
1 Introduction
The first section of this application note provides the basics of
DC (Direct Current) and Servo motors.The successive sections
explain the implementation of code drivers using the
MPC5604B MCU. The electronic circuits created to control
these motors and schematics for PCBs, tips to reduce noise
over important signals can also be found in this application
note.

A DC motor is an electrical device that converts energy into
rotational movement. The motor moves a gear in one direction
if current flows through the terminals (clockwise or
counterclockwise), and in the opposite direction if current
flows backwards through the same terminals. If there is a force
opposing the motor, then the terminals are short circuited and
the current through the terminals can go as high as 5 A or
more. The voltage or current that must be delivered to the
motor to work is too much for a microcontroller output port so
an intermediary device must be used. In this application note,
the Freescale H Bridge – MC33931 is used.

Freescale Semiconductor Document Number: AN4251

Application Note Rev. 0, 01/2011

Controlling DC motors and Servo
motors
Example code based on the MPC5604B MCU

by: Francisco Ramirez Fuentes, Marco Trujillo, Cuauhtli Padilla, Rodrigo
Mendoza

© 2010 Freescale Semiconductor, Inc.

Contents

1 Introduction...1

2 DC Motor Circuitry...2

3 Speed control on the DC motor..................................3

4 Controlling the Servo motor.......................................4

5 Suggestion to reduce noise in signals.........................5

6 Sample code for Servo and Motor control..................5

7 Driver explanation..7

Table 1. Advantages and Disadvantages of using an IC H-bridge (MC33931)

Advantages Disadvantages

Senses current flowing through output and temperature. With a voltage lower than 8 V the device is functional, which
increases the output resistance, thus the power consumed
too.

If the current is higher than 6.5 A then it uses PWM (pulse
width modulation) to regulate it.

Compatible with TTL/CMOS logic inputs.

Sleep mode available (low current consuming).

The DC motor used for the example implemented is a 24 V motor. As current can go very high, the H-Bridge will have to tri-
state the outputs in order to prevent heat or electric damage to any component. The servo motor is an electric actuator that
can be positioned in a desired angle from 0° to 180°. The operation of a typical servo motor is explained in Figure 1;
depending on the duty cycle of the control signal, the servo motor will rotate to a specific position. In this application note,
Section 3 onwards it is explained how to control the hardware and motors with the MCU. A detailed explanation of each
function of the medium and low level drivers is given.

Figure 1. Controlling a Servo motor

NOTE
Rev 0 of this application note provides only the drivers as explained in the example code, which can be
downloaded as AN4245SW from https://www.freescale.com. A complete example using these drivers will
be provided in the next revision of the application note.

2 DC Motor Circuitry
The circuit to control the motor uses three inputs (Table 2): IN1, IN2 and EN where IN1 and IN2 are inputs that define the
direction of the motor, and EN defines if the motor is in Sleep mode. The outputs are three (Table 2): OUT1, OUT2 and FB,
where OUT1 and OUT2 are the control of the motor (the two terminals of the motor are connected to these outputs), and FB
is the feedback current connected to a small resistor (smaller than 300Ω) then it can be read by an ADC channel on the
microcontroller to know how much current is driven to the motor, so this way, the user can know if the motor is ramping up
or stalled for some reason.

DC Motor Circuitry

Controlling DC motors and Servo motors, Rev. 0, 01/2011

2 Freescale Semiconductor, Inc.

https://www.freescale.com

Table 2. Truth table for inputs and outputs

EN IN1 IN2 OUT1 OUT2

HIGH LOW LOW LOW LOW

HIGH HIGH LOW HIGH LOW

HIGH LOW HIGH LOW HIGH

HIGH HIGH HIGH HIGH HIGH

LOW HIGH OR LOW HIGH OR LOW TRISTATED TRISTATED

Table 2 reflects that the outputs have the same value as the inputs if the enable is HIGH (VDD) and are tri-stated if the enable
is LOW (0V).

