
1 Introduction
Audio output has become an important part of many
embedded applications, such as audio players, voice recorders,
VoIP telephony, smart appliances, and electronic toys. This
application note describes the basic methods of implementing
audio output. Modern MCUs, such as the Kinetis family,
include powerful CPU cores and specialized peripherals that
allow audio reproduction easily, while requiring a minimum of
external hardware.

1.1 Abstract
Audio records are usually stored either in the MCU's
embedded flash memory, or externally on an SD-card or
external EEPROM IC. They are stored as raw audio samples
or in any compressed audio format. This application note does
not describe the decompression of the compressed audio
records.

The key element of the process is to use a method of
transferring the stream of decompressed audio data to the
desired output while having a minimal CPU load and no signal
dropouts or distortion.

Freescale Semiconductor Document Number: AN4369

Application Note Rev. 0, 02/2012

Audio Output Options for Kinetis
Using DMA and PWM, DAC, or I2S Audio Bus

by: Michael Galda
Freescale
Rožnov CSC
Czech Republic

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Double-buffering and DMA......................................2

3 Audio output options...4

4 Audio signal preprocessing.......................................5

5 Demo software example..10

6 Audio output hardware considerations.12

7 Conclusion...15

8 Testing and validation...15

9 References...15

One of the recommended methods is to use double-buffering and direct memory access (DMA). In this case the audio data
can be read and processed by the CPU while the DMA hardware state machine feeds the audio output with audio samples in
the background.

Examples of application areas:
• Answering machines
• VoIP telephony
• Safety systems
• Smart medical appliances
• Voice recorders
• Intercoms
• Walkie-talkies
• Electronic toys

2 Double-buffering and DMA
These software and hardware methods are commonly used in applications that require a continuous data flow while using a
minimum of CPU cycles.

2.1 Ping-pong buffers
At any one time, one buffer is actively being played (the front buffer), while the second (background) buffer is filled with the
new audio samples. When playing is completed, the roles of the two buffers are switched. This is usually accomplished by
switching the pointers. See Figure 1 and Figure 2 for details.

2.2 Direct memory access (DMA)
Direct memory access is ensured by the DMA controller, which is a special MCU peripheral capable of transferring large
blocks of data between memory locations with no CPU assistance needed.

The software initializes a DMA channel with the DMA transfer attributes, the source and destination memory address, the
number of bytes transferred in the minor loop (single memory access) and the number of minor loops inside the major loop,
which defines the total size of the transferred data block. The source/destination address is incremented automatically after
the completion of every minor loop. When the complete block has been transferred (the major loop done), the IRQ is
generated by the DMA channel. Two separated or adjacent physical SRAM memory arrays can be used to create two ping-
pong buffers.

Some of the DMA peripherals, such as the eDMA module used on Kinetis devices, allow generation of an IRQ on a half-
point transfer event. This means that the IRQ will be generated when half of the total transfers have been done (DMA citer =
biter/2) and the next IRQ is requested when the major loop is done (after the last transfer).

In our example, we are using a single DMA source buffer, which is split into two parts (the lower half and the upper half).
These two subparts are acting as two ping-pong buffers. The source address is set to the beginning of the DMA source audio
buffer. The destination address is the address of the MCU peripheral register responsible for the audio output. In our case it
may be a FlexTimer channel value register (PWM duty register), a DAC output data register, or an I2S transmit data register.
The source offset and number of bytes (NBYTES) transferred in a single minor loop is equal to two bytes (16 bits), because
the source audio samples are 16-bit values.

NOTE
Some additional audio processing such as oversampling, filtering, output dithering, and
signal value scaling may be required from the CPU.

Double-buffering and DMA

Audio Output Options for Kinetis, Rev. 0, 02/2012

2 Freescale Semiconductor, Inc.

When the first of the ping-pong audio buffers is transferred by the DMA channel to the output, the DMA (halfway point) IRQ
is generated. The DMA source address points to the second buffer and the first buffer can be loaded with the new audio
samples. When the second buffer transfer is completed, an IRQ is generated and the DMA source pointer is automatically
rewound to the beginning of the first buffer. For the CPU, this appears as two individual audio buffers, while for the DMA
controller these act as a continuous input buffer, which ensures playback with no lags. See Figure 2 for details.

Figure 1. Audio input-output data processing stream

Double-buffering and DMA

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 3

Figure 2. DMA input buffer in detail

3 Audio output options
Depending on the required audio output quality, there are several output options possible, such as PWM, DAC, or an external
audio codec IC through the I2S audio bus. The Kinetis MCU family supports the FlexTimer peripherals, providing several
PWM outputs, 12-bit DAC converters, and a specialized I2S peripheral audio bus interface compatible with an external audio
codec IC.

