
1 Introduction
In many cases it is necessary to connect external devices to a
microcontroller. For example, when an application demands a
larger amount of memory than the memory available, it is
necessary to use external memories. Another example is when
a system requires additional interfaces that are not available on
the microcontroller, external peripherals are then needed.
Thinking of these needs a multi-function external bus interface
called the FlexBus interface controller is provided in Kinetis
devices with basic a function of interfacing to slave-only
devices. It can be directly connected to external ROMs, flash
memories, programmable logic devices, or other simple target
(slave) devices with little or no additional circuitry.

This application note describes how to set up and use the
FlexBus interface on the K60 and shows some implementation
examples. In these examples the TWR-K60 is connected to
TWR-MEM and TWR-LCD via FlexBus. The TWR_MEM is
used to demonstrate how to read, write, and execute from an
external memory. The TWR-LCD is used to show
connectivity with an LCD displaying an image. Although the
focus of the application note is the K60, the information
contained in this document will also apply to Kinetis devices
with the FlexBus interface.

Freescale Semiconductor Document Number: AN4393

Application Note Rev. 0, 05/2012

Using FlexBus Interface for Kinetis
Microcontrollers
by: Carlos Musich and Alejandro Lozano

Technical Information Center

© 2011 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Functional description...2

3 Examples...5

4 PCB design recommendations................................18

5 Conclusion...19

A Getting the correct FlexBus signal by
using the TWR-PROTO..19

B Countermeasure...20

2 Functional description
The external interface is a configurable multiplexed bus, set to one of the following modes:

• Multiplexed 32-bit address and 32-bit data
• Multiplexed 32-bit address and 16-bit data (non-multiplexed 16-bit address and 16-bit data)
• Multiplexed 32-bit address and 8-bit data (non-multiplexed 24-bit address and 8-bit data)
• Non-multiplexed 32-bit address and 32-bit data busses

The fastest FlexBus transfers take four cycles of the FlexBus clock. This section describes the signals used by FlexBus in
read and write cycles.

NOTE
Kinetis FlexBus supports burst. If you are connected to any device that supports burst
(for example, FPGA), it can transfer data faster than 4 FlexBus cycles because it does not
require the address phase between transferring the data each time.

2.1 Read cycle
1. The address drives in the first cycle. In non-multiplexed mode, the FB_A[31:0] carries the address. In multiplexed

mode, the FB_AD[31:0] bus carries the address and data. The full 32-bit address is driven on the first clock of the bus
cycle (address phase). The time between the first clock edge and the moment where the address is driven is called
Output Valid time (FB2).

2. In non-multiplexed mode the Transfer Start (FB_TS) signal is asserted indicating that the device has started a bus
transaction. In multiplexed mode, an inverted FB_TS (FB_ALE) is available as an address latch enable, which
indicates when the address is driven on the FB_AD bus. These signals are negated in the next clock edge, but can be
configured to remain asserted until the first positive clock edge after FB_CS asserts.

3. In the second edge, the corresponding Chip Select (FB_CS) and Output Enable (FB_OE) signals are asserted.
4. The external device must supply the data on the bus before the start of the third cycle. This time is called Input Setup

time (FB4 = 13.5 ns for K60). If the external device is not fast enough, Wait States (extra clock cycles) can be added.

If the auto-acknowledge feature is disabled (CSCRn[AA] = 0), then FB_TA must be negated 13.5 ns (FB4) before the
third cycle.

5. If no Wait States were added, the data is read in the third clock edge. In non-multiplexed mode, the FB_D[31:0] buses
carry data. In Multiplexed mode, after the address is latched, the data is driven on the FB_AD[31:0] bus (data phase).
During the data phase, the address continues driving on the pins not used for data. For example, in 16-bit mode the
lower address continues driving on FB_AD[15:0], and in 8-bit mode the lower address continues driving on
FB_AD[23:0].

6. Data must hold in the bus at least for 0.5 nS. This time is called Input Hold (FB5).
7. Finally, FB_TA indicates the external data transfer is complete. When the processor recognizes FB_TA during a read

cycle, it latches the data and then terminates the bus cycle.

If auto-acknowledge is disabled (CSCRn[AA] = 0), the external device drives FB_TA to terminate the bus transfer; if
auto-acknowledge is enabled (CSCRn[AA] = 1), FB_TA is generated internally after a specified number of wait states,
or the external device may assert external FB_TA before the wait-state countdown, terminating the cycle early. The
device negates FB_CSn one cycle after the last FB_TA asserts. During read cycles, the peripheral must continue to
drive data until FB_TA is recognized. See Figure 1.

Functional description

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

2 Freescale Semiconductor, Inc.

Figure 1. FlexBus read cycle

2.2 Write cycle
The FlexBus read and write cycles have almost the same timing. The main differences are:

1. FB_OE is never asserted
2. When the processor recognizes FB_TA during a write cycle, the bus cycle is terminated
3. For write cycles, the processor continues driving data one clock after FB_CSn is negated

See Figure 2.

