
Freescale Semiconductor
Application Note

Document Number: AN4452
Rev. 0, 1/2012

Contents

Introduction . 1
Hardware interface . 2

2.1 TWR-LCD board . 2
2.2 Flexbus/mini-Flexbus interface for LCD display . . . 4
2.3 SPI for LCD display . 8
2.3 Touch screen interface . 9
Display eGUI on TWR-LCD board. 11

3.1 CW10.1 and IAR project . 12
3.2 eGUI configurations. 14
3.3 Baremetal project . 17
3.4 MQX project. 19
3.5 Screen shots . 19
Display microWindows with TWR-MCF5441X 20
Summary . 21

Display (eGUI) using TWR-LCD
Working with the Freescale Tower System
by: Ju Yingyi

Application Engineer, AISG
This application note describes how to use the
TWR-LCD board to display eGUI or other graphic user
interfaces. This document covers all Freescale ColdFire
and Kinetis 32-bit MCU and MPU tower cards that have
Flexbus or SPI interfaces.

1 Introduction
Freescale continues to introduce new 32-bit parts, each
of them with Flexbus or mini-Flexbus and
SPI/QSPI/DSPI interfaces that can be used to connect
with the Freescale TWR-LCD board. This document
describes how to use these new tower boards to display
eGUI or other GUI (microWindows) working with the
TWR-LCD board. The following contents show the
hardware connections from the MCU board to the
TWR-LCD board and the eGUI software package that
drives the LCD module, including the baremetal eGUI
version and eGUI running with MQX™. It covers most
existing ColdFire V1, V2, and V4 MCU/MPU tower

1
2

3

4
5

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Hardware interface
cards, Coldfire+ MCU tower cards, and Kinetis tower cards.

For more detailed information regarding the Freescale Tower System, refer to www.freescale.com/tower.

For more detailed information on the Freescale Embedded Graphical User Interface (eGUI), please refer
to www.freescale.com/egui.

2 Hardware interface

2.1 TWR-LCD board
The TFT-LCD module populated on the TWR-LCD board is integrated with Solomon Systech TFT-LCD
controller driver SSD1289. This TFT-LCD controller driver integrates the graphic display data RAM,
power circuits, gate driver, and source driver into a single chip. On this board, the graphic display data
RAM is interfaced with the common MCU/MPU through a 16-bit 6800-series / 8080-series compatible
parallel interface or SPI. Please refer to AN4153, “Using Freescale eGUI with TWR-LCD on MCF51MM
Family” for more information on SSD1289.

Download the schematics of TWR-LCD board from
http://cache.freescale.com/files/soft_dev_tools/hardware_tools/schematics/TWRLCDSCH.pdf?fpsp=1.

2.1.1 SW1 settings

SW1 settings for the 16-bit FlexBus/mini-Flexbus interface:

SW1[1]: on, PS2 = 0

SW1[2]: off, PS0 = 1

SW1[3]: on, disables the control of the MCF51JM128 on board

SW1[4]: for micro SD card interface, doesn’t matter

SW1[5]: select SPI channel, doesn’t matter in this mode

SW1[6]: TP_SEL, doesn’t matter in this mode, better on

SW1[7]: on/off, backlight on/off

SW1[8]: option, user can let MCU/MPU tower board output PWM wave to control the buzzer on
board

SW1 settings for SPI interface:

SW1[1]: off, PS2 = 1

SW1[2]: on, PS0 = 0

SW1[3]: on, disables the control of the MCF51JM128 on board

SW1[4]: for micro SD card interface, doesn’t matter

SW1[5]: select SPI channel, on is for SPI channel 0, off selects SPI channel 1

SW1[6]: TP_SEL, doesn’t matter in this mode, better on

SW1[7]: on/off, backlight on/off
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor2

http://www.freescale.com/tower
http://www.freescale.com/egui
http://cache.freescale.com/files/soft_dev_tools/hardware_tools/schematics/TWRLCDSCH.pdf?fpsp=1

Hardware interface
SW1[8]: option, you can let MCU/MPU tower board output PWM wave to control the buzzer on
board

Because there is an MCF51JM128 soldered on the TWR-LCD board, it can work standalone with the
MCF51JM128.

SW1 settings for standalone (MCF51JM128, SPI):

SW1[1]: off, PS2 = 1

SW1[2]: on, PS0 = 0

SW1[3]: MUST be off, controlled by MCF51JM128

SW1[4]: for micro SD card interface, doesn’t matter

SW1[5]: select SPI channel, doesn’t matter in this mode

SW1[6]: MUST be off

SW1[7]: on/off, backlight on/off

SW1[8]: doesn’t matter in this mode

2.1.2 SW5 settings

This DIP switch is for the touch screen interface. Turn all switches on when you want to connect any
MCU/MPU board. It is recommended that all switches be turned off when working alone.