As mentioned above, the audio output peripheral options for Kinetis devices are:
• DAC (12-bit)
• PWM (FlexTimer)
• I2S (SAI) bus over an external codec IC

3.1 Advantages of the different solutions
Pulse width modulation(PWM) output with a simple low-pass filter can be used in a cost-sensitive application. The PWM
output pins provide enough current to drive the low-impedance speaker directly without an amplifier. Additionally, the
current can be boosted by a transistor or op-amp. The key point is to design the output low-pass filter properly considering

Audio output options

Audio Output Options for Kinetis, Rev. 0, 02/2012

4 Freescale Semiconductor, Inc.

the filter cutoff frequency. The main disadvantage to this solution is that the PWM switching frequency should be set higher
than 16 kHz (higher than the audible band). The PWM provides a square signal on the output, which is reconstructed and
smoothed as an acoustic signal after going through the low-pass filter and by the inductance of the speaker coil. The PWM
timer output compare event can trigger the DMA transfer directly.

Digital-to-analog-converter (DAC) output can generate very smooth signals, so it can provide better results than the PWM.
The DAC current output capability is very low (maximum 1 mA) , and so it has to be amplified externally. The DAC output
register has to be periodically reloaded with a new sample by the DMA channel. A single PIT channel or a FlexTimer
channel running in output compare mode, with a period equal to the audio sampling rate, can be used for triggering the DMA.

The Inter-IC Sound (IIS or I2S) bus is a standardized audio data interface commonly used and supported by a number of
external audio codec ICs available on the market.

3.2 Output signal resolution versus frequency
PWM output resolution

With the FlexTimer module, we can generate a PWM output signal with a theoretical resolution of up to 16 bits. If the PWM
is used for audio output, the PWM reloading frequency (switching frequency) is equal to the audio output sample rate.

Considering the maximum FlexTimer module input frequency (50 MHz on a Kinetis K60 MCU running on a 100 MHz
system clock), we can generate a 16-bit PWM output with a PWM reload frequency up to 50000000 / 65536 = 763 Hz, which
is of course too low a switching frequency for the audio signal sample rate.

For instance, if we need an output audio sample rate equal to 22 kHz = 22050 Hz, we will get the following equation:
50000/22050 = 2268, which is close to ~ 2048 corresponding to 12 bits of PWM resolution.

DAC frequency limits

The Kinetis DAC output resolution is 12-bit only. This means that a 16-bit audio sample value has to be truncated as well.

The DAC setting time is limited. For the Kinetis devices, the data sheet specifies 15–30 µs in hi-speed mode. Practical
measurements have confirmed that we can go up to ~50 kHz.

The audio data samples are usually stored in 16-bit signed integer format. For the above-mentioned reasons, the values have
to be scaled (converted to an unsigned integer) and divided to the proper size to be compatible with the PWM or DAC
outputs. This is done in the software by adding +32768 and bit-shifting to get the desired output resolution.

Example of output value scaling:

// Convert an audio sample from 16-bit signed to 12-bit unsigned value for PWM or DAC output

*p_audio_dst++ = ((uint16_t)(audsample + 32768))>>4;

I2S data format

I2S data is sent from the MSB to the LSB beginning from the second clock cycle after the word select clock transition. The
transmitting MSB first allows both the transmitting and receiving devices to not care about the audio precision of the remote
device. For instance, if the transmitter is sending 32 bits per channel to a device with only 24 or 16 bits of resolution, the
receiving device may simply ignore the extra bits. If the transmitter is sending 16-bit samples per channel to a receiving
device with 24 bits of precision, the receiver will simply zero-fill the missing bits. Data words are transferred synchronously
at the frequency equal to the audio sample rate.

4 Audio signal preprocessing
Depending on the required input and output audio signal quality, these types of basic signal processing can be done in
runtime by the CPU.

• Oversampling

Audio signal preprocessing

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 5

• Signal dithering
• Digital filtering

4.1 Oversampling
Output oversampling helps avoid aliasing, improves resolution, and reduces noise.

In many applications, a common problem is aliasing. Aliasing causes the presence of higher harmonic components in the
signal spectrum. It can be a bit tricky to create an effective analog filter, given the maximum available bandwidth and sharp
cutoff, without exceeding the Nyquist frequency (which is half of the original sampling frequency). By increasing the
bandwidth of the sampled signal (increasing the sampling frequency), we can create an anti-aliasing filter with less
complexity, a sharp cutoff, and a higher effect. The cost of this strategy is that the result is a slower sampler.

4.2 Digital filtering
With fast CPU cores, we can implement a high-order digital filter, which is the easiest and cheapest way compared to the
pure analog filter solution. For the anti-aliasing filter, we can calculate a low-pass filter with the cutoff frequency set just
below the Nyquist frequency.

Equation 1:

There are two basic types of digital filters: finite impulse response (FIR) and infinite impulse response (IIR). This document
does not deal with the theory of digital filtering. Please refer to available documentation for more details.

