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Many of Freescale Semiconductor’s PowerPC cores, 
including both the e600 and e500v2 processor families and 
their derivatives, provide support for 36-bit physical 
addressing. This support enables the processor core to access 
64 Gbytes of physical address space, increasing the amount 
of memory and device address space supported by the 
system. This is increasingly necessary as more and more 
embedded systems require large amounts of memory. 

This document explains how to enable and utilize 36-bit 
physical addressing. In particular, it describes the 36-bit 
capabilities of the e600 and e500v2, and later processor 
families. It also details how U-Boot and Linux have been 
modified to support this feature and explains the limitations 
of this support.

Note that the U-Boot and Linux descriptions specified in the 
document only describe the operation of the software as 
implemented for platforms based on the e600 and e500 
processor families.
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Understanding Addressing

1 Understanding Addressing
Addressing and memory management in a computer system is a difficult topic that is largely beyond the 
scope of this document. This section explains some of the basic concepts that are essential to understand 
in order to develop system-level software that utilizes 36-bit physical addressing.

1.1 Addressing Definitions
In order to understand 36-bit physical addressing support, it is first necessary to understand the different 
types of addresses used by a PowerPC processor and how each address is used. The different address types 
include the effective address, virtual address, and the physical (or real) address. 

An effective address is the address that is used by a program to access storage. On a 32-bit processor, an 
effective address is 32 bit. Thus, 32 bits worth of address space, or 4 Gbytes, is the maximum amount of 
address space reachable at one time by a single user process on a 32-bit processor. An operating system 
may further restrict this amount as described later in this document.

A virtual address, as defined by the PowerPC architecture, is an intermediate address that is generated by 
the processor core during the address translation process. Whenever a program performs a storage access 
operation (for example, loads and stores), the processor core’s Memory Management Unit, or MMU, 
creates a larger virtual address by concatenating an implementation-dependent number of bits to the 
effective address that represent the process context, along with some other information. This virtual 
address is then used to translate the address into a physical address.

A physical (or real) address is the address obtained when the virtual address is translated by the MMU 
using address mappings programmed by operating system software. The physical address is then sent on 
to the memory subsystem, and is used to access memory and devices such as PCI. A physical address 
corresponds to some physical resource in the system. Physical addresses are not generally visible to 
software except where they are used by the operating system to set up virtual address mappings in the 
MMU.

Note that the physical address may be larger than effective addresses, as is the case on 32-bit PowerPC 
processors that support 36-bit physical addressing. The operating system manages the larger physical 
space as described in Section 1.2, “Addressing in User Software,” and the increase in physical address size 
is invisible to user processes.

For a detailed explanation of the PowerPC address translation process, refer to the user’s manual for the 
specific processor family of interest. 85xx and 86xx processors have very different MMU 
implementations, but the concepts are the same.

1.2 Addressing in User Software
User programs are generally unaware of the location or layout of physical memory in a computer system. 
This would put a huge burden on the application programmer. Instead, it is the job of the operating system 
to utilize the processor’s MMU hardware to provide a memory management scheme that hides the details 
of physical memory from the user program. This allows the user program to see a flat, apparently 
contiguous 32-bit address space.
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In reality, though, the memory accessed by a user program may be scattered throughout physical memory, 
and it may be located anywhere in the physical memory space. In the case of a system that supports 36-bit 
physical addresses, the user program’s memory may exist, in all or in part, at physical addresses that are 
greater than 32 bits. As an example, the physical memory layout for a simplified 32-bit process on a system 
with more than 4 Gbytes of memory may look like Figure 1.

Figure 1. Process Memory Layout

The operating system constructs a table of effective to physical addresses for each process, and uses this 
table to set up MMU mappings in the processor that allows the user process to see the memory as part of 
its 32-bit effective address space, regardless of its actual physical location. Whenever a user program 
performs a memory access, the 32-bit effective address is translated by the MMU to a 36-bit physical 
address that is used to access the physical memory.

As physical (real) addresses are never used directly by a user program, and because the effective address 
is limited to 32 bits, a user program can only ever access 32 bits, or 4 Gbytes, of the address space at one 
time. Systems may place further limits on the amount of address space a user program can access, as 
described below. Because user programs do not use physical addresses, no change to a user program is 
required to run on a system with 36-bit physical addressing.

Note that even though individual processes have an effective address space that is limited to 32 bits, it is 
still possible to make use of the large amounts of memory in a system. This is because most modern 
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operating systems provide the ability to have multiple processes, each accessing 32 bits (or less, depending 
on operating system constraints) of address space. Having multiple processes allows the large amounts of 
memory supported by cores that implement 36-bit physical addressing support to be used.

