen-up, pen-down is determined based on the value of this counter.

3.3 Calibrations
There are several methods of calibration that can improve the accuracy of the coordinates transmitted. These methods are
described below.

3.3.1 Resistive Losses
Chapter 2.2 Eight-Wire Touchscreen Interface describes how an eight-wire touchscreen can be used to calibrate out the losses
in the wiring and pads of the ITO. The code provided implements an eight-wire touchscreen and performs these calculations
every power-up.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
5Freescale Semiconductor, Inc.

Resistive Touchscreen Application Considerations

3.3.2 Touchscreen and Display Misalignment
When the resistive layers that comprise the touchscreen are placed over the display they often are not aligned or squared to each
other. This leads to an offset in touchscreen coordinates versus display coordinates. As a result, an alignment calibration is often
needed. This is the “ first time ” calibration that many users of touchscreen panels are familiar with. At the first power-up, you
must pen-down on three or four different points on the screen. These known LCD locations are compared with the coordinates
from the touchscreen controller to generate a translation routine for all new coordinates coming from the touchscreen controller.

There are a variety of translation routines that can be used. The equations below are for a simple linear transformation.

Equation 2:

Xts and Yts are the touchscreen controller’s measured x,y coordinates. When multiplied by the coefficients, they yield the x, y
coordinates of the display, X display and Y display. To solve for the six coefficients, A – F, three readings must be taken at
known display and touchscreen coordinates, resulting in six equations and six unknowns. After solving for and determining the
six coefficients, any coordinates measured by the touchscreen controller can easily be converted into display coordinates.

Many operating systems (for example Linux or WinCE) commonly found on the main system processor are already configured
to handle this calibration. They solve for and apply the coefficients to the raw data that comes from the touchscreen controller.

The sample code provided does implement the translation equations. A simple protocol is implemented to receive the six
coefficients (12 bytes of data) and store them in the NVM. When this area in flash is not empty, the code applies the six
coefficients to Equation 2 and sends X display and Y display to the system microprocessor. A separate command is available
to read and transmit the values stored for the coefficients. This provides a simple means to verify the touchscreen controller is
using the correct coefficient values. A reset command is also provided to reverse the process and force the controller to erase
the coefficients and send non-translated data, Xts and Yts. The protocol is defined in Chapter 4.2 Protocol.

The code provided does not have the algorithm to calculate the six coefficients because the main system processor typically
does this. If you desire the touchscreen controller to perform this calculation, you need to modify the communication protocol
to receive X display and Y display coordinates. You also need to add a function to perform the calculation. The time for the
S08 to perform this calculation is in the tens of ms. Because this is a do-once calculation, your system impact is minimal

3.3.3 Normalization
When the controller is configured to send Xts and Yts, it is common to normalize the values. As described in Chapter 2.1
Four-Wire Touchscreen Interface, this is the process of multiplying by the “height of the panel” parameter in Equation 1.
Equation 2 can be used to normalize the output data. By setting coefficients A and E to a normalized value and setting B, C, D,
and F to zero, the transmitted data is normalized to whatever scale desired. For example, by setting A and E to 1024 the results
are converted back to a full 10-bit A/D scale. You can normalize the output to match the resolution of your display. By setting
A = 800 and E = 600, the results are normalized to an SVGA screen. The sample code defaults to 1024 x 1024.

3.4 Coordinate Refresh Rate
Under a pen-down condition, the touchscreen controller continuously reads and transmits the coordinates. How often the
coordinate data is sent to the main system processor depends on system requirements. If too slow, the delayed response is noticed
by the end user. If too fast the main processor spends too much time handling unnecessary interrupts impacting its performance.
The application code provided sends data to the main processor every 10 ms. This timer also controls the main loop in a pen-down
condition. When the timer elapses, data is transmitted to the main system processor and the timer is restarted. This control time
is defined by the variable TX_interval, found in control_constants.h. The current setup takes 2.5 ms to measure and calculate
the x, y coordinates. This time needs to be taken into account if a faster interval is required. The baud rate of the SCI may also
need to be considered if a faster interval is chosen.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
Freescale Semiconductor, Inc.6