2.1.3 SW3 settings

Reset button. Not only does it reset the MCF51JM128 on board, it also resets the whole tower system.

2.1.4 SW4 settings

This push button is used for the USB bootloader of the MCF51JM128 on board. To enter USB bootloader
mode, set SW1 as “SW1 settings for standalone (MCF51JM128, SPI)” first, then connect a USB cable to
J7 with PC, keep pressing SW4, and press SW3 to reset the board. If entering bootloader mode
successfully, the LCD will display “Bootloader mode: waiting for S19 file…” on the upper left corner of
the screen and there will be a USB mass storage device installed on your PC as in Figure 1 below.

Figure 1. Bootloader drive
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 3

http://www.freescale.com/egui
http://www.freescale.com/egui

Hardware interface
If you want to update the firmware of the MCF51JM128 on board, drag and drop the .S19 file into this
drive just like copying a file into it. You can find more information on the USB bootloader and its source
code on the TWR-LCD board’s Getting Started CD.

2.1.1 J3 settings

This jumper is used for programming/debugging the MCF51JM128 on board. However, if you erase the
original firmware or fail to boot from USB bootloader, you could reprogram the firmware by using P&E
USB BDM Multilink or P&E USB Multilink Universal.

2.2 Flexbus/mini-Flexbus interface for LCD display

2.2.1 TWR-LCD side

The Flexbus/mini-Flexbus interface on the TWR-LCD board is configured to 16-bit data bus mode.

Figure 2. Flexbus/mini-Flexbus interface on TWR-LCD board

Because the DC signal of SSD1289 is connected to FB_AD16 in this design, when FB_AD16 is driven
low, the index register of SSD1289 can be accessed. While FB_AD16 is driven high, the control register
of SSD1289 or the display data can be accessed.

For example, assume that CS0 of the MCU is connected to CS of the SSD1289, and that CSAR0 on the
MCU side has been set to 0x400000. In this case, address 0x400000 is used to access the index register of
the SSD1289, while address 0x410000 could be used to access control register or display data of the
SSD1289.

2.2.2 Controller module side

There are several important things when using Flexbus/mini-Flexbus interface to display something on the
LCD. Please read the following contents before going deeply into LCD low-level driver.

2.2.1.1 Address/Data Bus Multiplexing or Non-multiplexing mode

First, let’s compare schematics of TWR-MCF51CN with TWR-K60N512. Refer to the figures below.

FB_AD[15:8]

FB_AD[7:0]

FB_AD16

ColdFire/Kinetis MCU/MPU

D[17:10]

D[8:1]

DC

GND

GND

VDD

Soloman SSD1289

FB_R/W R/W

CS CS

D9

D0

RD
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor4

Hardware interface
Figure 2. Mini-Flexbus interface of TWR-MCF51CN

There is a latch chip on the TWR-MCF51CN board. This chip is used because the mini-Flexbus interface
of the TWR-MCF51CN is designed to work in Address/Data Bus Multiplexing mode.
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 5

Hardware interface
Figure 3. Flexbus interface of TWR-K60N512

There is no latch chip on the TWR-K60N512 board, because the Flexbus interface of TWR-K60N512 is
designed to work in Address/Data Bus Non-multiplexing mode when connected to the TWR-MEM card.

Because the data bus on TWR-LCD board is connected to FB_AD[15:0] (or EBI_AD[15:0]), we don’t
need signals on B73–B80 (These signals are for Address/Data Bus Non-multiplexing mode only). But the
user must pay attention to the FB_ALE signal when using TWR-MCF51CN. FB_ALE must keep driving
high during the whole data access cycle. So ALE signal could be configured as a GPIO output pin and
always output high. If FB_ALE works normally during a data access cycle, data on FB_AD[7:0] could not
pass latch chip (74LVC573A) because FB_ALE is low when Flexbus/mini-Flexbus needs to latch data
from LCD controller.

Figure 4. Flexbus/mini-Flexbus single word-write transfer
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor6

http://www.freescale.com

Hardware interface
Until now, because of heavy pin multiplexing, Freescale has several tower cards whose
Flexbus/mini-Flexbus interface is designed for Address/Data Bus Multiplexing mode and there is an
address-latching chip on the board:

TWR-MCF51CN

TWR-MCF51JF

TWR-MCF51QM

TWR-K40X256

TWR-K53N512

2.2.2.1 Data byte alignment

When you want to display something on the TWR-LCD board with your controller module, remember to
set proper Data Byte Alignment (if Flexbus/mini-Flexbus controller of MCU/MPU has CSCRn[BLS] bit)
according to physical connections.

