Modifying Bootloader and Kernel to Support a Different SDRAM on the i.MX25 using WinCE 6.0™

by Multimedia Applications Division
Freescale Semiconductor, Inc.
Austin, TX

This application note describes the software changes that are required to support a different synchronous dynamic random access memory (SDRAM) in an i.MX25 processor using Windows Embedded CE 6.0 (WinCE 6.0) board support package (BSP). This includes the basic SRAM parameters, different SRAM configuration options in the i.MX25 processor, and files that are required to be modified in the BSP.

1 Introduction

SDRAM is the fundamental device of any design that uses the i.MX25 system-on-chip (SoC). The components used in the reference designs are selected in such a way to satisfy the requirements of the customers. However, when SDRAM is required to be changed, it is difficult to solve the requirements of the customers. This application note provides information that is required to perform software changes in the WinCE 6.0 BSP when an SDRAM is changed in the i.MX25 processors.
1.1 Basic SDRAM AC Parameters

The most important SDRAM parameters for the configuration of the enhanced SDRAM controller (ESDRAMC) in the i.MX25 processor are the SDRAM AC operating condition parameters. Table 1 lists the SDRAM AC parameters that are used to configure the ESDRAMC in the i.MX25 processor.

Table 1. Basic SDRAM AC Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tMDR</td>
<td>LOAD MODE REGISTER (LMR) to ACTIVE or REFRESH command</td>
</tr>
<tr>
<td>tWR</td>
<td>Write recovery time (write to precharge)</td>
</tr>
<tr>
<td>tRAS</td>
<td>ACTIVE to PRECHARGE command</td>
</tr>
<tr>
<td>tRRD</td>
<td>Bank A ACTIVE to bank B ACTIVE command</td>
</tr>
<tr>
<td>tCAS</td>
<td>READ to DATA out period (known as CAS LATENCY)</td>
</tr>
<tr>
<td>tRP</td>
<td>PRECHARGE command period</td>
</tr>
<tr>
<td>tRCD</td>
<td>ACTIVE to READ or WRITE delay</td>
</tr>
<tr>
<td>tRC</td>
<td>ACTIVE to ACTIVE command period</td>
</tr>
<tr>
<td>tWTR</td>
<td>LPDDR READ to WRITE command delay</td>
</tr>
<tr>
<td>tXP</td>
<td>LPDDR EXIT power down to the immediate valid command delay</td>
</tr>
</tbody>
</table>

1.2 ESDRAMC Configuration Options

ESDRAMC provides interface and control for the SDRAM memories. The ESDRAMC module of the i.MX25 processor is highly configurable and can operate with multiple SDRAM. This module supports the following features:

- Optimizes memory access in consecutive memory locations through memory command anticipation (latency hiding):
 - Hides latency by optimizing the commands to both the chip selects (command anticipation)
 - Supports SDRAM burst length configuration of 4 or 8 words
 - Supports different internal burst lengths (1/4/8 words) by using the burst truncate commands

- Supports SDRAM, low power double data rate (LPDDR), and non-mobile double data rate 1 (DDR1) devices of four banks (with a memory capacity of 64 Mbytes, 128 Mbytes, 256 Mbytes, or 512 Mbytes and 1 Gbyte) and single data rate. However, support for the DDR2 devices is limited as it allows four banks without the ODT control signal:
 - Two independent chip selects
 - Up to 128 Mbytes per chip select
 - Activates up to four banks simultaneously per chip select

- Supports 16-bit LPDDR/DDR2 devices
- Supports PC133-compliant interface:
 - 133 MHz system clock, which is achievable with an option of –7 for the PC133-compatible memories
Introduction

- Single fixed-length (4/8 word) burst or full-page access ESDRAMC
- Access time of 9-1-1-1-1-1-1-1-1 at 133 MHz frequency (when the memory bus is available for read access, the row is opened and the CAS latency is configured to 3 cycles). The access time includes the M3IF delay (assuming that there is no arbitration penalty)