Functional description

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 3

Figure 2. FlexBus write cycle

2.3 Data byte alignment and physical connections
The device aligns data transfers in FlexBus byte lanes with the number of lanes depending on the data port width.

Figure 3 shows the byte lanes the external memory connects to, and the sequential transfers of a 32-bit transfer for the
supported port sizes when the byte lane shift is disabled or enabled.

Figure 3. Sequential 32-bit transfers, byte lane shift differences

Functional description

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

4 Freescale Semiconductor, Inc.

2.4 Memory map
Typical memory mapping as shown in Figure 4 0x6000_000 - 0xA000_0000 is the FlexBus space used for execution,
0xA000_0000 - 0xE000_0000 can only be used for data.

Figure 4. FlexBus Memory Map

3 Examples
The examples that follow show ways some common interfaces can be accomplished.

NOTE
Both MRAM non-multiplexed and multiplexed mode use 8-bit data because of the
routing limitations of the TWR-MEM module. To get the best performance you must use
a 16-bit data connection.

3.1 MRAM non-multiplexed mode
In these examples the FlexBus is connected to a Magnetoresistive Random Access Memory (MRAM) chip, which is in the
same footprint as an industry standard x16 asynchronous Fast SRAM. To connect to a 16-bit memory using the absolute
minimum glue logic, this examples uses the non-multiplexed mode with 8-bit data and 20-bit address lines.

This solution is demonstrated on the TWR-K60 evaluation board.

Advantages:
• Increases available system memory by adding a 512 KByte MRAM
• MRAM is a non-volatile memory that does not require special erasing and programming routines
• Only a single gate inverter is required

Disadvantages:
• MRAM has slower access time than SRAM, and therefore the memory bandwidth is lower.
• To reduce the amount of glue logic, this method treats the MRAM as an 8-bit memory, and thus provides less

performance than 16-bit.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 5

3.1.1 Schematics
Although the MRAM is 16-bit, it is byte-read/writable. It has byte high enable and byte low enable pins to select between the
upper or lower byte. These signals can be constructed from the FlexBus signals using only a single gate inverter on FB_A0.
FB_A0 is used as byte high enable and the output of the inverter FB_A0 is used as byte low enable. This effectively treats the
memory as an 8-bit device. Performance is sacrificed using this method. However, it minimizes glue logic, which saves on
component cost.

The eight data lines from the FlexBus are connected to both the upper byte and lower byte of the 16 data lines of the MRAM.
The byte-enable lines that are generated by FB_A0 and FB_A0 select, which byte is driving on the data lines. When not
selected, the other byte lines of the MRAM will tri-state and not interfere with the desired byte.

The memory is word-addressable (16-bit), so the address lines must be shifted such that the FlexBus word address line
FB_A[1] is connected to A[0] of the memory. Thus, FB_A[18:1] are connected to A[17:0] of the memory.

Figure 5. Non-Multiplexed x8 FlexBus to x16 memory

3.1.2 Software setup
To determine the required adjustments to the FlexBus timing, the FlexBus chapter of the reference manual titled K60 Sub-
Family Reference Manual for 100MHz devices in 144 pin packages (document number, K60P144M100SF2RM) and the
Timing Spec chapter in the datasheet titled K60 Sub-Family Data Sheet (document number K60P144M100SF) are used.

• FlexBus clock FB_CLK runs at the same speed as the Bus clock. The FB_CLK frequency may be the same as the
internal system bus frequency or an integer divider of that frequency. Its default value is 50 MHz.

SIM_SCGC7 |= SIM_SCGC7_FLEXBUS_MASK; // Enable the clock to the FlexBus
SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(0x0); //FlexBus Clock not divided

• The IO pins required by FlexBus must be configured for the FlexBus function. There are 18 pins for the address, 8 pins
for data, and 4 control pins. Use the PORT_PCR_MUX(5) macro to set each pin for the FlexBus function. You must
set the GPIOs ports clocks

// Set the GPIO ports clocks
SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK |
SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;

PORTB_PCR11 = PORT_PCR_MUX(5); // fb_ad[18]
PORTB_PCR16 = PORT_PCR_MUX(5); // fb_ad[17]
PORTB_PCR17 = PORT_PCR_MUX(5); // fb_ad[16]
PORTB_PCR18 = PORT_PCR_MUX(5); // fb_ad[15]
PORTC_PCR0 = PORT_PCR_MUX(5); // fb_ad[14]