2 Hardware Support Overview
Hardware support for 36-bit physical addressing consists of two main parts: PowerPC Core support and 
SOC support. The following sections give an overview of the specific hardware capabilities for each of 
which a system software programmer should be aware.

2.1 PowerPC Core Hardware Support
The MMU of PowerPC cores that support 36-bit physical addressing allows a 32-bit effective address to 
be translated into a 36-bit physical address. In most cases, this simply means that the core data structures 
that control the operation and programming of the MMU have been expanded to accommodate an 
additional 4 bits of physical address. The system-level software-visible changes to each core are 
highlighted below. Refer to the relevant core reference manual for the details on how these changes impact 
address translation and how each is used.

For e600 cores, the changes include: 

• The extended addressing enable (XAEN) bit in HID0, which enables the processor to use 36-bit 
physical addresses. When this is disabled, the processor only uses 32 bits of physical address

• An additional 3 bits of physical address (HTABEXT) and an additional 4 bits of mask (HTMEXT) 
in SDR1

• An additional 4 bits of real page number (RPN) in the lower BAT register, represented by the 
BXPN and BX fields

• Support for an extended block size in the upper BAT register, represented by the XBL field

• An additional 4 bits of RPN in the hardware page table entry (PTE), represented by the XPN and 
X fields

• An additional 4 bits of RPN in the translation lookaside buffer (TLB), represented by the XPN and 
X fields

• An additional 4 bits of physical address in the PTELO register, represented by the XPN and X 
fields. Note that this register is only used when a software page table walk is in effect. Most 
operating systems utilize the processor’s hardware page table walk feature.

For e500v2 and later cores, the changes include:

• An additional 4 bits of RPN in the TLB entries

• An additional 4 bits of RPN for programming/reading the TLB entries, stored in MAS7

• The EN_MAS7_UPDATE bit in HID0, which enables MAS7 updates when a TLB read or search 
instruction is executed
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2.2 System on a Chip (SOC) Details
In addition to the core support for 36-bit physical addressing, the SOC must also provide capabilities for 
accessing devices in 36-bit physical space. The software-visible aspects of this support may include:

• Local access windows (LAWs) that support 36-bit physical addresses and specify the target 
mapping for physical accesses.

• Address translation and mapping unit (ATMU) support for large physical addresses. Interfaces 
such as PCI Express and serial RapidIO use inbound and outbound windows to translate addresses 
between the local address space to the PCI Express or serial RapidIO address space.

• DDR controllers that are capable of dealing with more than 4 Gbytes of memory.

• Additional bits in the local bus controller (LBC) configuration registers to allow access to 
larger-sized address spaces. The number of additional bits may be less than 4; for example, the 
MPC8641 LBC supports 34 bits of address.

• Support for programming the configuration, control, and status base address register (CCSRBAR) 
for 36-bit physical space.

2.3 PCI Express Address Translation
Some interfaces such as PCI Express and serial RapidIO provide address translation and mapping units 
(ATMUs) to translate addresses between the internal platform address space and the interface’s private 
address space. As mentioned above, the move to 36-bit physical addressing can impact the programming 
of these ATMUs. In order to understand this, one must first fully understand how these ATMUs work, and 
how they fit into the overall address translation scheme.

Consider the PCI Express ATMU as an example. The PCI Express controllers on parts such as the 
MPC8572 and the MCP8641 provide a connection to the PCI Express bus to which various PCI devices 
may be attached. These PCI Express controllers support both 32- and 64-bit PCI devices. The PCI Express 
bus has its own 64-bit address space that is used by the devices on the PCI Express bus, and mappings 
to/from this address space from/to the rest of the system are defined by the inbound and outbound ATMU 
windows.

The inbound ATMU windows provide a translation mechanism for transactions issued from PCI space to 
the internal platform, while outbound windows provide a mapping for transactions issued to PCI Express. 
The outbound windows are typically set up to map the PCI Express MMIO space to allow incoming 
transactions access to this space. Likewise, the inbound windows typically map the system memory to 
allow outgoing PCI Express transactions to access memory. This means that the 64-bit PCI Express 
address is split between outbound mappings for PCI Express memory-mapped IO (MMIO) and inbound 
mappings for system memory. 

Since all PCI devices are not capable of accessing all 64 bits of the PCI Express address space, anything 
that needs to be reachable by all PCI devices must be mapped by software into the low 32 bits of the PCI 
Express address space.



Utilizing 36-Bit Physical Addressing in U-Boot and Linux, Rev. 0

6 Freescale Semiconductor
 

Hardware Support Overview

A typical 64-bit PCI Express address space layout is depicted in Figure 2.

