

Freescale Semiconductor

Application Note

Document Number: AN4093 Rev. 0, 05/2010

Migrating from MPC5607B cut1 to cut2

by: Loïc Chossat

1 Introduction

The 32-bit MPC560xB/C automotive microcontrollers are a family of System-on-Chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controllers, smart junction box, front module, peripheral body, door control, and seat control applications.

The MPC560xB/C is a series of automotive microcontrollers based on the Power Architecture[®] Book E and designed specifically for embedded automotive applications.

The MPC560xB/C is a highly scalable and compatible family of devices. However, designing an application that can easily be ported across different members requires knowledge of the device features and any significant differences between them.

This document focuses specifically on migrating MPC5607B applications from cut1 to cut 2.

Contents

1	Intr	oduction
2	List	of Differences Between MPC5607B cut1 and cut22
	2.1	Eight Additional ADC 12-bit Medium Accuracy 2
	2.2	Four Additional Wakeup Lines
	2.3	LINFlex 0 and LINFlex 1 Support DMA
	24	Pin Multiplexing data 6

2.5 Interrupt Vectors Mapping for Wakeup Lines 6

© Freescale Semiconductor, Inc., 2010. All rights reserved.

List of Differences Between MPC5607B cut1 and cut2

2 List of Differences Between MPC5607B cut1 and cut2

The *MPC5607B Microcontroller Reference Manual*, Rev.2 (document MPC5607BRM) refers to cut1 silicon. *The MPC5607B Microcontroller Reference Manual*, Rev.3 and later revisions reflects cut2 silicon implementation. The sections hereafter describe differences in detail.

2.1 Eight Additional ADC 12-bit Medium Accuracy Channels

There are eight additional ADC 12-bit medium accuracy channels on cut2. They are mapped as follows:

- ADC1_S[0] on PA[3]
- ADC1_S[1] on PA[7]
- ADC1_S[2] on PA[10]
- ADC1_S[3] on PA[11]
- ADC1_S[4] on PB[8]
- ADC1_S[5] on PB[9]
- ADC1_S[6] on PB[10]
- ADC1_S[7] on PE[12]

ADC1_S[4], ADC1_S[5], and ADC1_S[6] are shared with three ADC 10-bit medium accuracy channels.

Refer to Figure 1 to see the additional ADC 12-bit channels in red.

NOTE

On earlier versions of the *MPC5607B Microcontroller Reference Manual* and the *MPC5607B Microcontroller Data Sheet* (document MPC5607B) the ADC channel names were referred to as:

ANS[n],

ANP[n],

ANX[n],

Starting from Revision 5 these are now referred to as:

ADC0_S[n] and ADC1_S[n],

ADC0_P[n] and ADC1_P[n],

ADC0_X[n] and ADC1_X[n]

List of Differences Between MPC5607B cut1 and cut2

Figure 1. ADC Implementation of MPC5607B cut2

2.2 Four Additional Wakeup Lines

On cut2, four additional wakeup lines are mapped on PB8 / GPIO[24], PB9 / GPIO[25], PD0 / GPIO[48], and PD1 / GPIO[49], which are analog inputs. Refer to Section 2.5, "Interrupt Vectors Mapping for Wakeup Lines for interrupt vector mapping.

2.3 LINFlex 0 and LINFlex 1 Support DMA

On cut1, none of the 10 LINFlex peripherals support DMA. On cut2, DMA is connected on LINFlex 0 and LINFlex 1.

Migrating from MPC5607B cut1 to cut2, Rev. 0

List of Differences Between MPC5607B cut1 and cut2

2.3.1 DMA_MUX Mapping Change

Table 1. DMA_MUX in cut1 and cut2 comparison

	cut1		cut2
DMA_MUX channel	Module DMA requesting module		Module
0	—	Always disabled	—
1	DSPI 0	DSPI_0 TX	DSPI 0
2	DSPI 0	DSPI_0 RX	DSPI 0
3	DSPI 1	DSPI_1 TX	DSPI 1
4	DSPI 1	DSPI_1 RX	DSPI 1
5	DSPI 2	DSPI_2 TX	DSPI 2
6	DSPI 2	DSPI_2 RX	DSPI 2
7	DSPI 3	DSPI_3 TX	DSPI 3
8	DSPI 3	DSPI_3 RX	DSPI 3
9	DSPI 4	DSPI_4 TX	DSPI 4
10	DSPI 4	DSPI_4 RX	DSPI 4
11	DSPI 5	DSPI_5 TX	DSPI 5
12	DSPI 5	DSPI_5 RX	DSPI 5
13	eMIOS 0	EMIOS0_CH0	—
14	eMIOS 0	EMIOS0_CH1	_
15	eMIOS 0	EMIOS0_CH9	—
16	eMIOS 0	EMIOS0_CH18	—
17	eMIOS 0	EMIOS0_CH25	eMIOS 0
18	eMIOS 0	EMIOS0_CH26	eMIOS 0
19	eMIOS 1	EMIOS1_CH0	eMIOS 0
20	eMIOS 1	EMIOS1_CH9	eMIOS 0
21	eMIOS 1	EMIOS1_CH17	eMIOS 0
22	eMIOS 1	EMIOS1_CH18	eMIOS 0
23	eMIOS 1	EMIOS1_CH25	eMIOS 1
24	eMIOS 1	EMIOS1_CH26	eMIOS 1
25	ADC 0	ADC0_EOC	eMIOS 1
26	ADC 1	ADC1_EOC	eMIOS 1
27	l ² C	IIC_RX	eMIOS 1
28	l ² C	IIC_TX	eMIOS 1
29	_	Always enabled	ADC 0
30	—	Always enabled	ADC 1
31		Always enabled	l ² C