In principle, the FIR filters are easier to implement and are always stable (because there is no feedback), at the cost of more
CPU cycles and the memory needed for calculation. Moreover, properly implemented FIR filters have a constant group
delay, resulting in low signal distortion within the whole signal band.

IIR filters provide a better approximation of the classical analog filters. However, use of an IIR filter has some drawbacks: it
may significantly reduce the number of CPU cycles, the implementation is not so straightforward as compared to an FIR, and
there is a risk of instability for the high-order filters as well as higher signal distortion. Moreover, the filter coefficients are
higher than |1.000|, causing calculation difficulty without floating point support.

FIR / IIR filter coefficients can be easily calculated by specialized PC software filter design tools such as Matlab or
QEDesign. See the example of the FIR filter designed in the QEDesign software.

Audio signal preprocessing

Audio Output Options for Kinetis, Rev. 0, 02/2012

6 Freescale Semiconductor, Inc.

Figure 3. FIR filter frequency char

Audio signal preprocessing

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 7

Figure 4. FIR filter frequency char (magnitude in dB)

4.3 Signal dithering
In audio, whenever we go from a high resolution signal to a low resolution signal, there will be a certain quantization error as
a result. If we truncate the signal resolution to a lower resolution, for instance from 16 bits to 12 bits, one will notice that
because of the small number of quantization steps, there are stair-steps where several consecutive samples can end up at the
same level as the result of the lower bit truncation. The original waveform will be quantized such that there are groups of
small square waves (stepped signal waveform), but the properties and harmonic distortion are similar to that of square waves.
These stair steps in the waveform have an audible effect by adding determinable harmonic distortion at the higher
frequencies, which is noticeable as a ringing sound in the original audio record.

Audio signal preprocessing

Audio Output Options for Kinetis, Rev. 0, 02/2012

8 Freescale Semiconductor, Inc.

Figure 5. 16-bit sine wave truncated to 12 bits (with quantization steps)

The concept of dithering is to add some random noise to the waveform in order to break up the stair-stepped waves. In our
working example, we’re dithering 16 bits to 12 bits, so we will add 5 bits of noise. In reality this means that we will add
randomly selected numbers from 0–32 to the original signal. (If we work with signed integer values, we will add random
values from –16 to +16.) The CPU can generate a set of pseudo-random values by a simple software function with the same
statistical probability: this is called the “Rectangular Probability Density Function” (RPDF), the equivalent to the “roll of a
die.”

These random numbers, however, can’t be totally random. For the dithering noise, we would rather use numbers generated by
the “Triangular Probability Density Function” (TPDF), equivalent to the roll of two dice and the sum of the numbers on the
two dice. The reason we use the TPDF as the source of dithering noise is the certain effect.

Let’s consider a DC signal at the halfway of two quantization steps. We want there to be a 50% sure chance that it ends up on
one quantization step or the other (the most probable values). If the DC signal is far from one quantization step level and
closer to the other, it has a lower probability. In other words, the numbers in the middle of the range between the two
quantization steps are randomly generated with the highest probability, and the minimum or maximum values from the range
have the lowest probability. Once the samples are filtered at the D/A converter, the end product will yield appropriate results.
If we add this noise number to the original 16-bit sample before conversion (bit-shifting by 4) to a 12-bit resolution, we will
get a resulting 12-bit waveform with no determinable “stair steps,” and these steps are dithered by random quantization
fluctuations of single bits between the two quantization steps.

In the signal spectrum plot (Figure 6) we can see that the higher frequency noise peaks are effectively suppressed. However,
the total noise floor will be increased and the sound will be more natural to the human ear.

Audio signal preprocessing

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 9

Figure 6. 16-bit sine wave, with dither noise added; truncated to 12 bits (steps dithered)

5 Demo software example
Two example software projects targeted at the Kinetis K60 MCU have been created to demonstrate audio playback
performance in the real world. The Freescale Tower system based on the TWR-K60N512 board, and the TWR-PROTO
board with customized output analog filter circuits, have been used for demonstration software development and testing.

Both software projects show the playback of an uncompressed mono audio recording stored in memory.

The first simple software project does not run under the operating system, and replays the audio record stored inside the
internal MCU flash memory. The second project uses the MQX OS and file system, reading the audio records stored
externally in *.wav files located on an SD-card or USB stick. Both software projects can be compiled via the IAR compiler.

For the MQX project, the BSP & PSP stationary libraries, MFS (mqx file system) library, and SD-card driver are reused.
Configuration of the DMA, FlexTimer PWM, DAC, and I2S peripherals have been done by bare-metal based drivers. The
Freescale MQX OS package has to be installed on the computer.

An audio record is stored in raw form as 16-bit signed integer PCM samples (*.wav format). For the bare-metal project, the
length of record is limited by the amount of flash memory available on the device.