Resistive Touchscreen Application Considerations

4 Communication
This section describes the method used to communicate to the main system processor.

4.1 Serial Communication Interface (SCI)
The sample application uses the SCI for communication. The default baud rate is 19.2 KBaud. Code is also in place for 9600

baud and 38.4 Kbaud. These values can be selected in the comm.h file. The 9S08QE family also has an SPI and I2C port. The
code is not set-up to support these protocols but can easily be added.

The 9S08QE family was chosen because it has the ability to be woken by the SCI. This allows for a full two-way communication
protocol. The main system microprocessor can send commands at any time and the 9S08QE wakes and responds. If this capability
is not required in your system, even lower cost 9S08s or 9RS08s may be suitable for your needs.

4.2 Protocol
This section describes the simple communication protocol implemented in the sample code. The protocol must be modified to
match your specific system needs.

4.2.1 Transmitting
The uC sends four bytes to the main uP at specific intervals as described in Chapter 3.4 Coordinate Refresh Rate.

Table 1.

Bit

01234567

MinMax_cAlign_cPen_up0Byte

X0X1X2X3X4X5X6X71

Y0Y1Y2Y3Y4Y5Y6Y72

X8X9X10X11Y8Y9Y10Y113

Byte 0—This is a control byte that provides information to the main uP about the coordinates it is receiving.

Bit 0 – MinMax_c—This bit tells whether the control provides coordinates that have had losses due to wiring calibrated
out.
0—Losses are not calculated and removed.
1—Losses are removed. (This is automatic in the sample code provided. Slight modifications need to be made to allow
for no calibration.)

Bit 1 – Align_c—This bit tells whether the control provides coordinates that have calibrated out the misalignment between
the touchscreen panel and LCD panel.
0—Misalignment is not accounted for
1—Misalignment is accounted for
Bit 3 – Pen_up—This bit indicates a Pen_up condition exists. It informs the main uP that this is the last data point being
transmitted.
0—Pen-down condition still exists
1—A pen-up condition was detected. This is the last transmitted coordinate until a new pen-down event occurs.

Byte 1—The lower 8 bits of the X coordinate.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
7Freescale Semiconductor, Inc.

Communication

Byte 2—The lower 8 bits of the Y coordinate.

Byte 3—The lower nibble contains the upper 4-bits of the x coordinate in a 12-bit resolution system. Only the lower two bits
are used in a 10-bit resolution system. This nibble is not used for an 8-bit resolution system. The same situation holds for the
upper nibble and the y coordinate. The sample code uses a 10-bit resolution.

4.2.2 Receiving
If the system’s main microprocessor is going to manage the translation calibration as defined in Chapter 3.3.2 Transmitting,
you may not need to receive any data at all. SERIAL_RX_SUPPORTED defined in control_constants.h allows you to bypass
the Receive functions in the main loop resulting in more time debouncing the pen-down condition. You can also move to a
lower end S08 or RS08.

The clock source for the SCI is stopped when the 9S08QE is in stop mode. The clock takes time to restart when coming out of
the stop mode. As a result, the first incoming byte from the main processor wakes the uC, but the data read may be inaccurate.
Consequently, this protocol requires that a dummy byte be sent first by the system uP. The following byte should then be one
of the control bytes as described below.

NOTE
After being woken, the sample code sits in the RX interrupt routine waiting for the second
byte to arrive. The second byte comes immediately from the main microprocessor. If there
is a significant delay, or you are manually inputting the data into a terminal window, the
QE’s internal watchdog timer might expire and reset the QE. The QE then restarts and
functions as normal, but the transmitting of data from the host controller needs to start over.