Figure 2. Example PCI Express Address Map

In Figure 2, the first 3.5 Gbytes of the PCI Express address space from 0x00000000_00000000 to 
0x00000000_DFFFFFFF is allocated to map system memory. The next 512 Mbytes from 
0x00000000_E0000000 to 0x00000000_FFFFFFFF is dedicated to PCI Express MMIO. At this point, the 
limit of the 32-bit PCI Express address space is reached, and any mapping beyond this point is not usable 
by 32-bit PCI devices. More system memory can be mapped beyond 32-bit space, but it is only visible to 
64-bit capable PCI devices, and an operating system may or may not support a hole in the PCI system 
memory mapping (Linux does not as of version 2.6.31).

Using the example of PCI Express address map above, the inbound windows for the PCI Express controller 
would be programmed to map the first 3.5 Gbytes of system memory from the PCI address space to its 
physical address in the system (specified by the memory map for the board). For Linux and U-Boot, the 
system memory is usually located at physical address 0, so the inbound windows would be programmed 
to start at 0. Depending on the maximum window size supported, it may take more than one window to 
map in the 3.5 Gbytes. The outbound windows are programmed such that the PCI Express MMIO, located 
at 0x00000000_E0000000 on the PCI bus in this example, is mapped into the 36-bit physical space at the 
location specified by the board’s memory map. In this example, that location would be 0xC_00000000. 

In this example, because a maximum of 3.5 Gbytes of system memory is mapped into the PCI Express 
address space, PCI devices cannot directly access system memory beyond the 3.5 Gbyte point. When 
access above 3.5 Gbytes is required, the operating system software must intervene. For Linux, this 
intervention is explained in Section 5.2, “SWIOTLB Bounce Buffering Support.”

System Memory

PCI Express MMIO

System Memory

0x00000000_E0000000

0x00000000_FFFFFFFF

0xFFFFFFFF_FFFFFFFF

0x00000000_00000000



Utilizing 36-Bit Physical Addressing in U-Boot and Linux, Rev. 0

Freescale Semiconductor 7
 

Utilizing 36-Bit Physical Addressing in U-Boot

2.4 Address Translation Examples
With all the different layers of address mappings and translations, it can be difficult to understand the full 
path an access might take from the time a program accesses an effective address to the point where 
hardware is accessed, particularly when looking at 36-bit physical addressing. This section provides a 
couple of quick examples of different translation paths that might be used.

One of the simplest examples is how a user process accesses memory. The user process accesses a 32-bit 
effective address. This address is then formed by the processor into a virtual address as described in 
Section 1.2, “Addressing in User Software.” The processor matches this virtual address against the 
MMU’s translation entries to produce a 36-bit physical address. The 36-bit address is then matched against 
the LAW entries that point the access to the memory controller. The memory controller then uses the 
address to access memory.

However, accessing the PCI MMIO space is slightly more complicated. As above, a 32-bit effective 
address is used by software, which is again translated into a 36-bit physical address by the MMU. This 
physical address is then matched against the LAWs to determine that the access should be processed by 
the PCI Express controller. The PCI Express controller then uses the outbound ATMU entries to determine 
what 64-bit address on the local PCI Express bus corresponds to the 36-bit physical address presented to 
the interface. Finally, this 64-bit PCI Express address is used to access PCI Express MMIO space. 

3 Utilizing 36-Bit Physical Addressing in U-Boot
The U-Boot boot loader is widely available for the various PowerPC processor families, and provides 
support for utilizing 36-bit physical addressing starting with version v2009.06. 

This section details the 36-bit memory map considerations and explains how U-Boot uses the MMU. It 
also discusses how to build a 36-bit capable U-Boot. 

3.1 Memory Map
Each board configuration supported by U-Boot must specify a memory map that details the allocation of 
the 36-bit physical address space. On most of the 32-bit PowerPC configurations, U-Boot utilizes 
one-to-one mappings for the address space; that is, the effective address and the physical address are 
always equal. As an example, consider the 32-bit memory map for the MPC8641 HPCN platform with PCI 
enabled as shown in Table 1.

Table 1. 32-bit MPC8641 HPCN Memory Map

Effective Physical Device Size

 0x0000_0000 0x0000_0000 DDR memory 2 Gbyte

0x8000_0000 0x8000_0000 PCI1/PCI Express 1 MEM 512 Mbyte

0xA000_0000 0xA000_0000 PCI2/PCI Express 2 MEM 512 Mbyte

0xFFE0_0000 0xFFE0_0000 CCSR 1 Mbyte

0xFFDF_0000 0xFFDF_0000 PIXIS 8 Kbyte

0xFFDF_8000 0xFFDF_8000 Compact Flash 8 Kbyte
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On switching to a 36-bit physical addressing, this one-to-one mapping is no longer possible if the devices 
above 32 bits need to be placed because the physical address space is larger than the effective address 
space. Therefore, a new memory map for the board must be established. Using MPC8641 HPCN as an 
example, the new memory map is shown in Table 2.