Figure 2. Schematic for a DC Motor control

In the schematic (Figure 1), some pins such as CCP (Charge Pump), D1 (Disable 1), and SF (status flag) can be seen (not
shown at the truth table) that must be connected as recommended so that the H Bridge can operate properly. For more
information, refer to the MC33931 datasheet from https://www.freescale.com.

3 Speed control on the DC motor
To control the speed of the DC motor, a proportional integral algorithm in C language has been created. It uses a variable that
controls the speed and is increased or decreased if it is not running at a pre-selected speed.

To do this implementation, some hardware is required to measure the speed of the motor. It can be done with an infrared
LED and a opto-electronic sensor, with a Hall Effect sensor and magnets, or many other ways. A square train of pulses is
obtained as the output of this sensing implementation. This is called the “velocimeter”. Once the “velocimeter” is
implemented, the software is developed to translate the output into measured speed. The driver to measure this speed input
uses SAIC (Single Action Input Capture – eMIOS functionality; see MPC5604BCRM Reference Manual from https://
www.freescale.com for a better reference) to calculate the period (Figure 2), and this uses a modulus counter (MCB) on the
MPC5604B – it also can use some other eMIOS functionalities; such as IPWM (Input Pulse Width Measurement). Once the
period is obtained, the measured speed is equal to the circumference of the wheel of the car divided by the time of a complete
revolution. Then, a control function calculates the difference of the desired speed and the measured speed, increasing or
decreasing the signal output proportionally to that speed, by the difference already multiplied by a constant:

Speed control on the DC motor

Controlling DC motors and Servo motors, Rev. 0, 01/2011

Freescale Semiconductor, Inc. 3

https://www.freescale.com
https://www.freescale.com
https://www.freescale.com

where Kc is a constant (correction factor).

Figure 3. Velocity equation

In the code, Kc is 0,0000083 because the velocities are calculated in mm/s and the VelocityControl variable is a PWM duty
that goes from 0 to 100, so the variable has to be very small. This may vary depending on the algorithm and the units chosen.

Figure 4. Measuring the speed

4 Controlling the Servo motor
The signal that controls the servo motor in this example is given by series of pulses (Figure 1) with a period of 200 ms or 5
Hz and the duration depends on the required direction. For most servo motors, pulses of 1 ms represent a 0 degree turn, and 2
ms represent a 180 degree turn, but it can vary. This information shall be specified in the data sheet of each servo motor and
can be tested by trying different PWM signals. To send the signal by software, the MCU must generate a PWM signal with a
duty cycle of 0.5% to 1% and a period of 200 ms. It is recommended to elaborate a function that has a position parameter and
sets the servo motor to the desired position to simplify the code (as implemented in the example code for this document).

Controlling the Servo motor

Controlling DC motors and Servo motors, Rev. 0, 01/2011

4 Freescale Semiconductor, Inc.

5 Suggestion to reduce noise in signals
When elaborating PCBs or designing circuits involving motors that consume large amounts of current, it is useful to separate
completely signals with high and low current within the hardware. For PCBs, signals such as motor outputs, analog ground
and power supply voltage should be with wide area and low resistance and it is recommended to use heat sinks to prevent
some components from melting. Another useful tip is to capacitate as much as possible important analog signals, in order to
reduce noise caused by the motor or long wires. It is essential to connect capacitors to all steady state pins or signals
vulnerable to noise (and power supplies).

6 Sample code for Servo and Motor control
System Architecture

The drivers (Figure 5) are implemented for the MPC560xB to control a servo motor and a DC motor. In the following
sections, a detailed explanation of each function on the medium and low level drivers is given:

• High level
• Main motor control algorithm (high level program done by user)

• Medium level
• Servo motor driver (Driver_Servo.c and Driver_Servo.h)
• Main motor driver (Driver_Motor.c and Driver_Motor.h)

• Low level
• ADC driver (Driver_ADC.c and Driver_ADC.h)
• eMIOS driver (Driver_EMIOS.c and Driver_EMIOS.h)
• SIU driver (Driver_SIU.c and Driver_SIU.h)
• Initialization:

• Driver_MPC5604B.h

Suggestion to reduce noise in signals

Controlling DC motors and Servo motors, Rev. 0, 01/2011

Freescale Semiconductor, Inc. 5

Figure 5. Software Architecture-APIs distribution

Sample code for Servo and Motor control

Controlling DC motors and Servo motors, Rev. 0, 01/2011

6 Freescale Semiconductor, Inc.

7 Driver explanation
Medium level drivers

All the drivers are explained in detail in this section.