- Supports software that are configurable for different system and memory device requirements:
 - 16-bit memory data bus width (same for both the chip selects)
 - Number of row and column addresses
 - Row cycle delay (t_{RC})
 - Row precharge delay (t_{RP})
 - Row to column delay (t_{RCD})
 - Column to data delay (CAS latency)
 - LMR to ACTIVE command (t_{MRD})
 - WRITE to PRECHARGE command (t_{WR})
 - WRITE to READ command (t_{WTR}) for the LPDDR memories
 - LPDDR exit power down to the immediate valid command delay (t_{XS})
 - ACTIVE to PRECHARGE command (t_{RAS})
 - Bank active to ACTIVE command (t_{RRD})

These features can be configured in both the chip selects. The ESDRAMC has eleven configuration registers. However, this application note focuses only on three configuration registers—the registers that require modifications when SDRAM is replaced. See the i.MX25 Multimedia Applications Processor Reference Manual (IMX25RM) for information about the others registers.
The three ESDRAMC configuration registers are described as follows:

- **ESDCTLx**—used to configure the ESDRAMC. The i.MX25 processor has two ESDCTLx registers—one for each chip select. This register controls various memory and control settings. Table 2 gives a description of the ESDCTLx register fields.

NOTE

See the *i.MX25 Multimedia Applications Processor Reference Manual* (IMX25RM) for more information about the ESDCTLx register.

Table 2. ESDCTLx Register Fields

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 31 | SDE | ESDRAMC enable
| | | This control bit enables/disables the ESDRAMC.
| | | 0 Disabled
| | | 1 Enabled |
| 30–28| SMODE | SDRAM controller operating mode
| | | This bit field determines the operating mode of the ESDRAMC. These modes are primarily used for the SDRAM initialization.
| | | 000 Normal read/write
| | | 001 PRECHARGE command
| | | 010 Auto-refresh command
| | | 011 LMR command
| | | 100 Manual self refresh
| | | 101 Through 111 are reserved |
| 27 | SP | Supervisor protect
| | | This control bit is used to restrict the user accesses within the chip select region.
| | | 0 User mode accesses are allowed to the chip select region
| | | 1 User mode accesses are prohibited |
| 26–24| ROW | Row address width
| | | This control field specifies the number of row addresses used by the memory array.
| | | 000 11 row addresses
| | | 001 12 row addresses
| | | 010 13 row addresses
| | | 011 14 row addresses
| | | 100 Through 111 are reserved |
| 23–22| | Reserved |
| 21–20| COL | Column address width
| | | This control field specifies the number of column addresses in the memory array and determines the break point in the address multiplexer.
| | | 00 8 column addresses
| | | 01 9 column addresses
| | | 10 10 column addresses
| | | 11 Reserved |
| 19–18| | Reserved |
Table 2. ESDCTLx Register Fields (continued)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 17–16 | DSIZ | SDRAM memory data width
This field defines the width of the SDRAM memory external data bus. Here, memories that are aligned to D[31:16] use DQM2 and DQM3 and memories that are aligned to D[15:0] use DQM0 and DQM1.
00 Reserved
01 16-bit memory width aligned to D[15:0] (reset value for CSD0)
10 Reserved (reset value for CSD1)
11 Reserved |
| 15–13 | SREFR | SDRAM refresh rate
This control-bit field enables/disables the SDRAM refresh cycles and controls the refresh rate. The SDRAM refresh cycles are referenced with respect to a 32-kHz clock. As determined by this bit field, one, two, four, eight, or sixteen rows are refreshed at each rising edge. Multiple refresh cycles are separated by the row cycle delay that is specified in the SRC control field. Table 3 gives the settings to encode the SREFR bit field.
12 — Reserved |
| 11–10 | PWDT | Power down timer
This field determines if the SDRAM is placed in a power-down condition after a selectable delay from the previous access. Count based time-outs do not force the SDRAM to an idle condition (for example, any active banks that remain open). The power-down timer feature is disabled by the hardware reset. Table 4 gives the settings to encode the PWDT bit field.
9 — Reserved |
| 8 | FP | Full page
This bit should be set to 1 if the burst length of the SDRAM, which is connected to the CSD, is configured to the FP mode. The ESDCTL register terminates the accesses that are less than FP by inducing a BURST TERMINATE (BT) command.
0 Burst length of the external memory device is not set to full page
1 Burst length of the external memory device is set to full page |
| 7 | BL | Burst length
This bit configures the access burst length. The ESDCTL burst length configuration should match the external SDRAM/LPDDR memory device (configured through a special operating mode, LMR) to ensure a proper operation.
0 External memory device which is connected to the CSD is configured to a burst length of 4
1 External memory device which is connected to the CSD is configured to a burst length of 8 |
| 6 | — | Reserved |
| 5–0 | PRCT | Precharge timer
This bit precharges a bank when 2xPRCT does not clock (HCLK, up to 133 MHz) any activity. Table 5 gives the settings to encode the PRCT bit field. Closing (due to PRECHARGE command) the most recently used/open row in an inactive bank within a chip select reduces the power consumption of the external-memory device. The PRCT is used when the PWDT is disabled (00) or set to any time no banks are active (01) and cannot be used with any other PWDT settings. |
Table 3 gives the settings to encode the SREFR bit field.