Figure 5. Connections for external memory port sizes (CSCRn[BLS] = 1)

Generally speaking, Coldfire V1 and Coldfire+ MCUs only have mini-Flexbus interface and it doesn’t
have this control bit. Those Coldfire V4 and Kinetis MCUs have Flexbus interface and do have this control
bit. It must be set to 1 for the TWR-LCD board.

2.2.2.2 Wait states

According to the SSD1289 data sheet, the minimum write clock cycle time is 100 ns. And there are at least
4 FB_CLK cycles during one read/write flex bus cycle. So FB_CLK should not be higher than 40 MHz,
or proper wait cycles must be inserted.

For example:
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 7

Hardware interface
TWR-MCF51CN/TWR-MCF51JE/TWR-MCF51MM/TWR-MCF51JF/TWR-MCF51QM, when system
clock = 50 MHz, FB_CLK = 25 MHz, no wait state needed.

TWR-K40X256/TWR-K53N512/TWR-K60N512, when system clock = 100 MHz, FB_CLK = 50 MHz,
1 wait state is needed.

TWR-MCF5441X, when system clock = 250 MHz, FB_CLK = 1/4 system clock = 62.5 MHz, 3 wait states
are needed. You can change FB_CLK = 1/2 system clock by setting MISCCR2[FBHALF] = 0, in which
case 9 wait states are needed.

2.2.2.3 Base address settings

The base address of TWR-LCD can be initialized by setting CSARn and CSMRn. Please read the memory
map overview in the corresponding MCU/MPU’s reference manual first to determine the base address.
Different devices have different memory areas for off-chip expansion.

• ColdFire V1 & ColdFire+ MCUs can use 0x0040_0000–0x007FF_FFFF and
0x00A0_0000–0x00BFF_FFFF

• Coldfire V2 MCU (MCF5225X) can use 0x8000_0000–0xFFFF_FFFF

• Coldfire V4 MPU (MCF5441X) can use 0x0000_0000–0x3FFF_FFFF() and
0xC000_0000–0xDFFF_FFFF

• Kinetis family MCUs can use 0x6000_0000–0xDFFF_FFFF;

Do NOT set address value out-of-range of the MCU/MPU on the controller module. And also remember
to set CSMR0[V] = 1 to enable global chip-select even if you connect other CS to the TWR-LCD board.

2.3 SPI for LCD display
Because PS3 and PS1 are fixed to high on TWR-LCD board, the user could use 4-wire SPI mode
(PS3 = PS2 = PS1 = HIGH, PS0 = LOW) or 3-wire SPI mode (PS3 = PS2 = PS1 = PS0 = HIGH):.

Figure 6. SPI interface on TWR-LCD

SPI_MISO

SPI_CLK

GPIOy

ColdFire/Kinetis MCU/MPU

SDO

SCK

DC

Soloman SSD1289

SPI_MOSI SDI

SPI_CS/GPIOx CS
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor8

Hardware interface
2.3.1 4-wire SPI mode

In this mode, on the TWR-LCD side, SDI, SCK, CS, and DC are necessary. SDI is shifted into an 8-bit
shift register on every rising edge of SCK in the order of MSB first. DC is sampled on every eighth clock
to determine whether the data byte in the shift register is written to the command register or display data
RAM at the same clock. However, on the MCU/MPU side, CS could be controlled by SPI_CS or a GPIO
pin, while DC must be controlled by a GPIO pin.

2.3.2 3-wire SPI mode

Compared with 4-wire SPI mode, on the TWR-LCD side, the DC signal is not used. There are altogether
9 bits that will be shifted into the shift register on every ninth clock in sequence: DC bit, D7 to D0 bit. The
DC bit will determine whether the following data byte in the shift register is written to the command
register or display data RAM. On the MCU/MPU side, CS could be controlled by SPI_CS or a GPIO pin.

NOTE
The current released eGUI package does NOT support 3-wire SPI mode.

If using 16-bit SPI mode on the MCU/MPU side, it is recommended that the
data be transferred twice. For example, if you want to send data 0x9290 to
register 0x03, the data format is 0303 (index of command register), 9292
(high byte), 9090 (low byte). For more details, please refer to the SSD1289
Application Note available at www.solomon-systech.com.