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

6 Freescale Semiconductor, Inc.

PORTC_PCR1 = PORT_PCR_MUX(5); // fb_ad[13]
PORTC_PCR2 = PORT_PCR_MUX(5); // fb_ad[12]
PORTC_PCR4 = PORT_PCR_MUX(5); // fb_ad[11]
PORTC_PCR5 = PORT_PCR_MUX(5); // fb_ad[10]
PORTC_PCR6 = PORT_PCR_MUX(5); // fb_ad[9]
PORTC_PCR7 = PORT_PCR_MUX(5); // fb_ad[8]
PORTC_PCR8 = PORT_PCR_MUX(5); // fb_ad[7]
PORTC_PCR9 = PORT_PCR_MUX(5); // fb_ad[6]
PORTC_PCR10 = PORT_PCR_MUX(5); // fb_ad[5]
PORTD_PCR2 = PORT_PCR_MUX(5); // fb_ad[4]
PORTD_PCR3 = PORT_PCR_MUX(5); // fb_ad[3]
PORTD_PCR4 = PORT_PCR_MUX(5); // fb_ad[2]
PORTD_PCR5 = PORT_PCR_MUX(5); // fb_ad[1]
PORTD_PCR6 = PORT_PCR_MUX(5); // fb_ad[0]

PORTB_PCR20 = PORT_PCR_MUX(5); // fb_ad[31] used as d[7]
PORTB_PCR21 = PORT_PCR_MUX(5); // fb_ad[30] used as d[6]
PORTB_PCR22 = PORT_PCR_MUX(5); // fb_ad[29] used as d[5]
PORTB_PCR23 = PORT_PCR_MUX(5); // fb_ad[28] used as d[4]
PORTC_PCR12 = PORT_PCR_MUX(5); // fb_ad[27] used as d[3]
PORTC_PCR13 = PORT_PCR_MUX(5); // fb_ad[26] used as d[2]
PORTC_PCR14 = PORT_PCR_MUX(5); // fb_ad[25] used as d[1]
PORTC_PCR15 = PORT_PCR_MUX(5); // fb_ad[24] used as d[0]

PORTB_PCR19 = PORT_PCR_MUX(5); // fb_oe_b
PORTC_PCR11 = PORT_PCR_MUX(5); // fb_rw_b
PORTD_PCR1 = PORT_PCR_MUX(5); // fb_cs0_b
PORTD_PCR0 = PORT_PCR_MUX(5); // fb_ale

• The base address is set in the base address field of the FlexBus Chip Select Address Register FB_CSAR for the
corresponding chip select. In this example, the MRAM is connected to chip select zero and the base address is
0x60000000. This address is 64-byte aligned, and t is in an available memory space.

#define MRAM_START_ADDRESS(*(volatile unsigned char*)(0x60000000))
FB_CSAR0 = (unsigned int)&MRAM_START_ADDRESS; //Set Base address

• The next step is to configure FB_CSCRn. This register controls the auto-acknowledge, address setup and hold times,
port size, burst capability, and number of wait states to accommodate the timing of the specific memory.
The code used to configure FB_CSCRn register in this example is:

FB_CSCR0 = FB_CSCR_PS(1) // 8-bit port
 | FB_CSCR_AA_MASK // auto-acknowledge
 | FB_CSCR_WS(0x2) // 2 wait states
 ;

As in the code above, the FlexBus was configured for 8-bit transfers and auto acknowledge. Assuming at the core is
running at maximum speed, the FlexBus will run at 50 MHz with 20 ns cycles. This was configured in step A.
Described in the previous section, the chip select is asserted in the second clock edge and the external device must
supply data 13.5 ns (Input Setup time) before the third edge. This means that MRAM has only 6.5 ns, but MRAM
access time is 35 ns.

Eqn.1
20 ns (clock cycle) – 13.5 ns (Input Setup time) = 6.5 ns < 35 ns

MRAM does not provide data faster than 6.5 ns after chip select asserts, then wait state cycles must be added to give it
more time. Adding one wait state is not enough time for the MRAM to provide data. Therefore two wait states are
added.

Eqn. 2
20 ns (clock cycle) + 40 ns (2 wait states) – 13.5 ns (Input Setup time) = 46.5 ns >
35 ns

• Next, write CSMR register to specify the address mask and allowable access types for the respective chip-selects.

FB_CSMR0 = FB_CSMR_BAM(0x7) //Set base address mask for 512K address space
 | FB_CSMR_V_MASK //Enable cs valid signal
 ;

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 7

Setting CSMR[BAM] to 0x0007 results in a base address mask of 0x0007FFFF. With base address 0x60000000 and
base address mask 0x0007FFFF, the chip select is active for address range 0x60000000 – 0x6007FFFF.

In binary looks like the following:

Figure 6. Chip select base address and mask

0 or 1 = bit is used to determine, if within chip-select address range. x = bit is a “don’t care.”

Select one of the following base address masks to maintain a contiguous memory space without gaps in the chip select
address range.

Table 1. Suggested chip select base address mask values

Memory Size CSMR (BAM)

1 Mbyte 0x000F

512 Mbyte 0x0007

256 Mbyte 0x0003

128 Mbyte 0x0001

64 Kbyte 0x0000

3.1.3 Transfer diagrams
With the above configuration chosen, the read and write cycles look as follows.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

8 Freescale Semiconductor, Inc.

Figure 7. Read (non-muxed mode 8-bit with one wait state and A0 and inverted A0 used
as byte enables)

Figure 8. Write (non-muxed mode 8-bit with one wait state and A0 and inverted A0 used
as byte enables)

3.1.4 Performance calculation
In this example, the theoretical maximal throughput is:

If you run the bus at 50 Mhz, with transfer cycles taking four cycles plus two wait state cycles, in 8-bit non-muxed mode you
can transfer eight bits in six cycles, therefore eight bits in 120 ns. This translates to 66.6 Mbit / sec.