Demo software example

Audio Output Options for Kinetis, Rev. 0, 02/2012

10 Freescale Semiconductor, Inc.

Figure 7. Flowchart of demonstration program

Demo software example

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 11

6 Audio output hardware considerations
As mentioned above, for the PWM output, we can use a simple RC filter for reconstruction of the PCM samples. PWM
output can provide enough current for driving low-impedance headphones, or an external amplifier input, directly.

6.1 PWM hardware output
The PWM output signal from the FlexTimer output is fed to a simple low-pass RC filter to generate an output voltage. The
output voltage is proportional to the average time spent in the High state (a 50% duty cycle is equal to one half of the
maximum output voltage, in other words 1.65 V when VDD = 3.3 V). When this is averaged over time, we can reconstruct
the original analog signal.

The cutoff frequency has to be set equal to, or just under, the Nyquist frequency, which will additionally suppress the
unwanted high frequency noise. Since the application can support different sample rates (8000/11025/16000/22050/44100),
we must take into consideration the bandwidth limitation caused by the lower sample rates. A higher PWM frequency can be
filtered more easily, but the PWM resolution may be limited.

For instance: if the original signal sampling frequency is 8 kHz, the filter cutoff frequency has to be set to 4 kHz. This
ensures that almost the entire audio spectrum is passed through, but the PWM switching frequency and noise is filtered.

These formulae are valid for the RC filter component values:

Equation 2:

Equation 3:

Where ‘f’ is the filter cut-off frequency.

In our example (f = 4 kHz), the R = 1.2kΩ and C = 33nF

See the example of a filtered sine wave (500Hz) generated by PWM output and filtered.

Audio output hardware considerations

Audio Output Options for Kinetis, Rev. 0, 02/2012

12 Freescale Semiconductor, Inc.

Figure 8. Example: Sine wave (500 Hz) generated by PWM

6.2 DAC hardware output
The DAC output current is limited, so it has to be amplified. We can use a simple amplifier acting as an analog low-pass
filter with a one-stage or a two-stage Op-Amp. Using a low noise op-amp with a fast slew rate is recommended. A simple
two-stage op-amp has been designed, simulated, and tested. The following is the design for an 8 kHz cutoff frequency.

Audio output hardware considerations

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 13

Figure 9. PWM/DAC output filter example

6.3 I2S output
The I2S bus can optionally be used as an audio output, feeding the data to an appropriate audio codec IC or a DAC converter
with I2S support. In our example, the TWR-AUDIO-SGTL Freescale Tower system audio card has been used. This card is
based on the SGTL5000 codec, but any other codec can be used.

Audio output hardware considerations

Audio Output Options for Kinetis, Rev. 0, 02/2012

14 Freescale Semiconductor, Inc.

Figure 10. MQX demonstration software application block diagram with I2S output

7 Conclusion
This document deals with the basics of the audio reproduction possibilities for the Kinetis MCUs. However, it can be re-used
as a reference for any other microcontroller-based application that requires simple audio output. The purpose of this
application note is not to describe a high-quality audio solution. Elementary techniques and known issues of digital audio
processing have been mentioned, but for a more detailed theory, specialized literature resources should be consulted.

8 Testing and validation
For testing and development, the Freescale TOWER modular system has been used.

• TWR-K60N512
• TWR-ELEV
• TWR-PROTO (with customized analog output filter design)

The demonstration software source project is based on the MQX Real-Time Operating System (RTOS). The Freescale
TOWER system together with the MQX OS can serve as a smart development platform for embedded MCU applications.

For more information see:
• www.freescale.com/tower
• http://www.towergeeks.org/
• www.freescale.com/mqx

9 References
For testing and development, the Freescale TOWER modular system has been used.

Conclusion

Audio Output Options for Kinetis, Rev. 0, 02/2012

Freescale Semiconductor, Inc. 15

1. Aldrich, Nika (2002, April 25). "Dither Explained: An explanation and proof of the benefit of dither for the audio
engineer." Version 5.5.02. [downloaded 2011-12-05]. Retrieved from the web site: http://www.users.qwest.net/~volt42/
cadenzarecording/DitherExplained.pdf

2. Steepest Ascent (2006). DSPedia. Introduction to DSP, Version 4.4/9/07. http://www.steepestascent.com

References

Audio Output Options for Kinetis, Rev. 0, 02/2012

16 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4369
Rev. 0, 02/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Abstract

	Double-buffering and DMA
	Ping-pong buffers
	Direct memory access (DMA)

	Audio output options
	Advantages of the different solutions
	Output signal resolution versus frequency

	Audio signal preprocessing
	Oversampling
	Digital filtering
	Signal dithering

	Demo software example
	Audio output hardware considerations
	PWM hardware output
	DAC hardware output
	I2S output

	Conclusion
	Testing and validation
	References

