
Freescale Semiconductor
Application Note

Document Number: AN4314
Rev. 1, 07/2011

Contents

Introduction . 1
Using DLLs in a C# Project . 2

2.1 Creating a new DLL folder. 2
2.2 Application programming interface 5
Serial Production GUI User Guide. 8

3.1 Valid formats and values for USB descriptors’ fields9
3.2 Discover USB devices. 9
3.3 Read USB descriptors . 10
3.4 Customize USB descriptors. 10
Conclusion. 10

Using USB2SER DLL in C#
Projects
by: Juan Cazares

IMM Software Engineer
1 Introduction
This application note explains how to use the USB2SER
DLL in any C# (C sharp) project. This DLL is used to
communicate with the USB2SER, which allows the
reading and modification of USB descriptors allocated in
nonvolatile memory.

First, the application note explains how to include and
use the USB2SER DLL in a C# project. Second, it
explains in detail the application programming interface
(API) of the USB2SER DLL. Third, this document
explains how the serial production GUI is implemented
and how it uses the USB2SER DLL.

1
2

3

4

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Using DLLs in a C# Project
2 Using DLLs in a C# Project

2.1 Creating a new DLL folder
The USB2SER_DLL.dll can be used in an existent project. This document explains how to create a new
project and then how to use the DLL.

Open C# studio and follow the next steps:

1. Choose the File pull-down menu.

2. Choose the New Project option.

3. On the New Project screen, choose Windows Forms Applications.

4. Change the name for the new application (for example, “SerialProductionGUI”) and click OK.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor2

Using DLLs in a C# Project
The project is created and shows an empty form.

5. On the solution explorer, right click on References, then choose Add Reference.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor 3

Using DLLs in a C# Project
6. Select the Browse tab and look for the USB2SER_DLL.dll file. Select it and click OK.

7. Repeat steps 6 and 7 for any other desired DLL files.

8. Open the Form1 code and add the class USB2SER_DLL with the “using” word.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor4

Using DLLs in a C# Project
9. Now, by declaring a new USB2SER_API object the Form1 can use the methods provided by the
referenced class.

Download and open the SerialProduction1v3 project from www.freescale.com for more information about
the mentioned class.

2.2 Application programming interface
This section explains in detail all methods used by the USB2SER_DLL class.

2.2.1 USB2SER_DLL class

This class allows the configuration of the USB2SER’s nonvolatile memory, which is intended to store the
USB descriptors. This class provides methods to read and modify vendor ID, product ID, manufacturer
string, product string, serial number string, and maximum current consumption. These parameters are
protected by a password which should be validated first in order to allow access to the nonvolatile memory.
This class also provides a method for changing the password.

The USB2SER_DLL class uses a Freescale proprietary USB CDC class to communicate with USB2SER
devices. Please ensure that the USB2SER USB driver has been installed before attempting to use the
USB2SER_DLL DLL.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor 5

Using DLLs in a C# Project

O

C

C
A

V
P
_

C
P
_

C
V
_

2.2.2 USB2SER_DLL application programming interface

Public Variables: The USB2SER_DLL uses public variables as inputs and outputs for the methods. The
variables listed below are read-only variables used by the ReadUSBDescriptors method:
public bool VendorID
public bool ProductID
public bool StrManufacturer
public bool StrProduct
public bool StrSerial
public bool NumConsumption

The variables listed below are read/write variables and are used by the application. The BusPowered
variable configures whether the device is self- or bus-powered. The SerialAutoIncrement variable
configures whether the serial number string is incremented each time the nonvolatile memory is written or
whether it remains unchanged.
public bool BusPowered
public bool SerialAutoIncrement
public bool HexFormat

2.2.3 Methods

Table 1. USB2SER C# Methods

Syntax Description Parameters Return

penPort public bool
OpenPort(string
COM);

Opens the serial port to communicate
with the USB2SER device and enters
the device in loader mode. Only one
port can be opened at the time.

COM: string containing the
serial port to open

TRUE: port closed
successfully
FALSE: port can´t
be closed

losePort public bool
ClosePort();

Closes the serial port opened by the
OpenPort method. Closes the port but
the device remains in loader mode.

Void TRUE: port closed
successfully
FALSE: port can´t
be closed

losePort
ndReset

public bool
ClosePortAnd
Reset();

Closes the serial port opened by the
OpenPort method and forces the
USB2SER device to come out of loader
mode by performing a software reset.
Should be used when an error occurs
or just before closing the main
application.

Void TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
assword
CMD

public bool
ValidatePassword
_CMD (string
Password);

Validates the password string, sends
the password validation command, and
waits for the answer.

Password: string containing the
password to be validated by the
USB2SER. Must always be 16
characters long. Only
hexadecimal values are valid.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
assword
CMD

public bool
ChangePassword
_CMD(string
Password);

Validates the password string, sends
the command to change the current
password, and waits for the answer.