Table 3. SREFR Bit Field Settings

<table>
<thead>
<tr>
<th>SREFR[2:0]</th>
<th>Refresh Clocks for Each Row</th>
<th>Rows/64 ms @ 32 kHz</th>
<th>Row Rate @ 32 kHz (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Refresh Disabled (bit field reset value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>2048</td>
<td>31.25</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
<td>4096</td>
<td>16.62</td>
</tr>
<tr>
<td>011</td>
<td>4</td>
<td>8192</td>
<td>7.81</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>16384</td>
<td>3.91</td>
</tr>
<tr>
<td>101</td>
<td>16</td>
<td>32768</td>
<td>1.95</td>
</tr>
<tr>
<td>110</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 gives the settings to encode the PWDT bit field.

Table 4. PWDT Bit Field Settings

<table>
<thead>
<tr>
<th>PWDT[1:0]</th>
<th>PWDT</th>
<th>Memory Device Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Disabled (bit field reset value)</td>
<td>Run mode</td>
</tr>
<tr>
<td>01</td>
<td>No banks are active</td>
<td>Precharge power-down</td>
</tr>
<tr>
<td>10</td>
<td>64 clocks (HCLK) after completion of the previous access</td>
<td>Active power-down</td>
</tr>
<tr>
<td>11</td>
<td>128 clocks (HCLK) after completion of the previous access</td>
<td>Active power-down</td>
</tr>
</tbody>
</table>

Table 5 gives the settings to encode the PRCT bit field.

Table 5. PRCT Bit Field Settings

<table>
<thead>
<tr>
<th>PRCT[5:0]</th>
<th>PRCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>Disabled (bit field reset value)</td>
</tr>
<tr>
<td>000001</td>
<td>2 clocks to precharge</td>
</tr>
<tr>
<td>000010</td>
<td>4 clocks to precharge</td>
</tr>
<tr>
<td>000011</td>
<td>6 clocks to precharge</td>
</tr>
<tr>
<td>000100</td>
<td>8 clocks to precharge</td>
</tr>
<tr>
<td>000101</td>
<td>10 clocks to precharge</td>
</tr>
<tr>
<td>000110</td>
<td>12 clocks to precharge</td>
</tr>
<tr>
<td>000111</td>
<td>14 clocks to precharge</td>
</tr>
<tr>
<td>001000</td>
<td>16 clocks to precharge</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td>010000</td>
<td>32 clocks to precharge</td>
</tr>
</tbody>
</table>
Introduction

- ESDCFGx—register contains the important time settings. Table 6 gives the description of the ESDCFGx register fields.

NOTE

See the *i.MX25 Multimedia Applications Processor Reference Manual* (IMX25RM) for more information about the ESDCFGx register.

Table 5. PRCT Bit Field Settings

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRCT[5:0]</td>
<td>PRCT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>100000</td>
<td>64 clocks to precharge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>111111</td>
<td>126 clocks to precharge</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. ESDCFGx Register Options