SSD1289 has a limitation for SPI clock speed. The maximum frequency is 13 MHz. So the user must set
proper baud rate (13MHz) for the SPI module of tower controller module.

2.3 Touch screen interface

There is a touch screen covered LCD screen on the TWR-LCD board. It is a 4-wire resistive touch screen.
Figure 7 shows a basic diagram of the construction and operation of a touch screen.
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 9

http://www.solomon-systech.com

Hardware interface
Figure 7. Basic touch screen diagram of the construction and operation

The touch screen is formed by two plastic films, each coated with a conductive layer of metal (usually
indium tin oxide, ITO) that are separated by an air gap. One plate, X-plate in the diagram above, is excited
by the supply voltage. When the screen is touched, the two conductive plates come together, creating a
resistor divider along the X-plate. The voltage at the point of contact, which represents the position on the
X-plate, is sensed through the Y+ electrode, as shown in Figure 8. The process is then repeated by exciting
the Y-plate and sensing the Y position through the X+ electrode.
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor10

Display eGUI on TWR-LCD board
Figure 8. Position measurement

So, we could use two ADC channels with the GPIO pin multiplexed and two GPIO pins to simulate a touch
screen controller.

According to Figure 8, to read X position:

1. Drive HIGH on X+ and drive low on X-, set Y- to HIGH-Z (may set it as input port).

2. Set Y+ as ADC channel, then, can read raw X voltage value from Y+.

To read Y position:

1. Drive HIGH on Y+ and drive low on Y-, set X- to HIGH-Z (may set it as input port).

2. Set X+ as ADC channel, then, can read raw Y voltage value from X+.

However, this is just an example. The user can also use Y-/X- to read X/Y position. But please remember
to set another side (Y+/X+) to HIGH-Z to avoid reading the invalid value.

After getting the raw voltage value, the X/Y position can be calculated with the equation in Figure 8.

3 Display eGUI on TWR-LCD board
You can get the latest eGUI release from www.freescale.com/egui. The following table can be found in the
eGUI release package (\Freescale_embedded_GUI_SW_Official_Demos\EGUI_D4D_Demo\):
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 11

http://www.freescale.com/egui

Display eGUI on TWR-LCD board
Table 1. eGUI Options

The following content focuses on how to display eGUI on TWR-LCD by configuring IAR or CW 10.1
project properly. TWR-K60N512 projects are shown as an example.

Before starting:

• Please read 2.1 TWR-LCD Board or
\Freescale_embedded_GUI_SW_Official_Demos\EGUI_D4D_Demo\readme.txt for
jumper/switch settings.

• If you are using TWR-K60N512 Rev.C or the older version board, please remove C5 (Rev. A or
Rev. B) or C2 (Rev. C). This capacitance will impact on Flexbus signal (FB_AD9). If you are using
TWR-K60N512 Rev. D, remove the jumper on J16.

3.1 CW10.1 and IAR project
To open the CW 10.1 project, please run CW 10.1 first, then click File Import…
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor12

Display eGUI on TWR-LCD board
Figure 9. How to open CW10.1 Project 1

Select “Existing Projects into Workspace” and click “Next”:

Figure 10. How to open CW10.1 Project 2

Select the root directory by “Browse…”, then you can find the project to be open. Click “Finish.”
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 13

Display eGUI on TWR-LCD board
To open the IAR project, just double click the “project.eww” right in the folder of IAR_6_1.

3.2 eGUI configurations
Before compiling, you should configure LCD and touch screen drivers according to the settings of your
TWR-LCD board and controller module.

d4d_user_cfg.h:
// Please define a used low LCD driver
#define D4D_LLD_LCD d4dlcd_ssd1289 // the name of low level driver
 // descriptor structure

// Please (if it's needed) define a used LCD hw interface driver
#define D4D_LLD_LCD_HW d4dlcdhw_kinetis_spi
//#define D4D_LLD_LCD_HW d4dlcdhw_flexbus_16b

// Please define a used touch screen driver if touch screen is used in project
#define D4D_LLD_TCH d4dtch_resistive

// Please (if it's needed) define a used touch screen hw interface driver
#define D4D_LLD_TCH_HW d4dtchhw_kinetis_adc

However, besides the low-level driver definitions, you may also modify other software configurations to
meet your own requirement.

d4dlcdhw_flexbus_16b_cfg.h and d4dlcdhw_kinetis_spi_cfg.h:

These two header files are used to configure Flexbus & SPI hardware settings for LCD driver.

d4dlcdhw_flexbus_16b_cfg.h:
// Alternative function 5 = FB enable
#define ALT5 (PORT_PCR_MUX(5)|PORT_PCR_DSE_MASK)
// FlexBus = Sysclk/2 = ~48MHz
#define FLEX_CLK_INIT (SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(1))