Password: string containing the
new password. Must always be
16 characters long. Only
hexadecimal values are valid.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
endorID
CMD

public bool
ChangeVendorID
_CMD(string
VendorID);

Validates the vendor ID string, sends
the command to change the current
vendor ID, and waits for the answer.

VendorID: string containing the
new vendor ID. Must always be
4 characters long. Only
hexadecimal values are valid.

TRUE: port closed
successfully
FALSE: port can´t
be closed
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor6

Using DLLs in a C# Project

C
P
_

C
M
S

C
P
S

C
S
N
S

C
M
C
_

R
D
_

D
D

hange
roductID
CMD

public bool
ChangeProductID
_CMD(string
ProductID);

Validates the product ID string, sends
the command to change the current
product ID, and waits for the answer.

ProductID: string containing the
new product ID. Must always be
4 characters long. Only
hexadecimal values are valid.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
anufacturer
tring_CMD

public bool
ChangeManufacturer
String_CMD
(string
strManufacturer);

Validates the manufacturer string,
sends the command to change the
current manufacturer string, and waits
for the answer.

strManufacturer: string
containing the new
manufacturer string. Must be
from 1–63 characters long.
Valid range is any printable
character from 32–126.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
roduct
tring_CMD

public bool
ChangeProduct
String_CMD(string
strProduct);

Validates the product string, sends the
command to change the current
product string, and waits for the answer.

strProduct: string containing
the new product string. Must be
from 1–63 characters long.
Valid range is any printable
character from 32–126.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
erial
umber
tring_CMD

public bool
ChangeSerialNumber
String_CMD(string
strSerialNum);

Closes the serial port opened by the
OpenPort method. Closes the port, but
the device remains in loader mode.

strSerialNum: string containing
the new serial number string.
Must be from 1–63 characters
long. Valid range is any
printable character from
32–126.

TRUE: port closed
successfully
FALSE: port can´t
be closed

hange
axCurrent
onsumption
CMD

public bool
ChangeMaxCurrent
Consumption_CMD
(string
Milliamperes);

Validates the milliamperes string,
sends the command to change the
maximum current consumption, and
waits for the answer.

Milliamperes: string containing
the new current consumption
value. The valid range is even
values from 20–500 mA, if the
bus-powered option is
selected. For self-powered the
valid value must be 0.

TRUE: port closed
successfully
FALSE: port can´t
be closed

eadUSB
escriptors
CMD

public bool
ReadUSBDescriptors
_CMD();

Sends the command to read the entire
nonvolatile memory where the USB de-
scriptors are located. Stores the USB
descriptors in the following public vari-
ables:
Public string VendorID
Public string ProductID
Public string StrManufacturer
Public string StrProduct
Public string StrSerial
Public string NumConsumption

Void TRUE: port closed
successfully
FALSE: port can´t
be closed

iscoverUSB
evice

public string
DiscoverUSBDevice
(string VID,
string PID);

Validates the VID and PID parameters
and polls all enumerated USB devices
looking for those that have the desired
VID and PID.

VID: string containing the
vendor ID to match.
PID: string containing the
product ID to match.
Both parameters must always
be 4 characters long. Only
hexadecimal values are valid

Returns NULL if
the desired VID
and PID was not
found. Returns a
string containing
the friendly port
name if the desired
VID and PID were
found.

Table 1. USB2SER C# Methods (continued)

Syntax Description Parameters Return
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor 7

Serial Production GUI User Guide

V
P

V
V

V
P

V
M
S

V
P
S

V
S
S

V
M
C

3 Serial Production GUI User Guide
This section explains how the serial production GUI example works. The serial production GUI allows the
reading and writing of the USB2SER USB descriptors by using the USB2SER_DLL DLL.

The serial production GUI has only one form named MainForm.

alidate
assword

public bool
ValidatePassword
(string strField);

Validates if the password is in
hexadecimal format and 16 characters
long.

strField: string to be validated TRUE: string is
valid
FALSE: string is not
valid

alidate
endorID

public bool
ValidateVendorID
(string strField);

Validates if the product ID is in
hexadecimal format and 4 characters
long.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
roductID

public bool
Validate
ProductID(string
strField);

Validates if the product ID is in
hexadecimal format and 4 characters
long.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
anufacturer
tring

public bool
Validate
ManufacturerString
(string strField);

Validates if the manufacturer string is a
printable ASCII symbol not longer than
63 characters.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
roduct
tring

public bool
ValidateProduct
String(string
strField);

Validates if the product string is a
printable ASCII symbol not longer than
63 characters.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
erialNum
tring

public bool
ValidateSerial
NumString(string
strField);