The data is sent in the following order:

Byte 0—0x69— initiates the command

Byte 1—Coefficient A high byte

Byte 2—Coefficient A low byte

Byte 3—Coefficient B high byte

Byte 4—Coefficient B low byte

Byte 5—Coefficient C high byte

Byte 6—Coefficient C low byte

Byte 7—Coefficient D high byte

Byte 8—Coefficient D low byte

Byte 9—Coefficient E high byte

Byte 10—Coefficient E low byte

Byte 11—Coefficient F high Byte

Byte 12—Coefficient F low Byte

No checksum or error checking is done in the communication protocol. The “ v ” command is implemented instead. When the
control sees “ v ” , it transmits the values stored in the flash. The data is sent in the order shown above; starting with Byte 1 up
through Byte 12. This command verifies the communication protocol and also verifies the flash writing routines.

5 MC9S08QE8 Pin-outs
Figure 5 shows the connections between the 16-pin QE8 and an eight-wire touchscreen as used in the sample code. Pin 6, PTB6
is labeled as a GPIO. This pin is used in the sample code as an output and controlled by the PTBD_PTBD6 variable. An
oscilloscope was attached to this pin and used for debugging and to measure the timing of the various functions in the code.

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
Freescale Semiconductor, Inc.8

MC9S08QE8 Pin-outs

Pins 3 and 4 are power and ground. Pin 1 is for an external reset. It can be used as a general purpose input, if no external reset
is needed. Pin 2 is for background debugging and programming. This pin can also be used as a general purpose output. Pin 5
is another unused GPIO.

1 - /RST

2 BKGD

3 - Vdd

4 - Vss

5 PTB7

6 PTB6

7 PTB5

8 PTB4

PTA0 - 16

PTA1 - 15

PTA2 - 14

PTA3 - 13

RXD- 12

TXD- 11

PTB2- 10

PTB3- 9

Y+

Y- X+

X-

Y- sense

X- sense

Y+ sense

X+ sense

RXD

TXDgpio

Figure 5.Touchscreen connections to the QE8

6 Sample Code Flowchart
This is the flowchart for the main loop in the sample code.

Measure raw x and y coordinates

Run the raw coordinates through
the calibration routine

Has the
refresh
timer

expired?

Zero the refresh timer

Is pen-down
detected? Transmit coordinates

1st set of
readings

Transmit previous coordinates

1st set of
readings

Go to sleep

After new pen-down
wakeup
signal

Y

N

Y

Y

N

N

N

Y

Debounce the pen-down pin
and process any RX data

Figure 6. Flowchart

7 Reference Material
MC9S08QE8 Datasheet—Freescale Website

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
9Freescale Semiconductor, Inc.

Sample Code Flowchart

MC9S08QE8 Reference Manual—Freescale Website

8 Acronyms
ADC—Analog digital converter

A/D—Analog digital converter

COP—Computer operating properly

GPIO—General purpose input/output

ISR—Interrupt service routine

KBI—Key board interrupt

NVM—Non-volatile memory (flash)

QG8— MC9S08QG8 microcontroller

SCI—Serial communication interface – aUART port

Vdd—Power rail – typically 3.3 Volts

Vss—Ground rail

Resistive Touchscreen Controller Using the S08 Family, Rev. 0, 3/2010
Freescale Semiconductor, Inc.10

Acronyms

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4057
Rev. 0, 3/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc.2010. All rights reserved.

	Introduction
	Resistive Touchscreen Fundamentals
	Four-Wire Touchscreen Interface
	Eight-Wire Touchscreen Interface
	Five-Wire Interface

	Resistive Touchscreen Application Considerations
	Conversion Resolution
	Environment Impact
	Noise
	Coordinate Median Filtering
	Sampling Delay
	Pen-Up, Pen-Down Debounce

	Calibrations
	Resistive Losses
	Touchscreen and Display Misalignment
	Normalization

	Coordinate Refresh Rate

	Communication
	Serial Communication Interface (SCI)
	Protocol
	Transmitting
	Receiving

	MC9S08QE8 Pin-outs
	Sample Code Flowchart
	Reference Material
	Acronyms