#define D4DLCD_DISPLAY_MCU_USER_INIT SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK
| SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;\
PORTC_PCR0=ALT5; PORTC_PCR1=ALT5; PORTC_PCR2=ALT5; PORTC_PCR3=ALT5; PORTC_PCR4=ALT5;
PORTC_PCR5=ALT5; PORTC_PCR6=ALT5; PORTC_PCR7=ALT5; PORTC_PCR8=ALT5; PORTC_PCR9=ALT5;
PORTC_PCR10=ALT5; PORTC_PCR11=ALT5;\
PORTD_PCR1=ALT5; PORTD_PCR2=ALT5; PORTD_PCR3=ALT5; PORTD_PCR4=ALT5; PORTD_PCR5=ALT5;
PORTD_PCR6=ALT5; PORTB_PCR17=ALT5; PORTB_PCR18=ALT5;\
FLEX_CLK_INIT;SIM_SOPT2 |= SIM_SOPT2_FBSL(3); SIM_SCGC7 |= SIM_SCGC7_FLEXBUS_MASK;

#define D4DLCD_FLEX_BASE_ADDRESS 0x60010000
#define D4DLCD_FLEX_DC_ADDRESS 0x60000000
#define D4DLCD_FLEX_ADRESS_MASK 0x00010000

#define D4DLCD_FLEX_CS 0
//#define CSCR_RESET 0x003ffC00
#define CSCR_RESET 0x00000000

// Kinetis Flexbus Register Macro redefinitions
 #define D4DLCD_FLEX_CSAR FB_CSAR0
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor14

Display eGUI on TWR-LCD board
 #define D4DLCD_FLEX_CSMR FB_CSMR0
 #define D4DLCD_FLEX_CSCR FB_CSCR0

// MUX mode + Wait States
 #define D4DLCD_FLEX_CSCR_MUX_MASK (FB_CSCR_BLS_MASK | CSCR_RESET)
 #define D4DLCD_FLEX_CSMR_V_MASK FB_CSMR_V_MASK
 #define D4DLCD_FLEX_CSCR_AA_MASK FB_CSCR_AA_MASK
 #define D4DLCD_FLEX_CSCR_PS1_MASK (FB_CSCR_PS(2))

 /***
 * Signals definition
 ***/

// Define void macros, because TWR-K60 board doesn't use RESET pin
 #define D4DLCD_INIT_RESET
 #define D4DLCD_ASSERT_RESET
 #define D4DLCD_DEASSERT_RESET

// RESET pin definition -if used

 //#define D4DLCD_RESET x // Pin number
 //#define D4DLCD_RESET_PORT GPIOx_PDOR // PortX Output Data Output
 //#define D4DLCD_RESET_DDR GPIOx_POER // PortX Output Enable
 //#define D4DLCD_RESET_PCR PORTx_PCRx // PAD configuration register

d4dlcdhw_kinetis_spi_cfg.h:
/***
 * Signals definition
 ***/

 #define D4DLCD_SPI_ID 2 // SPI module number
 #define D4DLCD_SPI_PCS_ID 0 // Chip Select used by SPI

 // tweak off the SPI frequency to maximum 25Mb/s, standard 12Mb/s
 #define D4DLCD_SPI_DBL_BRATE

 // configure PADs for SPI functionality

 #define D4DLCD_SPI_MISO_PCR PORTD_PCR14
 #define D4DLCD_SPI_MOSI_PCR PORTD_PCR13
 #define D4DLCD_SPI_CLK_PCR PORTD_PCR12
 #define D4DLCD_SPI_CS_PCR PORTD_PCR11 // PCS0
 // #define D4DLCD_SPI_CS_PCR PORTD_PCR15 // PCS1

 #define D4DLCD_DC 17 // PTB_17
 #define D4DLCD_DC_PORT GPIOB_PDOR // PortB Output Data Output
 #define D4DLCD_DC_DDR GPIOB_PDDR // PortB Output Enable
 #define D4DLCD_DC_PCR PORTB_PCR17 // PAD configuration register

 // RESET pin definition -if used

 //#define D4DLCD_RESET x // Pin number
 //#define D4DLCD_RESET_PORT GPIOx_PDOR // PortX Output Data Output
 //#define D4DLCD_RESET_DDR GPIOx_POER // PortX Output Enable
 //#define D4DLCD_RESET_PCR PORTx_PCRx // PAD configuration register
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 15