8-bits / 6 cycles × 20 ns = 66.6 Mbps

3.2 MRAM multiplexed mode
This example shows how to connect MRAM with 8-bit data and multiplexed mode. For this specific example the TWR-K40
is used.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 9

3.2.1 Schematics
In multiplexed mode, the FB_A[19:0] pins are notated as FB_AD[19:0], because they now are both address and data signals.
In this example, FB_AD[7:0] are connected to DATA[7:0] of the MRAM. FB_AD[0] is connected to the BHE and BLE
through an inverter to access the 8-bit data needed.

The eight data lines FB_AD[7:0] from the FlexBus are connected to both the upper byte and lower byte of the 16 data lines
of the MRAM.

Figure 9. Multiplexed x8 FlexBus to x16 memory

3.2.2 Software setup
The code for multiplexed mode is almost the same as above. For the TWR-K40 in multiplexed mode, the FB_AD[7:0] are
used for data, therefore the byte lane must be right justified. The number of pins are different than the K60.

The FlexBus configuration looks like:

 FB_CSCR0 = FB_CSCR_BLS_MASK // set byte lane shift for data
FB_AD[7:0. right justified mode
 | FB_CSCR_PS(1) // 8-bit port
 | FB_CSCR_AA_MASK // auto-acknowledge
 | FB_CSCR_ASET(0x1) // assert chip select on second clock edge after
address is asserted
 | FB_CSCR_WS(0x2) ; // 2 wait state

 FB_CSMR0 = FB_CSMR_BAM(0x7) //Set base address mask for 512K address space
 | FB_CSMR_V_MASK //Enable cs signal
 ;

Also, pins to be used are:

//fb clock divider 3
 SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(0x3);

 /* Configure the pins needed to FlexBus Function (Alt 5) */
 /* this example uses low drive strength settings */
 //address/Data
 PORTA_PCR7=PORT_PCR_MUX(5); //fb_ad[18]
 PORTA_PCR8=PORT_PCR_MUX(5); //fb_ad[17]
 PORTA_PCR9=PORT_PCR_MUX(5); //fb_ad[16]
 PORTA_PCR10=PORT_PCR_MUX(5); //fb_ad[15]
 PORTA_PCR24=PORT_PCR_MUX(5); //fb_ad[14]

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

10 Freescale Semiconductor, Inc.

 PORTA_PCR25=PORT_PCR_MUX(5); //fb_ad[13]
 PORTA_PCR26=PORT_PCR_MUX(5); //fb_ad[12]
 PORTA_PCR27=PORT_PCR_MUX(5); //fb_ad[11]
 PORTA_PCR28=PORT_PCR_MUX(5); //fb_ad[10]
 PORTD_PCR10=PORT_PCR_MUX(5); //fb_ad[9]
 PORTD_PCR11=PORT_PCR_MUX(5); //fb_ad[8]
 PORTD_PCR12=PORT_PCR_MUX(5); //fb_ad[7]
 PORTD_PCR13=PORT_PCR_MUX(5); //fb_ad[6]
 PORTD_PCR14=PORT_PCR_MUX(5); //fb_ad[5]
 PORTE_PCR8=PORT_PCR_MUX(5); //fb_ad[4]
 PORTE_PCR9=PORT_PCR_MUX(5); //fb_ad[3]
 PORTE_PCR10=PORT_PCR_MUX(5); //fb_ad[2]
 PORTE_PCR11=PORT_PCR_MUX(5); //fb_ad[1]
 PORTE_PCR12=PORT_PCR_MUX(5); //fb_ad[0]
 //control signals
 PORTA_PCR11=PORT_PCR_MUX(5); //fb_oe_b
 PORTD_PCR15=PORT_PCR_MUX(5); //fb_rw_b
 PORTE_PCR7=PORT_PCR_MUX(5); //fb_cs0_b
 PORTE_PCR6=PORT_PCR_MUX(5); //fb_ale

3.2.3 Transfer diagrams
With the above configuration chosen, the read and write cycles look like :

Figure 10. Read (muxed mode 8-bit with two wait states and A0 and inverted A0 used as
byte enables)

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 11

Figure 11. Write (muxed mode 8-bit with two wait states and A0 and inverted A0 used as
byte enables)

3.2.4 Performance calculation
In this example, the theoretical maximal throughput is the following.

If you run the bus at 50 Mhz, with transfer cycles taking four cycles plus two wait state cycles. In 8-bit non-muxed mode you
can transfer eight bits in 6 cycles, therefore eight bits in 120 ns. This translates to 66.6 Mbit / sec.