If the SerialAutoIncrement variable is
false, this method validates if the
product string is a printable ASCII
symbol not longer than 63 characters.If
the SerialAutoIncrement variable is true
and the HexFormat variable is false,
this method validates that the product
string is in decimal format and no
longer than 8 characters.
If the SerialAutoIncrement variable is
true and the HexFormat variable is true,
this method validates that the product
string is in hexadecimal format and not
longer than 8 characters.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

alidate
axCurrent
onsumption

public bool
ValidateMaxCur-
rentConsumtion
(string strField);

If the BusPowered variable is true, this
method validates that the maximum
current consumption is between
20–500 mA. If the BusPowered vari-
able is false, this method validates that
the maximum current consumption is
0 mA.

strField: string to be validated TRUE: port closed
successfully
FALSE: port can´t
be closed

Table 1. USB2SER C# Methods (continued)

Syntax Description Parameters Return
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor8

Serial Production GUI User Guide
3.1 Valid formats and values for USB descriptors’ fields
The methods ValidatePassword, ValidateVendorID, ValidateProductID, ValidateManufacturerString,
ValidateProductString, ValidateSerialNumString, and ValidateMaxCurrentConsumption can be called by
the application at any time. These methods are useful for validating any field on the C# form before
executing any read or write process.

The serial production GUI uses these methods to ensure all fields on the MainForm are within a valid
range. A pop-up error notification is displayed if an error is detected.

3.2 Discover USB devices
To establish communication with the USB2SER device, the USB host must first enumerate the device. The
enumeration process assigns a COM port to the USB2SER device. The port number assigned by the USB
host can be any number. Any application trying to communicate with the USB2SER needs to know the
port number to open it and to be able to send and receive data.

The USB2SER_DLL has a utility, named DiscoverUSBDevice, for the discovery of USB devices. This
method can detect and receive information about any USB device enumerated on the USB host. The scope
of this method was reduced to detect only USB CDC class devices.

Since the USB host can enumerate USB CDC class devices other than the USB2SER device, the
DiscoverUSBDevice method receives a vendor ID and a product ID as parameters to discover only those
devices that its vendor ID and product ID match with the received parameters.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor 9

Conclusion
The serial production GUI is intended to communicate with one USB2SER device at the time. Ensure that
no more than one device with the same vendor ID and product ID is connected.

3.3 Read USB descriptors
To read the USB descriptors, the field’s current password, current vendor ID, and current product ID must
be filled before pressing the READ button. The reading process uses the DiscoverUSBDevice method to
discover the port number of the enumerated USB2SER device. If the READ button is pressed and no
USB2SER device is enumerated, the process stays in a loop until the device is enumerated or the STOP
button is pressed. When the device is connected to the USB host, the reading process starts automatically.

3.4 Customize USB descriptors
To customize the USB descriptors, all fields on the form must be filled before pressing the AUTO button.

Once all fields are completed, the AUTO button can be pressed to start the customization process. This
process uses the DiscoverUSBDevice method to discover the port number of the enumerated USB2SER
device. If the AUTO button is pressed and no USB2SER device is enumerated, the process stays in a loop
until the device is enumerated or the STOP button is pressed. When the device is connected to the USB
host, the customization process starts automatically. This process allows the customization of several
devices in an automated manner much like a serial production line. So when the customization process
ends, the next device can be connected and the application will start to customize the device automatically
using the same parameters.

The serial number string can be modified using the same value if the “Auto incremental serial number”
box is not checked.

The serial number string can be modified using an incremental value if the “Auto incremental serial
number” box is checked. In this mode, the initial string will be increased each time a USB2SER device is
connected on the USB host. The number is increased in hexadecimal format if the “Hexadecimal format”
box is checked. Otherwise the number is increased in decimal format.

4 Conclusion
The DLLs described in this document provide a secure way to use previously-validated methods and
objects. They also allow code reuse and speed up the development of new designs. DLLs also protect
intellectual property since the DLL does not provide source code.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor10

Revision History
5 Revision History
Table 2. Revision History

Version Changes

Rev. 0 First public version of this document.

Rev. 1 Changed “USB2SER SDA” to “USB2SER” in first paragraph on page 1.
Using USB2SER DLL in C# Projects, Rev. 1

Freescale Semiconductor 11

Document Number: AN4314
Rev. 1
07/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2011. All rights reserved.

http://www.freescale.com/epp

	1 Introduction
	2 Using DLLs in a C# Project
	2.1 Creating a new DLL folder
	2.2 Application programming interface
	2.2.1 USB2SER_DLL class
	2.2.2 USB2SER_DLL application programming interface
	2.2.3 Methods

	3 Serial Production GUI User Guide
	3.1 Valid formats and values for USB descriptors’ fields
	3.2 Discover USB devices
	3.3 Read USB descriptors
	3.4 Customize USB descriptors

	4 Conclusion
	5 Revision History