Display eGUI on TWR-LCD board

 // BACKLIGHT pin definition -if used

 //#define D4DLCD_BACKLIGHT x // Pin number
 //#define D4DLCD_BACKLIGHT_PORT GPIOx_PDOR // PortX Output Data Output
 //#define D4DLCD_BACKLIGHT_DDR GPIOx_POER // PortX Output Enable
 //#define D4DLCD_BACKLIGHT_PCR PORTx_PCRx // PAD configuration register

 // Enable clock to SPI module and Peripheral ports
 #define D4DLCD_DISPLAY_MCU_USER_INIT SIM_SCGC3 |= SIM_SCGC3_SPI2_MASK;\
 SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK\
 | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK \
 | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;

d4dtchhw_kinetis_adc_cfg.h:

This file is used to configure ADC settings for touch screen driver.
 /**
 * Constants
 **/

 #define D4DTCH_ADC_HW D4DTCH_ADC_HW_KINETIS

 #define D4DTCH_ADC_ID 1 // Use ADC module 1

 // X+ wire definition
 #define D4DTCH_X_PLUS 4
 #define D4DTCH_X_PLUS_PORT GPIOB_PDOR // Data output register
 #define D4DTCH_X_PLUS_DDR GPIOB_PDDR // Output enable register
 #define D4DTCH_X_PLUS_ADCH 10 // ADC channel number
 #define D4DTCH_X_PLUS_PCR PORTB_PCR4

//#define D4DTCH_X_PLUS_ADCH_PIN_ENABLE (D4DTCH_X_PLUS_PCR = PORT_PCR_MUX(0)); // Mux ADC
//#define D4DTCH_X_PLUS_ADCH_PIN_DISABLE (D4DTCH_X_PLUS_PCR = PORT_PCR_MUX(1)); // Mux GPIO

 //#define D4DTCH_INIT_X_PLUS OUTPUT(D4DTCH_X_PLUS); RESET(D4DTCH_X_PLUS);
 //#define D4DTCH_RESET_X_PLUS RESET(D4DTCH_X_PLUS);
 //#define D4DTCH_SET_X_PLUS SET(D4DTCH_X_PLUS);

 // X- wire definition
 #define D4DTCH_X_MINUS 6
 #define D4DTCH_X_MINUS_PORT GPIOB_PDOR
 #define D4DTCH_X_MINUS_DDR GPIOB_PDDR
 #define D4DTCH_X_MINUS_PCR PORTB_PCR6

 //#define D4DTCH_INIT_X_MINUS OUTPUT(D4DTCH_X_MINUS); RESET(D4DTCH_X_MINUS);
 //#define D4DTCH_RESET_X_MINUS RESET(D4DTCH_X_MINUS);
 //#define D4DTCH_SET_X_MINUS SET(D4DTCH_X_MINUS);
 //#define D4DTCH_X_MINUS_HIGH_Z_ENABLE INPUT(D4DTCH_X_MINUS);
 //#define D4DTCH_X_MINUS_HIGH_Z_DISABLE OUTPUT(D4DTCH_X_MINUS);

 // Y+ wire definition
 #define D4DTCH_Y_PLUS 7
 #define D4DTCH_Y_PLUS_PORT GPIOB_PDOR
 #define D4DTCH_Y_PLUS_DDR GPIOB_PDDR
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor16

Display eGUI on TWR-LCD board
 #define D4DTCH_Y_PLUS_ADCH 13
 #define D4DTCH_Y_PLUS_PCR PORTB_PCR7

//#define D4DTCH_Y_PLUS_ADCH_PIN_ENABLE (D4DTCH_Y_PLUS_PCR = PORT_PCR_MUX(0)); // Mux ADC
//#define D4DTCH_Y_PLUS_ADCH_PIN_DISABLE (D4DTCH_Y_PLUS_PCR = PORT_PCR_MUX(1)); // Mux GPIO

 //#define D4DTCH_INIT_Y_PLUS OUTPUT(D4DTCH_Y_PLUS); RESET(D4DTCH_Y_PLUS);
 //#define D4DTCH_RESET_Y_PLUS RESET(D4DTCH_Y_PLUS);
 //#define D4DTCH_SET_Y_PLUS SET(D4DTCH_Y_PLUS);

 // Y- wire definition
 #define D4DTCH_Y_MINUS 5
 #define D4DTCH_Y_MINUS_PORT GPIOB_PDOR
 #define D4DTCH_Y_MINUS_DDR GPIOB_PDDR
 #define D4DTCH_Y_MINUS_PCR PORTB_PCR5