Migrating from MPC5607B cut1 to cut2, Rev. 0

	cut1		cut2
32	— Always enabled		l ² C
33	—	Reserved	LINFLEX 0
34	—	Reserved	LINFLEX 0
35	—	Reserved	LINFLEX 1
36	—	Reserved	LINFLEX 1
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60	—	Reserved	—
61	—	Reserved	—
62	—	Reserved	—
63	_	Reserved	-

Table 1. DMA	_MUX in cut1	and cut2	comparison	(continued)
--------------	--------------	----------	------------	-------------

List of Differences Between MPC5607B cut1 and cut2

2.3.2 LINFlex 0 LINFlex 1 Change

LINFlex 0 and LINFlex 1 have the following additional features on cut2

- DMA
- FIFO in UART

Please refer to the LINFLexD chapter in the MPC5607B Microcontroller Reference Manual, Rev.5

2.4 Pin Multiplexing data

2.4.1 DSPI Chip Selects

On cut2, DSPI 1 chip selects are also available on the following ports on alternate function AF3:

- CS0_1 on PA[4]
- CS1_1 on PA[6]
- CS2_1 on PA[9]
- CS3_1 on PA[12]
- CS4_1 on PA[3]

2.4.2 LINFlex 0 and LINFlexCan 0 Functionality Multiplexed Onto the Same Pins

In order to support it, cut2 has:

- LIN0TX on PB[0], on alternate function AF3,
- LINORX on PB[1]

2.4.3 ADC 10-bit external multiplexing

ADC external multiplexer control MA[2] is multiplexed onto the alternate function AF3 of pad PA[2].

2.5 Interrupt Vectors Mapping for Wakeup Lines

Four wakeup lines have been added in cut2 on:

PB8 / GPIO[24], PB9 / GPIO[25], PD0 / GPIO[48], and PD1 / GPIO[49] (refer to Section 2.2, "4 Additional Wakeup Lines). They are mapped on WakeUp_IRQ_3.

Wakeup lines on GPIO[103], GPIO[105], GPIO[89], and GPIO[131] previously mapped on WakeUp_IRQ_3 on cut1 are mapped on WakeUp_IRQ_2 on cut2. Refer to Table 2 for details.

Interrupt Vector	cut1	cut2	Comment
WakeUp_IRQ_0	API	API	Unchanged
	RTC	RTC	Unchanged
	GPIO[1]	GPIO[1]	Unchanged
	GPIO[2]	GPIO[2]	Unchanged
	GPIO[17]	GPIO[17]	Unchanged
	GPIO[43]	GPIO[43]	Unchanged
	GPIO[64]	GPIO[64]	Unchanged
	GPIO[73]	GPIO[73]	Unchanged
WakeUp_IRQ_1	GPIO[26]	GPIO[26]	Unchanged
	GPIO[4]	GPIO[4]	Unchanged
	GPIO[15]	GPIO[15]	Unchanged
	GPIO[19]	GPIO[19]	Unchanged
	GPIO[39]	GPIO[39]	Unchanged
	GPIO[41]	GPIO[41]	Unchanged
	GPIO[75]	GPIO[75]	Unchanged
	GPIO[91]	GPIO[91]	Unchanged
WakeUp_IRQ_2	GPIO[93]	GPIO[93]	Unchanged
	GPIO[99]	GPIO[99]	Unchanged
	GPIO[101]	GPIO[101]	Unchanged
	GPIO[0]	GPIO[0]	Unchanged
	Reserved	GPIO[103]	New
	Reserved	GPIO[105]	New
	Reserved	GPIO[89]	New
	Reserved	GPIO[131]	New
WakeUp_IRQ_3	GPIO[103]	GPIO[129]	Different
	GPIO[105]	GPIO[24]	Different
	GPIO[89]	GPIO[25]	Different
	GPIO[131]	GPIO[48]	Different
	GPIO[129]	GPIO[49]	Different
	Reserved	Reserved	Unchanged
	Reserved	Reserved	Unchanged
	Reserved	Reserved	Unchanged

Table 2. wakeup lines interrupt vector mapping	Table 2	2. Wakeup	lines interru	pt vector	mapping
--	---------	-----------	---------------	-----------	---------

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4093 Rev. 0 05/2010 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved.