3.3 Reading and writing MRAM
Once the MRAM is connected appropriately and FlexBus is initialized, the application is ready to read and write the external
MRAM. These operations are simple, you can read any memory location and write directly to a memory address.

MRAM is configured in such a way that the available address range is 0x60000000 – 0x6007FFFF.
MRAM_START_ADDRESS is pointing to the first MRAM address. The next code writes a byte (0x5A) in the external
memory and then it is read. This is done in the first 16 addresses.

 uint8 wdata8 = 0x5A; //data to write to mram
uint8 rdata8;//variable to read mram

for(n=0x00000;n<0x000F;n++) //address offset
{
 (vuint8)(&MRAM_START_ADDRESS + n) = wdata8;
 rdata8=0x00; //clear data variable;
 rdata8=(*(vuint8*)(&MRAM_START_ADDRESS + n));
}

Now you have 16-bit data. The only restriction to read and write 16-bit data is to access to an even address. The next code
writes 16 words in MRAM. Each word is read before it is written. The first word is written in the first address available after
writing the 8-bit data.

uint16 wdata16 = 0x1234;//data to write to mram
uint16 wdata16; // variable to read mram

for(n=0x00010;n<0x001F;n+=2) //address offset

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

12 Freescale Semiconductor, Inc.

{
 (vuint16)(&MRAM_START_ADDRESS + n) = wdata16;
 rdata16=0x00; //clear data variable;
 rdata16=(*(vuint16*)(&MRAM_START_ADDRESS + n));
}

Finally the same operations with 32-bit data. To read or write a double word the memory address must be a multiple of 4.

uint32 wdata32 = 0x87654321;//data to write to mram
uint32 wdata32; // variable to read mram

for(n=0x00020;n<0x002F;n+=4) //address offset
{
(vuint32)(&MRAM_START_ADDRESS + n) = wdata32;
rdata32=0x00; //clear data variable;
rdata32=(*(vuint32*)(&MRAM_START_ADDRESS + n));
}

3.3.1 Executing from external MRAM
Executing code form external MRAM is also possible. There are three main steps that must be performed to have executable
code in external MRAM:

1. Initialize FlexBus to communicate with external MRAM.
2. Let the MCU know that it must look for the code in external memory. This is done with a compiler pragma and editing

the Linker Command File.
3. Copy the code from Flash to external Memory.

This example shows how to relocate a function that makes the LEDs on the K60 blink and execute it from the external
MRAM.

• A section is created using #pragma define_section and the function wanted to execute from MRAM is located
within the section.

#pragma define_section ExtMRAM ".myCodeInExtMRAM" abs32 RWX

__declspec (section "ExtMRAM") void toggle_LEDs(void){

int x = 0, i, n;
while(x<10){
GPIOA_PTOR=0x30000C00;
 for(i=0;i<500;i++){
 for(n=0;n<100;n++){
 asm("nop");
 }
 }
 x++;
 }
}

• The external MRAM address is added as a memory segment. The reason to do this is to let the CPU know where to find
toggle_LEDs(void) function.

MEMORY {
m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x000001E0
m_text (RX) : ORIGIN = 0x00000800, LENGTH = 0x00080000-0x00000800
m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00020000
m_cfmprotrom (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
extmram (RX) : ORIGIN = 0x60000000, LENGTH = 0x00002000
}

A linker section is now created to place the code in the memory segment created. Some labels are added to make the copy
from Flash to the external MRAM.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 13

___MRAMCodeStart = ___ROM_AT + SIZEOF(.app_data) + SIZEOF(.romp) ;

.my_mram : AT(___MRAMCodeStart)
{
. = ALIGN (0x4);
*(.myCodeInExtMRAM)
. = ALIGN (0x4);
} > extmram

___MRAMCodeSize = SIZEOF(.myCodeInExtMRAM);

Finally, the following code is used to copy the code from flash to the external MRAM.

extern unsigned long ___MRAMCodeStart[];
#define MRAMCodeStart (unsigned long)___MRAMCodeStart

extern unsigned long ___MRAMCodeSize[];
#define MRAMCodeSize (unsigned long)___MRAMCodeSize

extern unsigned long ___MRAMStart[];
#define MRAMStartAddr (unsigned long)___MRAMStart

void copyToExtMRAM(){

 unsigned char *MRAMSource;
 unsigned char *MRAMDestiny;
 unsigned int MRAMSize;

 // Initialize the pointers to start the copy from Flash to RAM
 MRAMSource = (unsigned char *)(MRAMCodeStart);
 MRAMDestiny = (unsigned char *)(MRAMStartAddr);
 MRAMSize = (unsigned long)(MRAMCodeSize);

 // Copying the code from Flash to External RAM
 while(MRAMSize--)
 {
 *MRAMDestiny = *MRAMSource;
 MRAMDestiny++;
 MRAMSource++;
 }
 }

Now the function is relocated in the external MRAM and it is possible to execute it from here.

NOTE
Please notice that execution from MRAM in considerably slower, therefore you must
consider these timing specs in your application development.