 //#define D4DTCH_INIT_Y_MINUS OUTPUT(D4DTCH_Y_MINUS); RESET(D4DTCH_Y_MINUS);
 //#define D4DTCH_RESET_Y_MINUS RESET(D4DTCH_Y_MINUS);
 //#define D4DTCH_SET_Y_MINUS SET(D4DTCH_Y_MINUS);
 //#define D4DTCH_Y_MINUS_HIGH_Z_ENABLE INPUT(D4DTCH_Y_MINUS);
 //#define D4DTCH_Y_MINUS_HIGH_Z_DISABLE OUTPUT(D4DTCH_Y_MINUS);

 // definition of calibration cross offset on screen in pixels
 //#define D4DTCH_CALIB_CROSS_OFFSET 30

 // Constant specifying maximum ADC value for a screen touch (=12bits)
 #define D4DTCH_FULL_SCALE 0x0FFF

 // Constants specifying minimum ADC value for a screen touch
 //#define D4DTCH_X_TOUCH_MIN (D4DTCH_FULL_SCALE / 10)
 //#define D4DTCH_Y_TOUCH_MIN (D4DTCH_FULL_SCALE / 10)

 //#define D4DTCH_X_TOUCH_OFFMAX (D4DTCH_X_TOUCH_MIN * 4 / 2)
 //#define D4DTCH_Y_TOUCH_OFFMAX (D4DTCH_Y_TOUCH_MIN * 4 / 2)

 // Constants specifying ADC difference for touch screen sample
 //#define D4DTCH_SAMPLE_MARGIN (D4DTCH_FULL_SCALE / 256)

You may need to modify these files if you want to port eGUI to your own board.

3.3 Baremetal project
For TWR-K60N512 board, you may find IAR or CW 10.1 baremetal project from
\Freescale_embedded_GUI_SW_Official_Demos\EGUI_D4D_Demo\TWR_K60N512\baremetal\.
Open and compile the project (default LCD configuration is for SPI connection, you can change the
configuration in d4d_user_cfg.h to support Flexbus connection for LCD).

NOTE
Please remove C5 (for Rev. B or previous version) or C2 (for Rev. C) on the
left top corner of the board. If you are using Rev.D or later version, please
remove the jumper on J16.
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 17

Display eGUI on TWR-LCD board
Figure 11. eGUI main flowchart

As Figure 11 shows, the main loop of eGUI is D4D_Poll() and periodic timer callback is necessary for
main loop. D4D_Poll() handles keys, touch screen, or timer events and redraws objects on an active
screen.

So the applications of eGUI will have the same main loop like below:
void main (void)
{

 MCU_Init(); // MCU Initialization Clock, WatchDog etc
 Timer_Init(); // Periodic Timer interrupt initialization - 25ms

 D4D_Init(&screen_entry);
 D4D_SetOrientation(D4D_ORIENT_LANDSCAPE);
 D4D_CalibrateTouchScreen();
 EnableInterrupts; /* enable interrupts */

 for(;;) {

start

start
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor18

Display eGUI on TWR-LCD board

 D4D_Poll(); // D4D poll loop

 } /* loop forever */
 /* please make sure that you never leave main */
}

Please refer to the eGUI reference manual available at www.freescale.com/egui for more details.

3.4 MQX project
For the TWR-K60N512 board, to compile an eGUI MQX project you must install MQX 3.6 or 3.7 first.
Then, please make sure that you have to define BSPCFG_ENABLE_IO_SUBSYSTEM,
BSP_DEFAULT_IO_CHANNEL, BSPCFG_ENABLE_ADC1 and BSPCFG_ENABLE_SPI2 (if you want
to use SPI for LCD connection) to 1 in user_config.h of MQX BSP and PSP projects. And you must
recompile MQX BSP and PSP projects to generate the new MQX library for eGUI, or your eGUI project
won’t work properly.

For MQX project, we create two tasks for eGUI demo:
const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
 /* Task Index,Function,Stack,Priority, Name, Attributes,Param,Time Slice */
 { LCD_TASK, lcd_task, 3000, 9, "LCD", MQX_AUTO_START_TASK, 0, 0 },
 { TIME_TASK, Time_task, 1500, 10, "time", 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0 }
};

For the LCD task, the main loop is totally the same as the one in the baremetal project. The difference is
that it needs to open the ADC as an I/O device before it can be used for touch screen simulation and we
need to create a timer task before D4D_Init(). However, _time_delay() is necessary to switch the active
task to timer task for timer counting. So the mail loop of the MQX project looks like:
 for(;;)
 {
 D4D_Poll();
 _time_delay(10);
 }

3.5 Screen shots
After you successfully program the baremetal or MQX version of the official eGUI demo to your
controller module board, you will see a display on TWR-LCD as Figure 12 shows.
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 19

Display microWindows with TWR-MCF5441X
Figure 12. Official eGUI demo screen shots

4 Display microWindows with TWR-MCF5441X
Freescale has a TWR-MCF5441X board that can be used to run Linux. Freescale Linux BSP engineers
have made it possible to display microWindows on TWR-LCD board.