The effective addresses remain the same as for the 32-bit implementation, but with the exception of 
memory, the devices are all located at physical addresses above 32 bits. This physical memory placement 
is intentional, and allows for large amounts of memory to be present and contiguous starting at 0. This 
memory placement is more important to Linux than U-Boot; U-Boot is only able to access as much 
memory as it has effective address space allocated for memory, but it sets things up correctly so that Linux 
may make use of larger amounts of memory once it begins to use paging.

Note that many devices power up at a default location that differs from the desired final location. These 
devices are carefully moved into high physical address space during the U-Boot initialization process in 
order to establish this memory map. 

3.2 MMU Setup
U-Boot does not provide sophisticated memory management features like demand paging. Instead, U-Boot 
utilizes fixed mappings for any memory or devices it needs to access. These fixed MMU mappings are 

0xF840_0000 0xF840_0000 Stack space 32 Kbyte

0xFFC0_0000 0xFFC0_0000 PCI1/PCI Express 1 IO 64 Kbyte

0xFFC1_0000 0xFFC1_0000 PCI2/PCI Express 2 IO 64 Kbyte

0xEF80_0000 0xEF80_8000 Flash 8 Mbyte

Table 2. 36-bit MPC8641 HPCN Memory Map

Effective Physical Device Size

 0x0000_0000 0x0_0000_0000 DDR memory 2 Gbyte

0x8000_0000 0xC_0000_0000 PCI1/PCI Express1 MEM 512 Mbyte

0xA000_0000 0xC_2000_0000 PCI2/PCI Express2 MEM 512 Mbyte

0xFFE0_0000 0xF_FFE0_0000 CCSR 1 Mbyte

0xFFDF_0000 0xF_FFDF_0000 PIXIS 8 Kbyte

0xFFDF_8000 0xF_FFDF_8000 Compact Flash 8 Kbyte

0xF840_0000 0xF_F840_0000 Stack space 32 Kbyte

0xFFC0_0000 0xF_FFC0_0000 PCI1/PCI Express 1 IO 64 Kbyte

0xFFC1_0000 0xF_FFC1_0000 PCI2/PCI Express 2 IO 64 Kbyte

0xEF80_0000 0xF_EF80_8000 Flash 8 Mbyte

Table 1. 32-bit MPC8641 HPCN Memory Map (continued)

Effective Physical Device Size
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created using the BAT registers on e600 family processors, or using the variable-sized TLB array (TLB1) 
on e500 family processors. Devices and memory are mapped into the effective address space according to 
the memory map for the board as described in Section 3.1, “Memory Map.” These mappings are for 
U-Boot’s use only; Linux reprograms the MMU after it takes over the processor.

3.3 U-Boot Initialization
One of the most important jobs of U-Boot is to set up some of the hardware features that are used by an 
operating system. In particular, U-Boot must set up the local access windows (LAWs), the LBC, and the 
PCI or serial RapidIO (SRIO) ATMU to match the memory map that has been specified for a board. 
Without this setup, devices are inaccessible.

The LAWs contain information that specifies the target device for ranges of addresses. The effective 
address used by a process is translated into a physical address by the processor’s MMU. The physical 
address goes out on the bus and is matched against the LAWs to determine which device should respond 
to the transaction. These windows must be correctly programmed with the physical address range assigned 
to each device in the memory map. 

The PCI and SRIO interfaces provide an ATMU. One of the functions of the ATMU is to translate between 
external addresses and addresses within the local PCI or SRIO address space. These mappings must also 
be changed to support the new 36-bit physical memory map.

Many of th Freescale Semiconductor’s SOCs provide an LBC that must also be configured for 36-bit 
addressing. Unfortunately, the LBC does not usually support the full 36 bits of physical address space 
(refer to the SOC documentation for specific information about the LBC on a particular chip). Therefore, 
the LBC should be configured for as many address bits as it supports. The lack of a full 36 bits of address 
at the LBC is not generally an issue, because the LBC does not require large amounts of address space.

Linux does not modify the LAW and LBC setup, so it is important that these are correctly initialized by 
U-Boot. The PCI and SRIO ATMU settings are changed by Linux at boot time.