Table 3. Driver_Servo.c

Function vfnSet_Servo Sets the servo motor to a position rela‐
tive to the maximum and minimum val‐
ues established. For example, if a read‐
ing in SAIC has a value of 10 as a mini‐
mum because less is invalid, and a
maximum of 510, then a call to
vfnSet_Servo(260,10,510) sets the ser‐
vo motor exactly at the middle, and
vfnSet_Servo(10,10,510) sets the servo
motor to the left (all left possible).

Parameters • u16Position: The desired position of the servo motor, with relative values to
the minimum and maximum values.

• u16MinVal: The minimum value possible for u16Position (if u16Position is
equal to u16MinVal then the servo motor turns all the way left).

• u16MaxVal: The maximum value possible for u16Position (if u16Position is
equal to u16MaxVal then the servo motor turns all the way right).

Return Null

Function vfnInit_Servo Initializes the MCB counters for both the
servo motor and the main motor mod‐
ules and the OPWM channel for the di‐
rection pin of the servo motor (and its
respective SIU pin initialization).

Definitions involved for both functions SERVO_CTRL The eMIOS channel used for the signal
for servo control.

SERVO_CTRL_PCR The pad number of the signal for servo
control used for pad initialization in SIU.

SERVO_MIN_US The value representing a 0 degree turn
in the wheels controlled by the servo
motor. This value is in microseconds,
and is the width of the 20ms-period sig‐
nal pulse which determines direction.

SERVO_MAX_US The value representing a 180 degree
turn in the wheels controlled by the ser‐
vo motor. This value is in microseconds,
and is the width of the 20ms-period sig‐
nal pulse which determines direction.

SERVO_MCB_CHANNEL The eMIOS channel used as Modulus
Up Counter Buffered which is the coun‐
ter for the servo signal. This means that
the counter must have a 20ms period.

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

Freescale Semiconductor, Inc. 7

Table 4. Functions on Driver_Motor.c

Function vfnSet_Motor_Forward

vfnSet_Motor_Reverse

vfnSet_Motor_Stop

Sends pulses to the motor equivalent to
the percentage parameter u16Perc. It is
polarized normal (forward) or reverse
depending on the function, and for mo‐
tor stop, IN1 and IN2 control outputs are
turned to 5V to stop the motor from the
H Bridge.

Parameters • u16Perc; with a 100 being 100% power (Vcc), 0% is GND, and 50% is
equivalent to a clock signal with 50% duty

Return • u16Get_Feedback_Current; Returns the current consumed by the motor by
reading an ADC port.

Function vfnSet_Motor_Velocity Sets the motor forward to a desired ve‐
locity by increasing the PWM signal
(more duty) to the motor if the measured
velocity is too slow or by decreasing the
PWM signal if the measured velocity is
too fast. It works with a proportional in‐
tegral algorithm.

Function vfnRead_Period If a SAIC scan is done, this function re‐
places the last value of i32Period with
the period measured, else it does noth‐
ing. i32Period is in micro seconds and
represents the time it takes to the back
wheels to give one revolution because
the signal the SAIC scans has a rising
edge each time the wheels give a com‐
plete revolution. From this variable ve‐
locity can be measured:

Velocity = Circumference of wheel /
i32Period

This function must be called frequently
in case the SAIC scan is done, and if it
is called long after the SAIC scan is
done, it will lose precision.

It also checks if an overflow occurs in
the MCB so that the i32Period variable
is increased by the time to overflow (pe‐
riod of MCB).

Also, to measure the period accurately,
it has to know if the MCB had an over‐
flow, to sum the corresponding value to
the i32Period counter, so each time it
has an overflow, this function takes care
of adding the variable.