3.4 LCD
This example describes how to connect a TFT-LCD to the TWR-K60 by means of FlexBus. In this case the TWR-LCD board
which has the Solomon Systech TFT-LCD controller driver SSD1289 is used. This controller driver integrates the RAM,
power circuits, and so on. It can be interfaced with the common MCU/MPU as 8-bit, 16-bit, and 18-bit 6800-series/8080-
series compatible parallel, or a serial peripheral interface. For more information you can see the application note titled Using
Freescale eGUI with the TWR-LCD on MCF51MM family (document number AN4153)

This particular case uses the 16-bit 6800-series mode. The parallel Interface consists of 16 bi-directional data pins D[17:0],
R /W, D/C , E and CS . R /W input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or the
status register. R /W input low indicates a write operation to Display Data RAM or Internal Command Registers depending
on the status of the D/C input.

For the correct interface selection, use the below configuration in the LCD.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

14 Freescale Semiconductor, Inc.

• PS3 =1, PS2 =0, PS1 =1, PS0 =1. This configuration must be set externally.
• D1 ~ D8 and D10 ~ D17, R/W(/WR), and D/C are used as I/O control. These lines are the ones that are connected to

the FlexBus lines.

3.4.1 Schematics
To interface the LCD the FlexBus in 16-bit mode and multiplexed mode are used. The use of FB_ALE is not necessary,
therefore the first FlexBus cycle when the address in set-up is ignored. Also the byte-lane shift is right justified, so the data is
set-up in the 16 lower significant bits. In other words, FB_AD[0:15] lines are used for data. The FB_AD[16] is used for the
D/C or DS input of the SSD1289. The WR and CS signals are connected to FB_RW and FB_CS0 of the K60:

Figure 12. Multiplexed 16-bit FlexBus to TFT-LCD

The E(RD) pin of the LCD controller can be pulled up directly if you do not want to read the pixel data. Also, notice that D0
and D9 of the SSD1289 are not connected. Those pins are not needed in 16-bit mode. You can find more information in the
schematics of the TWR-LCD and the TWR-K60.

3.4.2 Software setup
To determine the required adjustments to the FlexBus timing, the FlexBus chapter of the reference manual titled K60 Sub-
Family Reference Manual for 100MHz devices in 144 pin packages (document number, K60P144M100SF2RM) and the
Timing Spec chapter in the datasheet titled K60 Sub-Family Data Sheet (document number K60P144M100SF) are used.

• The IO pins required by FlexBus must be configured for the FlexBus function. Because of working in a 16-bit
multiplexed mode, only 16 lines for data are needed, 1 line for the D/C signal, RW, and CS signals. Therefoere the K60
pins must be configured in the ALT 5. The LCD and FlexBus initialization are the same as the D4D, you can find more
information in the reference manual title Freescale Embedded GUI (D4D) (document number DRM116).

#define ALT5 (PORT_PCR_MUX(5)|PORT_PCR_DSE_MASK) // Alternative function 5 =
FB enable
#define FLEX_CLK_INIT (SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(1))// FlexBus = Sysclk/2

SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK |
SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;

PORTC_PCR0=ALT5;
PORTC_PCR1=ALT5;
PORTC_PCR2=ALT5;
PORTC_PCR3=ALT5;
PORTC_PCR4=ALT5;
PORTC_PCR5=ALT5;
PORTC_PCR6=ALT5;
PORTC_PCR7=ALT5;
PORTC_PCR8=ALT5;

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 15

PORTC_PCR9=ALT5;
PORTC_PCR10=ALT5;
PORTC_PCR11=ALT5;
PORTD_PCR1=ALT5;
PORTD_PCR2=ALT5;
PORTD_PCR3=ALT5;
PORTD_PCR4=ALT5;
PORTD_PCR5=ALT5;
PORTD_PCR6=ALT5;
PORTB_PCR17=ALT5;
PORTB_PCR18=ALT5;

SIM_SOPT2 |= SIM_SOPT2_FBSL(3);
SIM_SCGC7 |= SIM_SCGC7_FLEXBUS_MASK;

/*PTC0 PTC1 PTC2 PTC3 PTC4 PTC5 PTC6 PTC7 PTC8 PTC9 PTC10 PTC11
 14 13 12 CLK 11 10 9 8 7 6 5 RW
PTD1 PTD2 PTD3 PTD4 PTD5 PTD6 PTB17 PTB18
CS 4 3 2 1 0 16D/C 15

• The base address is set in the base address field of the FlexBus Chip Select Address Register FB_CSAR for the
corresponding chip select. In this example, the TWR-LCD is connected to chip select zero and the base address is
0x60000000. This address is 64-byte aligned, and is in an available memory space.

#define FLEX_DC_ADDRESS 0x60000000
FLEX_CSAR = FLEX_DC_ADDRESS; // CS0 base address

• Chip-Select Registers — CSMR register specifies the address mark and allowable access types for the respective chip-
select. Setting the base address mask to 1 (CSMR0[BAM]) = 1) means that the block size for the CS is 2^n (n =
number of bits in CSMR[BAM] + 16) must be 128 KB. This means address 0x60000000 to 0x6001FFFF can be
accessed by the CS. Therefore address 0x6000000 (FB_AD16 is low) can be used to access the index register of the
SSD1289, and address 0x60010000 (FB_AD16 is high) can be used to access the data buffer of the SSD1289.