3.4 Building a 36-bit U-Boot
Each board that supports 36-bit physical addressing provides a make configuration option that 
automatically builds a U-Boot with a 36-bit memory map and support for 36-bit physical addressing. For 
the Freescale boards that have both a 32- and 36-bit configuration, the configuration name is same as the 
32-bit configuration version, but with “_36BIT_” added. As an example, to configure a 32-bit U-Boot for 
the MPC8641 HPCN, the command is make MPC8641HPCN_config. To make a 36-bit U-Boot, the command 
becomes make MPC8641HPCN_36BIT_config. Note that some platforms may always enable 36-bit support; 
for those platforms, the standard <boardname>_config file enables this option.

The underlying configuration option that enables large physical addressing is CONFIG_PHYS_64BIT. To 
add a 36-bit make configuration option for a board with existing 32-bit support, commands should be 
added to U-Boot’s global Makefile that set this configuration option, and then complete the board 
configuration using the standard configuration file for the board. The actual configuration file should never 
be duplicated to accomplish this.
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3.5 U-Boot Memory Usage Limitations
As the effective address space is still only 32 bits and U-Boot does not demand paging, in many cases, all 
the memory in a system cannot be mapped by U-Boot. The specific limitation for a particular platform can 
be determined by looking at the fixed MMU mapping the platform sets up to map memory (through a BAT 
register or variable-size TLB array entry). The implication of this limitation is that it is not possible to 
access the portion of the memory that is not mapped, and it is not possible to do a memory test on the entire 
memory. However, a 36-bit-enabled U-Boot correctly initializes the DDR controller and reports the correct 
memory size to Linux, so that Linux is capable of using all of the memory. 

4 36-Bit Addressing in the Device Tree
In order to utilize the 36-bit support in Linux, each platform must provide a 36-bit device tree (.dts file) 
that describes the various devices in the system and how they are mapped. Since there are numerous 
quantities in the device tree that represent CPU physical addresses and sizes of large areas, the .dts file 
must be updated now that these quantities are larger. This section details some of these changes and 
provide some examples.

For more information about:

• the device tree as used by Linux, refer to documentation/powerpc/booting-without-of.txt in the 
Linux source tree.

• the device tree and node definitions, see the URL for embedded Power Architecture® platform 
requirements (ePAPR) at http://www.power.org/resources/downloads.

4.1 #address-cells and #size-cells
Each device tree provides a top-level bus #address-cells and #size-cells that describe the format of an 
address and is applied to the direct children of the top-level bus. This value represents the number of 32-bit 
quantities, or “cells”, that are required to represent an address and to indicate the size of address regions. 
Many 32-bit device trees define #address-cells and #size-cells to be 1; however, for a 36-bit physical 
configuration, these must be changed to 2 to accommodate the additional address bits and larger supported 
sizes. 

Generally, only the top-level #address-cells and #size-cells in a .dts file must be updated to support 36-bit 
addressing – lower-level addresses and sizes specify quantities within the bus, so unless a bus requires 
more than 4 Gbytes of address space, those quantities need not change.

Note that some 32-bit device trees are already using a “2” value – in this case the extra bits are just set to 
0. This makes it easier to look at the differences between a 32- and 36-bit device trees and can reduce code 
maintenance. This is now the preferred method for specifying 32-bit device trees.

4.2 reg Property
The format of the reg property varies depending on the parent node, but in many cases, the reg property 
consists of a physical address and a size. The size of these values is determined by #address-cells and 
#size-cells as explained above. Therefore, any node that is impacted by a #address-cells and #size-cells 

http://www.power.org/resources/downloads
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change and which has a reg property that contains a physical address also requires a change to the reg 
property. As an example, consider this change to the reg property of the MPC8641HPCN pci0 node:

reg = <0xffe08000 0x1000>;

becomes

reg = <0x0f 0xffe08000 0x0 0x1000>;

4.3 Unit Addresses
Each node in the device tree has a unit name, which is a unique identifier for the node. As part of this unit 
name, many nodes specify a unit address for the device they represent. The unit address is the numerical 
portion of the unit name which follows the “@” character. The unit address contains the address of the first 
reg property of the device. For example:

pci0: pcie@ffe08000 {

in the 32-bit .dts for the MPC8641 HPCN becomes

pci0: pcie@fffe08000 {

when switching to a 36-bit memory map. 