Function vfnInit_Motor Initializes the GPIO pins for the direction
of the motor, the OPWM channel for the
enable pin of the motor (and its respec‐
tive SIU pin initialization), the analog pin
for the ADC scan of the current, and the
SAIC channel for the velocimeter (and
its respective SIU pin initialization).

Table continues on the next page...

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

8 Freescale Semiconductor, Inc.

Table 4. Functions on Driver_Motor.c (continued)

Definitions involved MOTOR_MCB_CHANNEL The eMIOS channel used as Modulus
Up Counter Buffered which is the coun‐
ter for the motor signal. This means that
the period of the counter will be the peri‐
od of the motor PWM signal.

MOTOR_IN_1_PIN The GPIO pin used for logic output IN1,
which is a control signal for the H Bridge
controlling the motor.

MOTOR_IN_2_PIN The GPIO pin used for logic output IN2,
which is a control signal for the H Bridge
controlling the motor.

MOTOR_EN The eMIOS channel used for the signal
of Motor Enable for the H Bridge con‐
trolling the motor.

MOTOR_EN_PCR The pad number of the signal of Motor
Enable used for pad initialization in SIU.

MOTOR_SENSE_CH The ADC channel used for current feed‐
back of the motor.

VELOCIMETER The eMIOS channel used for the signal
of the Velocimeter, input that measures
the speed of the wheels.

VELOCIMETER_PCR The pad number of the signal of Veloc‐
imeter used for pad initialization in SIU.

MAX_CURRENT Number equivalent to the current con‐
sumed when feedback pin returns 5V.

CIRCLE The measure of the circumference of
the wheels in nanometers.

CONTROL Control and delay are constants used in
the proportional integral control unit of
speed. The constant Kc is 1/(CON‐
TROL*DELAY), where CONTROL is the
proportional constant, and DELAY is the
number of times the program waits to
execute the code (executes 1 of DELAY
times).

DELAY

THRES and THRES2 These threshold constants define a
threshold of maximum and minimum
speed where the motor starts up fast or
stops to get to the desired speed quick‐
ly.

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

Freescale Semiconductor, Inc. 9

Low level drivers
Table 5. Driver_ADC.c

Function vfnInit_NormalConversion_Adc Initialize ADC in scan mode, Configure
ADC clock to 32 MHz, set an ADC
Channel from a channel type as a Nor‐
mal Conversion, and start conversions
by setting NSTART to 1.

Parameters • u8ChannelType: The type of the
channel (Precision, extended or
external) defined in Driv‐
er_MPC5604B.h as ADC_CHAN‐
NEL_TYPE_tag.

• u32Channel: The ADC channel
used for convertions defined in
Driver_MPC5604B.h as
ADC_CHANNEL_tag.

Return Null

Function u16Read_Adc Checks for the last ADC conversion to
be complete, reads the value of the con‐
version, scale the read value in a range
from 0 to Maximum Value and returns
the scaled value.

Parameters • u8Channel: The channel used for ADC. Channels appear in Driv‐
er_MPC5604B.h.

Return • u8MaximumValue: The maximum possible value for the result. It is the value
returned if a 10 bit conversion returns 1023.

Table 6. Driver_eMIOS.c

vfnSetup_Emios_0 and vfnInit_Emios_0 Enables eMIOS clock, configure prescaler to generate 4 MHz
eMIOS clock, enables global time base, enables Freezing
channel to freeze them when in debug mode. Also enable
eMIOS counters to start pulse generation and processing.

vfnInit_Emios_0_Mcb Defines eMIOS channel as Modulus up counter buffered with
the selected period, configure prescaler to produce 1 MHz
time base.

The parameters of the function are the following:

u8Channel: eMIOS channel to be configured as Counter
(0,8,16,23,24).

u16Period: Sets A register to establish period in clock pulses.

vfnInit_Emios_0_Opwm Defines eMIOS channel as positive OPWM with time base
corresponding to the counter bus B, C, D or E and establish
its raising and falling edge.

The parameters are the following:

• u8Channel: eMIOS channel to be configured as
OPWM.

• u16A: Sets A register to establish leading edge.
• u16B: Sets B register to establish trailing edge.

Table continues on the next page...