The SSD1289, the LCD controller on the TWR-LCD board, has a display data buffer. This makes it
convenient for those MCUs that don’t have large RAM areas to display graphics for a user interface. But
the disadvantage is that the user has to create a thread to update the onboard display data buffer periodically
to simulate a frame buffer—this lowers the performance of whole system. However, by doing this, it really
works.

You may find such code (thread to update display data buffer) below in /drivers/video/fsl-ssd1289-fb.c (for
the latest LTIB ISO image, go to www.freescale.com and search “MCF5441X”):
static int ssd1289fbd(void *arg)
{

struct fb_info *info = arg;
int i;
unsigned short *buf_p;

while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
ssd1289_write(info, SSD1289_REG_H_RAM_ADR_POS, 0);
ssd1289_write(info, 0xef00, 1);

ssd1289_write(info, SSD1289_REG_V_RAM_ADR_START, 0);
ssd1289_write(info, 0x0000, 1);

ssd1289_write(info, SSD1289_REG_V_RAM_ADR_END, 0);
ssd1289_write(info, 0x013f, 1);

ssd1289_write(info, SSD1289_REG_GDDRAM_X_ADDR, 0);
ssd1289_write(info, 0x00ef, 1);

ssd1289_write(info, SSD1289_REG_GDDRAM_Y_ADDR, 0);
ssd1289_write(info, 0x0000, 1);
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor20

Summary
ssd1289_write(info, SSD1289_REG_GDDRAM_DATA, 0);

buf_p = (unsigned short *)(info->screen_base + 1);

for (i = 0; i < info->screen_size; i += 2)
ssd1289_write(info, *(buf_p++), 1);

schedule_timeout(HZ/25);
}

To enable TWR-LCD frame buffer driver for TWR-MCF5441X, you may need to read the help file from
the BSP ISO package: \help\documents\html\M54418TWR_LCD.htm. For more detailed information,
please read the LTIB help file, the user manual, and the quick start guide from the M54418 Tower Linux
BSP ISO.

NOTE
Because the ADC_IN pins of MCF5441X cannot be configured as a GPIO
port, the touch screen on the TWR-LCD board cannot be used when
connected to the TWR-MCF5441X.

5 Summary
The TWR-LCD board can be connected through the Flexbus/mini-Flexbus interface or SPI/DSPI/QSPI
interface to display something onscreen. And it is not complicated to simulate a touch screen interface with
two ADC channels (which could be multiplexed as GPIO pins) and two GPIO pins.

Freescale eGUI supports most Freescale Coldfire, Coldfire+, and Kinetis Tower controller boards.
Freescale eGUI can be used standalone or integrated into the MQX operating system. Freescale plans to
release new versions of eGUI to support more LCD controllers, including mono LCD controllers. It will
also support multiple languages, including Chinese, Korean, Japanese, and so on. And, eGUI is totally
FREE!
Display (eGUI) using TWR-LCD, Rev. 0

Freescale Semiconductor 21

Document Number: AN4452
Rev. 0
1/2012

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2012. All rights reserved.

http://www.freescale.com/epp

	1 Introduction
	2 Hardware interface
	2.1 TWR-LCD board
	2.1.1 SW1 settings
	2.1.2 SW5 settings
	2.1.3 SW3 settings
	2.1.4 SW4 settings
	2.1.1 J3 settings

	2.2 Flexbus/mini-Flexbus interface for LCD display
	2.2.1 TWR-LCD side
	2.2.2 Controller module side
	2.2.1.1 Address/Data Bus Multiplexing or Non-multiplexing mode
	2.2.2.1 Data byte alignment
	2.2.2.2 Wait states
	2.2.2.3 Base address settings

	2.3 SPI for LCD display
	2.3.1 4-wire SPI mode
	2.3.2 3-wire SPI mode

	2.3 Touch screen interface

	3 Display eGUI on TWR-LCD board
	3.1 CW10.1 and IAR project
	3.2 eGUI configurations
	3.3 Baremetal project
	3.4 MQX project
	3.5 Screen shots

	4 Display microWindows with TWR-MCF5441X
	5 Summary