4.4 Ranges Property
The ranges property is used to translate addresses into the parent bus address. A typical ranges property 
consists of:

bus address, parent bus address, size

The format of the bus address and parent bus address varies by device and parent bus. If either of those 
quantities has become larger as the result of the conversion to 36-bit physical addressing, then these values 
must be updated. An example of this is the PCI node on the MPC8641 HPCN. The bus address format for 
the node does not change on going to 36-bit physical addressing, but the parent bus address represents a 
CPU physical address that must now be expanded to hold the additional address bits. Thus, given the 
memory map listed earlier, and adding support for the larger, different CPU physical addresses,

               ranges = <0x02000000 0x0 0x80000000 0x80000000 0x0 0x20000000

                         0x01000000 0x0 0x00000000 0xFFC00000 0x0 0x00010000>;

becomes

               ranges = <0x02000000 0x0 0x80000000 0x0C 0x00000000 0x0 0x20000000

                         0x01000000 0x0 0x00000000 0x0F 0xFFC00000 0x0 0x00010000>;

In this example, the bus address consists of three cells (0x02000000 0x0 0x80000000) that are unmodified. 
The parent bus address, which is 0x80000000, in the example, is increased in size by one cell and changed 
to accommodate the new physical address space layout and becomes 0x0C 0x00000000. The size field, 
which was already two cells, remains unchanged.
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5 Enabling and Utilizing 36-Bit Addressing in Linux
The Linux support for 36-bit physical addressing is available as of version 2.6.31 and consists of 4 
components. These components are:

• Core Kernel MMU Modifications

• SWIOTLB Bounce Buffering Support

• Platform-specific 36-bit Support

• Device Driver Changes

This section explains each of these components, and, for the platform-specific and device driver sections, 
gives some hints about how to enable new platforms and devices. It describes how to build a Linux kernel 
with full 36-bit support enabled, and also explains Linux limits on process size. In addition, it briefly 
discusses the performance implications of 36-bit physical addressing support.

5.1 Core Kernel MMU Modifications
Since it is the job of the Linux memory management code to allocate and track physical addresses, this 
code must be updated to understand larger physical addresses. In general, this means that the kernel data 
structures that represent effective-to-real translations must be increased in size to accommodate the 
increased number of address bits. The kernel must also deal with the fact that it is possible that there is 
more memory in the system than many of the devices can access for DMA operations. The kernel provides 
SWIOTLB bounce buffering support to allow the affected devices to operate correctly.

5.2 SWIOTLB Bounce Buffering Support
Many devices that have DMA capability do not have the ability to address the entire 36-bit physical 
address space. For example, many PCI devices only support 32 bits of address. This means that these 
devices cannot directly DMA to the entire address space. To deal with this problem, the kernel provides 
DMA bounce buffering capability known as SWIOTLB. 

The data structure in Linux that represents a device contains a list of pointers to a set of DMA operations. 
During boot, the kernel looks at the properties of the device and at how much memory the system has, and 
decides if a device cannot address all of memory for DMA transfers. If it is determined that a device cannot 
access all of memory, then the DMA operations for the device are set to point to the SWIOTLB 
implementation instead of pointing to the normal direct DMA operations.

The concept of the SWIOTLB bounce buffering code is simple. Whenever a DMA is attempted to or from 
an address that is not directly accessible by a device, the kernel provides a temporary buffer for the device 
to use. All operations occur to that temporary buffer. Data is copied to or from the original DMA location 
by the kernel as needed. Depending on the direction of the DMA operation (DMA_TO_DEVICE, 
DMA_FROM_DEVICE, DMA_BIDIRECTIONAL), data may be written when a page is mapped or 
unmapped (or both, for DMA_BIDIRECTIONAL). Data is also read from or written to the original DMA 
location whenever any of the DMA synchronization operations are performed.

The address boundary at which a device must utilize bounce buffering is device-dependent. For simple 
platform devices, the bounce buffering point is usually the address width of the device. That is, 32-bit 
devices must bounce buffer accesses that require more than 32 bits to address. However, for some devices, 
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determining the point at which a device must begin to use the SWIOTLB facilities is slightly more 
complicated, and a bus or controller may place additional limits on the addresses that devices can directly 
access.

For example, as PCI Express controllers have their own internal address space (as discussed in Section 2.3, 
“PCI Express Address Translation”) and part of this address space is for PCI Express MMIO, the 
maximum address that can be directly accessed is reduced. Using the example, PCI Express address map 
that is 512 Mbytes, is reserved for the MMIO; so, 3.5 Gbytes is the maximum address directly addressable 
by 32-bit PCI devices. Accesses above this point must bounce buffer. The Linux kernel looks at the size 
of the PCI controller’s windows and use this information to figure out when bounce buffering must occur.

NOTE
There is a kernel limitation in version 2.6.31 that causes 64-bit PCI devices 
to bounce buffer as if they were only 32-bit capable. This will be addressed 
in a future version of Linux.

5.3 Platform-Specific 36-Bit Support
Because the bulk of the kernel support for 36-bit is either completely generic code, or PowerPC 
architecture code, enabling an existing platform to support 36-bit physical addressing is relatively simple.  
The platform code must be changed in order to allow proper setup of DMA operations and to enable the 
SWIOTLB bounce buffering support for the platform as follows:

• Add select SWIOTLB to the platform in arch/powerpc/platform/<platform family>/Kconfig

• Add code to the architecture setup function for the platform to change the default set of PCI DMA 
operations to use the SWIOTLB versions if the PCI window setup and the amount of memory in 
the system warrant it.