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31–23</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>22–21</td>
<td>t_{XP}</td>
<td>LPDDR exit power down to the immediate valid command delay. This control field determines the minimum delay between an issued valid command and the LPDDR after exiting from the power-down mode. The t_{XP} value gives the number of clocks that should be inserted after exiting the power-down mode and the subsequent new valid command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 1 clock delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 2 clock delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3 clock delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 4 clock delay</td>
</tr>
<tr>
<td>20</td>
<td>t_{WTR}</td>
<td>LPDDR WRITE to READ command delay. Data for any write burst is generally followed by a subsequent READ command. The LPDDR controller automatically induces t_{WTR} number of idle cycles between the WRITE and READ commands. The t_{WTR} should be configured according to the LPDDR device type that is used and is referenced from the first positive clock edge after the last data-in pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 1 clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 clocks</td>
</tr>
<tr>
<td>19–18</td>
<td>t_{RP}</td>
<td>SDRAM row precharge delay. This control bit determines the number of idle clocks that should be inserted between a PRECHARGE command and the immediate row-activate command of the same bank. Hardware reset initializes the controller to insert 3 clocks. A subsequent command to the same bank cannot be issued after the PRECHARGE command until the t_{RP} condition is met.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 1 clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 2 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 4 clocks</td>
</tr>
<tr>
<td>17–16</td>
<td>t_{MRD}</td>
<td>SDRAM LMR to ACTIVE command. This control bit determines the minimum number of idle clocks that should be inserted between LMR and ACTIVE commands. Hardware reset initializes the controller to insert 2 clocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 1 clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 2 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 4 clocks</td>
</tr>
</tbody>
</table>

Modifying Bootloader and Kernel to Support a Different SDRAM on the i.MX25 using WinCE 6.0™, Rev. 0

Freescale Semiconductor 7
Introduction

Data for a fixed length write burst is generally followed by or truncated with a PRECHARGE command of the same bank (provided that the auto-PRECHARGE command is not activated). Also, data for a full-page write burst is truncated with a PRECHARGE command of the same bank. These clock values are applicable to the SDRAM and LPDDR memory devices.

1 clock
2 clocks

These control bits determine the minimum number of clocks that are required between the ACTIVE and PRECHARGE commands in the same bank. Hardware reset initializes the controller to insert 6 clocks.

1 clock
2 clocks
3 clocks
4 clocks
5 clocks
6 clocks
7 clocks
8 clocks

This field determines the number of idle clocks that should be inserted between the consecutive ACTIVE commands in different banks. A subsequent ACTIVE command to a different row in the same bank can be issued only after the previously active row has been closed (precharged). This can be performed while the first bank is accessed, which results in the reduction of the total row-access overhead.

1 clock
2 clocks
3 clocks
4 clocks

This field determines the latency between the READ commands and the availability of data on the bus. This field does not affect the second and subsequent data words in a burst and has no effect on the write cycles. The CAS latency is initialized to 3 clocks following a hardware reset.

Reserved
Reserved2
2 clocks (SDR and LPDDR SDRAM CAS latency)
3 clocks (SDR and LPDDR SDRAM CAS latency2)

Reserved

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>t_WR</td>
<td>SDRAM WRITE to PRECHARGE command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data for a fixed length write burst is generally followed by or truncated with a PRECHARGE command of the same bank (provided that the auto-PRECHARGE command is not activated). Also, data for a full-page write burst is truncated with a PRECHARGE command of the same bank. These clock values are applicable to the SDRAM and LPDDR memory devices.</td>
</tr>
<tr>
<td>14–12</td>
<td>t_RAS</td>
<td>SDRAM ACTIVE to PRECHARGE command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These control bits determine the minimum number of clocks that are required between the ACTIVE and PRECHARGE commands in the same bank. Hardware reset initializes the controller to insert 6 clocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000 1 clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>001 2 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010 3 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>011 4 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 5 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 6 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 7 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 8 clocks</td>
</tr>
<tr>
<td>11–10</td>
<td>t_RRD</td>
<td>Bank A ACTIVE to bank B ACTIVE command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This field determines the number of idle clocks that should be inserted between the consecutive ACTIVE commands in different banks. A subsequent ACTIVE command to a different row in the same bank can be issued only after the previously active row has been closed (precharged). This can be performed while the first bank is accessed, which results in the reduction of the total row-access overhead.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 1 clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 2 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3 clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 4 clocks</td>
</tr>
<tr>
<td>9–8</td>
<td>t_CAS</td>
<td>SDRAM CAS latency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This field determines the latency between the READ commands and the availability of data on the bus. This field does not affect the second and subsequent data words in a burst and has no effect on the write cycles. The CAS latency is initialized to 3 clocks following a hardware reset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 Reserved2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 2 clocks (SDR and LPDDR SDRAM CAS latency)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 3 clocks (SDR and LPDDR SDRAM CAS latency2)</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Introduction

Enhanced SRAM miscellaneous register (ESDMISC)—configures various memory and control settings for the ESDRAMC register. Table 6 gives the description of the ESDMISC register fields.