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

10 Freescale Semiconductor, Inc.

Table 6. Driver_eMIOS.c (continued)

vfnInit_Emios_0_Saic Defines eMIOS channel as SAIC with time base correspond‐
ing to the counter bus B, C, D or E. Allow channel freezing
and set required polarity.

vfnSet_Duty_Opwm Establish Duty Cycle in counter pulses for an eMIOS chan‐
nel.
The parameters are the following:

• u8Channel: eMIOS channel configured as OPWM.
• u16Duty: Sets B register to establish trailing edge (reg‐

ister A is set to zero).

vfnSet_Duty_Perc_Opwm Establish Duty Cycle in a percentage for an eMIOS channel.
The parameters are the following:

• u8Channel: eMIOS channel configured as OPWM.
• u16DutyPerc: Duty cycle in a percentage (0-100).
• u16McbChannel: eMIOS channel used as counter bus

time base.

u16Read_Saic Returns the value of counter when SAIC flag occur for a
channel of EMIOS module, if the reading is not ready of be‐
tween minimum and maximum parameters, then it returns 0.
The parameters are the following:

• u8Channel: eMIOS channel configured as SAIC.
• u16MinVal: Minimum accepted read value.
• u16MaxVal: Maximum accepted read value.

u16Get_Counter Returns the counter value of the MCB of the channel selec‐
ted when the function is executed, it has a channel parameter
which determines the MCB channel.

u16Get_Period_Mcb Returns the fixed period value of the MCB of the channel se‐
lected. It has a channel parameter which determines the
MCB channel.

SIU is the module that assigns functions to the physical pins. These drivers were implemented because there are many
functions each pin can have, so there are pad configuration register values for each pin (refer to MPC5604BCRM Reference
Manual available from https://www.freescale.com).

Table 7. Driver_SIU.c

vfnInit_Emios_Output_Pad Initializes and assigns a pin as eMIOS, and for output pur‐
pose.

vfnInit_Emios_Input_Pad Initializes and assigns a pin as eMIOS, and for input purpose.

vfnInit_Adc_Pad Initializes and assigns a pin as ADC for input purpose.

The following functions are not part of the SIU but GPIO, yet both are used to control pad configuration.

vfnInit_Gpio_Out Initializes and assigns a pin as GPIO for output purpose.

vfnSet_Gpio Sets the value of the pin initialized as GPIO to the parameter
value u8Val which can be 0 or 1 (0V or 5V).

Parameter u8PcrVal which is the SIU pad configuration register value for
a pin selected

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

Freescale Semiconductor, Inc. 11

https://www.freescale.com

Table 8. Setup.c

vfnDisable_Watchdog Disables the watchdog by clearing the watchdog enable.

vfnInit_Peri_Clk_Gen Enables peripheral set 3 and divides by 1 the system clock.

vfnInit_Modes_And_Clock Initializes the general modes RUN0, and for ADC, SIU,
EMIOS, and clock, with PLL to 64 MHz.

vfnInit_All Calls all the functions in this file. This is the only function of
Setup.c required to be called in the main file.

Driver_MPC5604B.h

This file has no functions, and contains only useful definitions that relate modules and make easier the programming.
Includes an ADC channel selection masks, pad configuration register values for ADC channels, pad configuration register
values for eMIOS channels and pad configuration register values for GPIO.

An example to know when to use them is the following:

#define PCR_EMIOS_0_1345 /*PC13*/

This means that Channel 13 of eMIOS 0 can be assigned to port C13, and the value that the SIU uses to assign that pin is 45
(which is the pad configuration register for that pin). For a complete reference on how these registers are defined, please refer
to the MPC5604BCRM available from https://www.freescale.com.

Driver explanation

Controlling DC motors and Servo motors, Rev. 0, 01/2011

12 Freescale Semiconductor, Inc.

https://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4251
Rev. 0, 01/2011

Information in this document is provided solely to enable system and sofware
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

	Introduction
	DC Motor Circuitry
	Speed control on the DC motor
	Controlling the Servo motor
	Suggestion to reduce noise in signals
	Sample code for Servo and Motor control
	Driver explanation