#define FLEX_ADRESS_MASK 0x00010000

FLEX_CSMR = FLEX_ADRESS_MASK | FLEX_CSMR_V_MASK; // The address range is set to 128K
because the DC signal is connected on address wire

• When connecting the CS0 to the CS_B of the LCD controller the CSMR0[V] must be set to enable the CSn. At reset,
no chip-select other than FB_CS0 can be used until the CSMR0[V] is set. According to the datasheet of the SSD1289m
the minimum write cycle time is 100 ns. And there are at least four FB cycles during read and write cycles. The
FB_CLK should not be higher than 40 MHz or wait states must be added.

Table 2. SSD1289
Spec

Sym
bol

Parameter Min Type Max Unit

tcycle Clock cycle time (write
cycle)

100 – – ns

// MUX mode + Wait States
#define FLEX_CSCR_MUX_MASK (FB_CSCR_BLS_MASK)
#define FLEX_CSMR_V_MASK FB_CSMR_V_MASK
#define FLEX_CSCR_AA_MASK FB_CSCR_AA_MASK
#define FLEX_CSCR_PS1_MASK (FB_CSCR_PS(2))

FLEX_CSCR = FLEX_CSCR_MUX_MASK | FLEX_CSCR_AA_MASK | FLEX_CSCR_PS1_MASK; // FlexBus
setup as fast as possible in multiplexed mode

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

16 Freescale Semiconductor, Inc.

• For sending command and data the below functions were used. Notice that the only difference is the address where the
data is sent. 0x6000000 (FB_AD16 is low) is used to access the index register and address 0x60010000 (FB_AD16 is
high) to access the data buffer.

void vfnSendDataWord(unsigned short value)
 {
 ((unsigned short)FLEX_BASE_ADDRESS) = value;
 }

void vfnSendCmdWord(unsigned short cmd)
{
((unsigned short)FLEX_DC_ADDRESS) = cmd;

3.4.3 Transfer diagrams
With the above configuration chosen, the read and write cycles look like:

Figure 13. SSD1289 Transfer Diagram

The specs shown in Figure 10 can be found in the SSD1289 datasheet. These specs to correctly configure the Flexbus
module.

3.5 Using FlexBus in a MQX application
Using FlexBus in an MQX application is very similar to a bareboard application. You can use the same register definitions to
configure the FlexBus settings. MQX configures the FlexBus module when using the TWR-K40 and TWR-K60 to
communicate with the external MRAM.. It is possible to reconfigure this module to meet your application requirements.

3.5.1 Application description
When an application runs out of internal memory, it is not possible to create new tasks. This example shows how to configure
FlexBus to communicate with an external MRAM and expand the memory pool of MQX.

Examples

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 17

3.5.2 Software setup
As seen the in the code below, the total amount of memory space required by all the tasks exceeds the K60 internal RAM
size.

TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task number, Entry point, Stack, Pri, String, Auto? */
 {MAIN_TASK, Main_task, 40000, 9, "main", MQX_AUTO_START_TASK},
 {HELLO_TASK, Hello_task, 40000, 10, "hello", 0},
 {TOGGLE_TASK, ToggleLEDs_task, 40000, 10, "toggle", 0},
 {COUNTER_TASK, Counter_task, 6000, 10, "counter", 0},
 {0, 0, 0, 0, 0, 0, }
};

The Main_task initizalizes FlexBus. This initialization is the same as the one shown in section 3.4.2 Software Setup. After
this, you must let the MQX kernel know that there is external memory available. This is done by using the _mem_extend()
function. The parameters this function receives are the pointer to the start address and the size of the external memory block.

/*TASK*---
*
* Task Name : Main_task
* Comments :
* This task creates an instance of Hello_task and ToggleLEDs_task
*
END---*/
void Main_task(uint_32 initial_data)
{
 printf("Mem Extend Test\n");
 TWRK60_flexbus_init();
 result = _mem_extend((pointer)0x70000000,0x80000);
 while (1){
 t1 = _task_create(0, HELLO_TASK, 0);
 t2 = _task_create(0, COUNTER_TASK, 0);
 t3 = _task_create(0, TOGGLE_TASK, 0);

 _task_block();
 _task_destroy(t3);
 }
}

To enable the _mem_extend() function it is necessary to make a few changes in the user_config.h file and rebuild the BSP
and PSP libraries. See the necessary changes below:

#define MQX_USE_MEM 1 //Enable to use _mem_extend
#define MQX_USE_LWMEM 0
#define MQX_USE_LWMEM_ALLOCATOR 0

To rebuild the BSP and PSP libraries refer to FSL_MQX_getting_started.pdf in the MQX documentation folder.