NOTE

See the i.MX25 Multimedia Applications Processor Reference Manual (IMX25RM) for more information about the ESDRAMC register.

Table 6. ESDCFGx Register Options (continued)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6–4 | t_RCD | SDRAM row to column delay
This field determines the number of clocks that should be inserted between a row-activate command and the subsequent READ or WRITE command of the same bank. The hardware reset initializes the delay to 3 clocks.
000 1 clock
001 2 clocks
010 3 clocks
011 4 clocks
100 5 clocks
101 6 clocks
110 7 clocks
111 8 clocks |
| 3–0 | t_RC | SDRAM row cycle delay
This control field determines the minimum delay between a refresh and the subsequent refresh or read/write access. This delay corresponds to the minimum row-cycle time that is captured in the t_RC/tRFC memory timing specification.
0000 20 clocks
0001 2 clocks
0010 3 clocks
0011 4 clocks
0100 5 clocks
0101 6 clocks
0110 7 clocks
0111 8 clocks
1000 9 clocks
1001 10 clocks
1010 11 clocks
1011 12 clocks
1100 13 clocks
1101 14 clocks
1110 14 clocks
1111 16 clocks |

Table 7. ESDRAMC Register Options

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 31 | SDRAM_RDY | External SDRAM/LPDDR device status
This is a read-only status bit that indicates the status of the external memory devices.
0 SDRAM/LPDDR external device is not ready for use (reset value)
1 SDRAM/MMDR external device is ready for use |
| 30–10| — | Reserved |
Introduction

Table 7. ESDRAMC Register Options (continued)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9 | DDR2_EN | Regular (non-mobile) DDR2 device status
This bit is common for both the chip selects.
0 DDR2 device is not used (reset value)
1 DDR2 device is used |
| 8 | DDR_EN | Regular (non-mobile) device status
This bit is common for both the chip selects.
0 DDR1/DDR2 device is not used (reset value)
1 Non-mobile DDR device is used (DDR2 or DDR1) |
| 7 | FRC_MSR | Force measurement
When this bit is set, the measurement unit starts a new measurement until this bit is cleared. |
| 6 | MA10_SHARE | MA10 share
This bit should be enabled when the MA10 address line is shared with the other memory-controller address line.
When this bit is enabled, the ESDRAMC requests for the address line from the M3IF before issuing the precharge-all command (during auto-refresh cycles).
0 MA10 share is disabled
1 MA10 share is enabled |
| 5 | LHD | Latency hiding disable
This bit disables the command anticipation (latency hiding) mechanism.
0 Latency hiding is enabled
1 Latency hiding is disabled |
| 4 | MDDR_MDIS | LPDDR delay line measure disable
This read/write bit disables the delay-line measure unit (when the bit is set). After reset, this bit is cleared and enables the delay-line measure unit. The measure time period is estimated to be around 2000 clock cycles of the AHB HCLK.
0 LPDDR delay-line measure unit is enabled
1 LPDDR delay-line measure unit is disabled |
| 3 | MDDR_DL_RST | LPDDR delay line soft reset
This write only bit resets the delay-line unit (when this bit is set). The delay-unit automatically (if LPDDR_MDIS is cleared) starts a new measurement after the reset is disabled.
0 LPDDR delay line is not reset
1 LPDDR delay line is reset |
| 2 | MDDR_EN | Enables the DDR SDRAM device.
0 SDR SDRAM is used
1 DDR SDRAM is used (either mobile or non-mobile) |
| 1 | RST | Software initiated local module reset
This bit generates the local module reset for the ESDRAMC. When the RST bit is set, a one-cycle reset pulse is send to the controller.
0 Soft reset is disabled
1 Soft reset is initiated |
| 0 | — | Reserved |
2 BSP SDRAM Dependent Files

The files that are modified in a BSP when SDRAM is required to be changed are as follows:

- **Oemaddrtab_cfg.inc**—contains the OEM address table definition. This table maps the 4-GB physical address space to the 512-MB unmapped space in the kernel.
- **image_cfg.inc**—contains the memory map addresses that are based on images. This file is used only in the low-level *.s files.
- **image_cfg.h**—contains the base address that is used in images. This file is used in the *.c files.
- **xldr_sdram_init.inc**—contains the low-level code that configures the ESDRAMC.
- **eboot.bib**—contains the bootloader-memory layout and is used by the platform builder in the conversion process of the bootloader to an executable binary file (.bin and .nbo). This file is not required to be changed in the i.MX25 BSP. This is because all the memory sections that are defined in the BSP are set on the first part of the memory. However, there are BSPs that set the bootloader memory sections at the end of the memory and it is on this BSP that the file should be changed when the total RAM size changes.
- **config.bib**—used by the platform builder to create the OS-binary image. This file contains two sections—MEMORY and CONFIG. The MEMORY section defines the memory table for the run-time image.

2.1 BSP File Modification

This section describes the changes in certain files when the memory in the i.MX25 product development kit (PDK) is required to be changed.

NOTE

The described changes are based on the files in the software development kit (SDK).

2.1.1 xldr_sdram_init.inc

The xldr_sdram_init.inc file sets the configuration for the ESDCTLx, ESDCFGx, and ESDMISC registers and should be modified whenever the SDRAM AC parameters changes. Only the sections that set the configuration registers are required to be modified. This section is commented as to be modified in the xldr_sdram_init.inc file fragment, which is as follows:

```
; Configure for DDR2
  ldr r0, =0x24C ; to be modified
  str r0, [r1, #ESDRAMC_ESDMISC_OFFSET]

;----------------------------------------
; Configure DDR2 memory on CSD0
;----------------------------------------
  ldr r2, =CSP_BASE_MEM_PA_CSD0

; Configure timing parameters
  ldr r0, =0x0076E83F ; to be modified
  str r0, [r1, #ESDRAMC_ESDCFG0_OFFSET]
```
; Set precharge command
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00200000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Precharge command (1 << 28) = 0x10000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ------------
; 0x92210000
ldr r0, =0x92210000 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

; Access SDRAM with A10 high to precharge all banks
ldr r0, =0x0
strb r0, [r2, #0x400]

; Set load mode command
;
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00200000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Load mode command (3 << 28) = 0x30000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ------------
; 0xB2210000
ldr r0, =0xB2210000 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

; DDR2 EMR2
ldr r0, =0x0
ldr r3, =0x82000000
strb r0, [r3]

; DDR2 EMR3
ldr r0, =0x0
ldr r3, =0x83000000
strb r0, [r3]

; DDR2 EMR1: enable DLL, disable /DQS
ldr r0, =0x0
ldr r3, =0x81000400
strb r0, [r3]

; DDR2 MR: reset DLL, BL=8, CL=3
ldr r0, =0x0
strb r0, [r2, #0x333]

; Set precharge command
;
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00200000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Precharge command (1 << 28) = 0x10000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ------------
ldr r0, =0x92210000 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

; Access SDRAM with A10 high to precharge all banks
ldr r0, =0x0
strb r0, [r2, #0x400]

; Set autorefresh command
;
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00020000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Autorefresh command (2 << 28) = 0x20000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ------------
ldr r0, =0xA2210000 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

; Use writes to refresh all banks of SDRAM
ldr r0, =0x0
strb r0, [r2]
strb r0, [r2]

; Set load mode command
;
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00020000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Load mode command (3 << 28) = 0x30000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ------------
ldr r0, =0xB2210000 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

; DDR2 MR: end DLL reset, BL=8, CL=3
ldr r0, =0x0
strb r0, [r2, #0x233]

; Hold for more than 200 cycles
ldr r0, =0x100
hold
subs r0, r0, #1
bne hold

; DDR2 EMR1: OCD calibration default
ldr r0, =0x0
ldr r1, =0x81000780
strb r0, [r3]

; DDR2 EMR1: OCD calibration exit, enable DLL, disable /DQS
BSP SDRAM Dependent Files

ldr r0, =0x0
ldr r3, =0x81000400
strb r0, [r3]