• Register the SWIOTLB bus notifier, which enables proper setup of the DMA API function pointers 
for platform devices.

The following commits in the public Linux tree can be utilized as reference examples:

• powerpc/85xx: Add SWIOTLB support to FSL boards located at 
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=152d0182822e871a3f
e1f6d97949d83fad950e26.

• powerpc: Add 86xx support for SWIOTLB located at 
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=5cef379b34ffcd96567
066ddc1012bd40e6e7675.

5.4 Device Driver Changes
Correctly written Linux device drivers should require no modifications to work in a 36-bit physical 
configuration. Unfortunately, correctly written device drivers are not the norm. There are three key 
problems that should be looked for when making a driver 36-bit compliant:

• Assumption of 32-bit values for DMA addresses and physical addresses

• Non-adherence to the DMA API

• Passing incorrect/NULL dev pointer to the DMA API functions

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=5cef379b34ffcd96567066ddc1012bd40e6e7675
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=152d0182822e871a3fe1f6d97949d83fad950e26
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Device drivers often require knowledge of the physical address of areas in system memory. Drivers for 
devices that support direct memory access also use a type of address known as a DMA address to represent 
the device’s view of the address of a location in system memory. The DMA address for a region is often 
the same as the physical address, but may differ by a simple offset or other mechanism depending on the 
device.

On a system that utilizes 36-bit physical addresses and has more than 4 Gbytes of system memory, a driver 
must represent DMA addresses and physical addresses as 36-bit quantities. However, many driver writers 
make the assumption that DMA addresses and physical addresses are always 32 bits and can be 
represented by unsigned int or unsigned long data types. Use of these data types causes the driver to fail 
any time an access is  to 36-bit space, since there are not enough bits in these data types to contain the 
entire address.

The Linux kernel hides possible variations in DMA and physical address size by providing the 
dma_addr_t and phys_addr_t data types. These data types are correctly sized based on the kernel 
configuration and should be used whenever a DMA address or physical address must be represented.  
These types should also be used for mask quantities and for temporary variables that hold the result of 
operations on DMA and physical addresses.

Note that aside from the portions of driver code that require direct knowledge of DMA addresses and 
physical addresses (which, for example, may include device setup code, ioremap(), and DMA API calls), 
a driver uses 32-bit effective addresses that are automatically translated into 36-bit physical addresses 
using the processor’s MMU address translation tables. In this case, the driver behaves like any other piece 
of code that uses effective addresses, and no other changes are required since this type of code has no 
visibility into the physical location of system memory buffers.

The second common problem is finding that device drivers do not conform to the DMA API, as 
documented in the Linux kernel tree in Documentation/DMA-API.txt.  The DMA API specifies that for 
every DMA map operation, there should be a corresponding unmap operation. In addition, it requires that 
DMA sync operations should be utilized whenever the driver requires data from the device to be seen by 
the CPU, and vice-versa. Following the DMA API is important because the SWIOTLB bounce-buffering 
technique relies on this API – if it not followed, data can be lost or delayed, since there may be an 
intermediate copy of the data that has to be synchronized before it is seen. 

Another common driver issue is passing incorrect arguments to the DMA API functions. Older kernels did 
not always use the dev pointer that is often passed into these functions, and many device drivers pass 
NULL or an incorrect value in this field. The kernel has been modified to warn in the NULL case, but 
drivers that pass incorrect pointers may see more subtle symptoms such as timeouts and dropped data.

5.5 32-Bit Process Size Limits in PowerPC Linux
User processes are limited to a 32-bit effective address space, which would imply that the maximum size 
of a user process is 4 Gbytes. However, PowerPC Linux further limits the amount of memory a single user 
process can access because it splits the 32-bit effective address space into two chunks (note that Linux 
implementations for other architectures may behave differently). The first chunk is used for private, 
non-global mappings that are not visible to all process contexts. These types of translations allow multiple 
processes to use the same effective addresses yet have process-specific translations in the MMU. This 
works because the process context is part of the information that is concatenated with an effective address 
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to create a virtual address, which is matched against MMU translation entries to determine if an entry can 
be used to translate an address. If the process context information does not match, the translation is not 
used. 

The second chunk of the effective address space is used for global mappings. A global mapping is a special 
type of MMU translation entry that is valid in all contexts. With a global mapping, the translation entry 
matches to all process contexts. Linux uses this global mapping to map in a large chunk of memory that 
contains the operating system itself as well as free memory space. This mapping is protected from 
unwanted accesses by user processes because the MMU translation for this region has user-mode access 
disabled. 