4 PCB design recommendations
Due to the critical timing required while driving external memories, there are a number of considerations that must be taken
into account during PCB layout.

Each group of signal traces must have identical loading and similar routing to maintain timing and signal integrity.

Control and clock signals are routed point-to-point. Components could and should be placed as close as possible to the MCU.
To avoid crosstalk, keep address and command signals separate (that is, a different routing layer) from the data and data
strobes.

PCB design recommendations

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

18 Freescale Semiconductor, Inc.

5 Conclusion
FlexBus is an interface that can be helpful to communicate with external devices in a simple way. After configuring Flexbus,
it is easy to use as operations are transparent for users. For example, accessing to an external memory is the same process as
accessing to internal memory because you can write directly to the memory address.

Due to its multiple connection configurations, FlexBus provides the flexibility to determine the optimum balance between
speed and footprint size.

All these features make FlexBus one of the best options to communicate with almost every parallel communication device.

Appendix A Getting the correct FlexBus signal by using the TWR-PROTO

The TWR-PROTO is used to get the FlexBus signal in a lot case when the user’s logic is connected with the Kinetis Tower
Board. However, these signal output timings depend on the load capacitors, board layout, room temperature and so on.
Sometimes the correct wave of the FlexBus from the TWR-PROTO cannot be obtained. To help customers with this issue,
this document describes how to get the correct FlexBus signal by using the TWR-PROTO and TWR-K60N512. You can get
the correct wave on the TWR-PROTO if the drive strength setting is high. Shown is the sample code of setting the high drive
strength and the monitored wave by using the TWR-PROTO.

A.1 Point at issue
In the case of connecting the TWR-K60 with ASIC by using FlexBus, generally the original circuit is created by using TWR-
PROTO. Figure A-1 shows the FlexBus signal waves on the TWR-PROTO by using the logic analyzer.

Figure A-1. FlexBus signals wave

Figure A-2 is the wave shown in reference manual in the case of a write transaction.

Conclusion

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 19

Figure A-2. Basic write byte cyle

The observed FB_CLK and FB_ALE in Figure A-1 rise almost at the same time and FB_ALE falls before the next FB_CLK
rising edge. However the FB_ALE in Figure A-2 falls after the second FB_CLK rising edge. Therefore, it is impossible for
the synchronous device to correctly sample the FlexBus signals.

The reason for this, is that FB_CLK (PTC3) is bifurcated to use PWM3, see Figure A-3. So, this pin is overloaded and
delayed compared with other FlexBus signals.

Figure A-3. Part of the TWR-K60 circuit

Appendix B Countermeasure

B.1 Countermeasure configuration
FB_CLK is delayed compared with other FlexBus signals observed on TWR-PROTO from the reason of the previous captor.
The countermeasure is:

Set drive strength High on the output pin

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

20 Freescale Semiconductor, Inc.

Due to set the drive strength High, the output current from Kinetis is raised and Kinetis can output the signal where the tower
board load capacity is not lost. To raise the drive strength, set PORTx_PCRn[DSE] = 1. FB_CLK and PTC3 on K60 are
multiplexed. Therefore, you need to set PORTC_PCR3[DSE] = 1 to raise the drive strength of FB_CLK.

B.2 Sample code
Header code:

#define PORT_PCR_DSE(x) (((uint32_t)(((uint32_t)(x))<<PORT_PCR_DSE_SHIFT))&PORT_PCR_DSE_MASK)

Program code:

PORTC_PCR3 = (PORTC_PCR3 & ~PORT_PCR_DSE_MASK) | PORT_PCR_DSE(1) ;

Insert the above code in your code.

B.3 Result
Figure B-1 shows the wave in case of setting the drive strength High.

Figure B-1. Countermeasure result wave of FlexBus

As in Figure A-2 FB_ALE (ALE in Figure B-1) is asserted after the first FB_CLK (CLKOUT in Figure B-1) rising edge and
FB_ALE is negated after the second FB_CLK rising edge. Then the synchronous device connected with Kinetis via FlexBus
can sample the signals correctly.

Sample code

Using FlexBus Interface for Kinetis Microcontrollers, Rev. 0, 05/2012

Freescale Semiconductor, Inc. 21

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4393
Rev. 0, 05/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

	Introduction
	Functional description
	Read cycle
	Write cycle
	Data byte alignment and physical connections
	Memory map

	Examples
	MRAM non-multiplexed mode
	Schematics
	Software setup
	Transfer diagrams
	Performance calculation

	MRAM multiplexed mode
	Schematics
	Software setup
	Transfer diagrams
	Performance calculation

	Reading and writing MRAM
	Executing from external MRAM

	LCD
	Schematics
	Software setup
	Transfer diagrams

	Using FlexBus in a MQX application
	Application description
	Software setup

	PCB design recommendations
	Conclusion
	Appendix A: Getting the correct FlexBus signal by using the TWR-PROTO
	Point at issue

	Appendix B: Countermeasure
	Countermeasure configuration
	Sample code
	Result