; Set normal mode command
;
; PRCT - Precharge timer disabled (0 << 5) = 0x00000000
; BL - Burst of 8 for SDR/DDR (1 << 7) = 0x00000080
; FP - No full page mode (0 << 8) = 0x00000000
; PWDT - Power down timeout disabled (3 << 10) = 0x00000000
; SREFR - 4 rows refreshed each clock (3 << 13) = 0x00000600
; DSIZ - 16-bit align to D[15:0] (1 << 16) = 0x00010000
; COL - 10 column addresses (2 << 20) = 0x00200000
; ROW - 13 Row addresses (2 << 24) = 0x02000000
; SP - User mode access (0 << 27) = 0x00000000
; SMODE - Normal mode command (0 << 28) = 0x00000000
; SDE - Enable controller (1 << 31) = 0x80000000
; ; 0x82216080
ldr r0, =0x82216080 ; to be modified
str r0, [r1, #ESDRAMC_ESDCTL0_OFFSET]

2.1.2 config.bib

The config.bib file is required to be changed when the SDRAM size changes. Only the section that sets the total RAM, which is available for the OS, should be modified. This section is commented as to be modified in the config.bib file fragment, which is as follows:

;*************************** MEMORY SECTION ***************************
MEMORY
; ------------------------ RAM image ------------------------
; Start Addr End Addr Mem Type Region Name Size
; 0x80000000 0x80100000 SDRAM reserved 1 MB
; 0x80100000 0x81100000 SDRAM NK 16 MB
; 0x81100000 0x84000000 SDRAM RAM 47 MB

; --
; Name Address Size Type
; BOOT_AND_OTHER 80000000 00100000 RESERVED
; NK 80100000 01000000 RAMIMAGE
; RAM 81100000 02F00000 RAM ; to be modified

IF IMGFLASH
; no support for NOR flash available
ENDIF
2.1.3 Image_cfg.h

The Image_cfg.h file is required to be changed when the SDRAM size changes. Only the section that sets the total available RAM should be modified. This section is commented as to be modified in the Image_cfg.h file fragment, which is as follows:

```
// RAM image defines
#define IMAGE_BOOT_RAMDEV_RAM_PA_START IMAGE_BOOT_RAM_PA_START
#define IMAGE_BOOT_RAMDEV_RAM_SIZE (64*1024*1024) // to be modified
#define IMAGE_BOOT_RAMDEV_RAM_PA_END (IMAGE_BOOT_RAMDEV_RAM_PA_START+IMAGE_BOOT_RAMDEV_RAM_SIZE-1)
```

2.1.4 image_cfg.inc

The image_cfg.inc file is required to be changed when the SDRAM size changes. Only the section that sets the total available RAM should be modified. This section is commented as to be modified in the image_cfg.inc file fragment, which is as follows:

```
; ; RAM image defines
; ; TABLE FORMAT
; ;    cached address, physical address, size
; ;---------------------------------------------------------------

g_oalAddressTable
    DCD 0x80000000, CSP_BASE_MEM_PA_CSD0, 64 ; RAM image mapping to be modified
    DCD 0x91300000, CSP_BASE_REG_PA_NANDFC, 36 ; NANDMA + NANDSA + NANDFC
    DCD 0x93700000, CSP_BASE_MEM_PA_IRAM, 64 ; Internal RAM
    DCD 0x97700000, CSP_BASE_REG_PA_AIPS1, 1
```

2.1.5 Oemaddrtab_cfg.inc

The Oemaddrtab_cfg.inc file is required to be changed when the SDRAM size changes. Only the section that sets the mapping of the RAM memory space should be modified. This section is commented as to be modified in the Oemaddrtab_cfg.inc file fragment, which is as follows:

```
; ; TABLE FORMAT
; ;    cached address, physical address, size
; ;---------------------------------------------------------------

g_oalAddressTable
    DCD 0x80000000, CSP_BASE_MEM_PA_CSD0, 64 ; RAM image mapping to be modified
    DCD 0x91300000, CSP_BASE_REG_PA_NANDFC, 36 ; NANDMA + NANDSA + NANDFC
    ; we keep a gap of 36 MB because of the logical addressing of the NAND binaries
    DCD 0x93700000, CSP_BASE_MEM_PA_IRAM, 64 ; Internal RAM
    ; we keep a gap of 64MB because of the logical addressing of the SD/MMC binaries
    DCD 0x97700000, CSP_BASE_REG_PA_AIPS1, 1
```
3 Revision History

Table 8 provides a revision history for this application note.

Table 8. Document Revision History

<table>
<thead>
<tr>
<th>Rev. Number</th>
<th>Date</th>
<th>Substantive Change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>09/2010</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>