In general, on PowerPC systems, the global kernel mapping uses the highest 1 Gbytes of the effective 
address space. This means that user processes are limited to 3 Gbytes in size. Therefore, a process may not 
access more than 3 Gbytes of memory at one time. If an application requires more than 3 Gbytes, it must 
either be broken up into multiple processes, or it must implement its own memory management scheme to 
map memory in and out of the process address space as needed, such that no more than 3 Gbytes of 
memory is mapped at any particular time. 

A detailed explanation of why Linux and many other operating systems require this type of global mapping 
for the kernel is beyond the scope of this paper. The important thing to understand is that the size of a single 
process is limited to 3 Gbytes. It is possible to change certain kernel parameters and rebuild the kernel to 
allow for a larger process size. Although there may be some circumstances in which this is helpful, it is 
not generally recommended.

While it is true that individual processes are limited to 3 Gbytes in size under Linux, having 36-bit physical 
addressing allows more memory to exist in the system, which allows multiple large processes to exist at 
once without swapping to disk. This greatly improves overall system performance because disk accesses 
are much slower than accesses to system memory.

5.6 The ioremap() Function
The ioremap() function in Linux is used to map physical addresses into the kernel virtual address space.  
Device drivers commonly use ioremap()to map in a physical range of device memory. The ioremap() 
call continues to function exactly as it did before the introduction of 36-bit physical addressing, except that 
the physical address passed into the function can be in 36-bit space, because the phys_addr_t data type 
used to pass the physical address to ioremap()accommodates the larger data type. The ioremap()call 
returns a 32-bit virtual address that the driver uses to access the area normally.

Note that the limits on how much address space a driver can ioremap()are no different than with a Linux 
kernel that does not support 36-bit physical addressing. This is because the available kernel virtual address 
space, not the physical address space, is the limiting factor for how much memory a device can ioremap(). 
The kernel usually reserves the top 1 Gbytes of the 32-bit virtual address space to use for kernel mappings. 
Of this 1 Gbyte, 756 Mbytes is usually used for the kernel’s linear mapping of the first 758 Mbytes of 
memory. This leaves 256 Mbytes available in the kernel’s virtual address space for dynamic mappings, 
such as those created with vmalloc() and ioremap(). This means that the maximum amount of memory 
a driver can ioremap()at one time is less than 256 Mbytes. 
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5.7 Building 36-Bit Linux Kernels
There are two configuration options that enable 36-bit physical support in Linux. They are 
CONFIG_PHYS_64BIT and CONFIG_SWIOTLB.

CONFIG_PHYS_64BIT can be enabled by selecting “Large physical address support” in the top-level 
“Processor Support” menu. This option enables the core support for 36-bit physical addressing and causes 
phys_addr_t and dma_addr_t to be 64-bit wide.

CONFIG_SWIOTLB is required in systems with large amounts of memory and enables software bounce 
buffering of DMA accesses. The exact amount of memory at which CONFIG_SWIOTLB is required 
varies per platform. Since the kernel determines when bounce buffering is necessary and only bounces 
those addresses that are above the bounce buffering point, kernel builds for platforms with 36-bit support 
automatically enables this option.

In summary, to build a 36-bit enabled kernel:

• Run make <defconfig> for the platform

• Run make menuconfig, select “Processor Support”, and enable “Large physical address support”

• Run make

5.8 Performance Implications of 36-Bit Physical Addressing
The performance implication of running with a 36-bit enabled Linux kernel varies according to the board 
configuration and the pattern of the DMA operations occurring in the system. In general, aside from a 
slightly increased kernel size, there is often no measurable performance hit from simply enabling 36-bit 
physical addressing in the kernel. All accesses (DMA and non-DMA) below the bounce buffering point 
and non-DMA accesses above 32 bits incurs very little, if any performance penalty. Some types of 
programs with large numbers of TLB misses may notice a small performance penalty due to the increased 
size of the page table and the slight instruction count in the TLB miss handler.

DMA accesses, however, may see a significant performance hit, depending on the physical address of the 
access. Whenever a DMA access must bounce buffer, it essentially requires all the DMA data to be copied 
into or out of the kernel space when certain kinds of DMA accesses are performed. This incurs a significant 
performance penalty. How often this occurs depends on the addresses to which a device must DMA.   
Device drivers that allocate all of their memory in low memory never bounces buffer and does not see any 
performance hit. However, in many cases, devices must perform DMA operations to memory that was not 
allocated by the device driver itself, and it is possible for those memory locations to require bounce 
buffering. There is no way to prevent these types of accesses. 
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