
1 Introduction
Kinetis products use the ARM® Cortex-M4 processor which
supports a single cycle 16.32-bit MAC (DSP function). Using
a DSP function such as signal processing, motor control, and
data analyze can reduce core resources and enhance core
performance.

This application note discusses the CMSIS DSP library
combined with Freescale MQX RTOS. Included are also the
CMSIS and CMSIS DSP library introductions. The
application note is based on the CMSIS DSP library version
2.10 using the IAR ARM Workbench Rev.6.21.

CMSIS DSP Library

2.1 ARM® Cortex-M4 Core
The ARM® Cortex™-M4 processor has a large variety of
highly efficient signal processing features applicable to digital
signal control markets. The combination of a high-efficiency
signal processing function with the low-power, low cost, and
ease-of-use benefits of the Cortex-M4 processors is to satisfy
the emerging category of flexible solutions. This specifically
targets the motor control, automotive, power management,
embedded audio, and industrial automation markets.

2

Freescale Semiconductor Document Number: AN4489

Application Note Rev. 0, 3/2012

Using CMSIS-DSP Algorithms with
MQX
by: Kelben Zhang

IM&M FAE Team, GSM
China

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction ...1

2 CMSIS DSP Library...1

3 Freescale MQX RTOS..5

4 CMSIS DSP Library Examples.................................6

5 Conclusion...18

2.2 CMSIS
The ARM® Cortex™ Microcontroller Software Interface Standard (CMSIS) is a vendor-independent hardware abstraction
layer for the Cortex-M processor series. The CMSIS enables consistent and simple software interfaces to the processor and
peripherals. It simplifies software re-use by reducing the learning curve for new microcontroller developers and reducing the
time to market for new devices.

Figure 1. CMSIS mark

The CMSIS is divided into three basic function layers:
• Core Peripheral Access Layer (CPAL)
• Middleware Access Layer (MWAL)
• Device Peripheral Access Layer (DPAL)

The basic structure and the functional flow is shown in Figure 2.

Figure 2. CMSIS structure function flow

Core Peripheral Access Layer (CPAL)

The lowest level defines addresses and accesses methods for common components and functions in every Cortex-M system.
Access to core registers, NVIC, and the debug subsystem is provided by this layer. Tool specific access to special purpose
registers (for example CONTROL, xPSR), is provided in the form of inline functions or compiler intrinsics. This layer is
provided by ARM.

Middleware Access Layer (MWAL)

CMSIS DSP Library

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

2 Freescale Semiconductor, Inc.

This layer is also defined by ARM, but is adapted by silicon vendors for their respective devices. The Middleware Access
Layer defines a common API for accessing peripherals. The Middleware Access Layer is still under development, no further
information is available at this point.

Device Peripheral Access Layer (DPAL)

Hardware register addresses, device specific access functions, and other definitions are defined in this layer. The device
peripheral access layer is similar to the Core Peripheral Access Layer and is provided by the silicon vendor. Access methods
provided by CPAL may be referenced. The vector table is adapted to include the device specific exception handler address.

DPAL is intended to be extended by the silicon vendor. Cortex-M based FPGA products effectively place developers in the
position of a silicon vendor.

In MCU based systems, developers should treat the entire PCB system as a monolithic block. There is no reason to
differentiate between a memory mapped register inside the MCU and a memory mapped register external to the MCU
connected via an external memory interface. The benefit of applying a standard like CMSIS are the guidelines on how to
access these devices and set a clear goal on how to implement and integrate critical parts of the software.

2.3 CMSIS DSP Library
The CMSIS-DSP library is a suite of common signal processing functions for use on Cortex-M processor based devices.

The library is divided into a number of modules each covering a specific category:
• Basic math functions

• Vector Absolute Value
• Vector Addition
• Vector Dot Product
• Vector Multiplication
• Vector Negate
• Vector Offset
• Vector Scale
• Vector Shift
• Vector Subtraction

• Fast math functions
• Cosine
• Sine
• Square Root

• Complex math functions
• Complex Conjugate
• Complex Dot Product
• Complex Magnitude
• Complex Magnitude Squared
• Complex-by-Complex Multiplication
• Complex-by-Real Multiplication

• Filters
• Biquad Cascade IIR Filters Using Direct Form I Structure
• Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
• High Precision Q31 Biquad Cascade Filter
• Convolution
• Partial Convolution
• Correlation
• Finite Impulse Response (FIR) Decimator
• Finite Impulse Response (FIR) Filters
• Finite Impulse Response (FIR) Lattice Filters

CMSIS DSP Library

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 3

• Finite Impulse Response (FIR) Sparse Filters
• Infinite Impulse Response (IIR) Lattice Filters
• Least Mean Square (LMS) Filters
• Normalized LMS Filters
• Finite Impulse Response (FIR) Interpolator

• Matrix functions
• Matrix Addition
• Matrix Initialization
• Matrix Inverse
• Matrix Multiplication
• Matrix Scale
• Matrix Subtraction
• Matrix Transpose

• Transforms
• Complex FFT Functions
• DCT Type IV Functions
• Real FFT Functions

• Motor control functions
• Sine Cosine
• PID Motor Control
• Vector Clarke Transform
• Vector Inverse Clarke Transform
• Vector Park Transform
• Vector Inverse Park transform

• Statistical functions
• Support functions
• Interpolation functions

• Linear Interpolation
• Bilinear Interpolation

The library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit integers, and 32-bit floating-point
values.

The Cortex-M4 processor implementation uses the ARM DSP SIMD (Single Instruction Multiple Data) instruction set and
floating-point hardware to fully enable the Cortex-M4 processor capabilities for the signal processing algorithms. The
optimized CMSIS-DSP library is written entirely in C and is delivered with source code which enables software
programmers to adapt algorithms for specific application requirements. The library has been developed and tested with
MDK-ARM version 4.21. The library is also tested in GCC and IAR toolchains.

The library installer contains prebuilt versions of the libraries in the Lib folder.
• arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
• arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
• arm_cortexM4l_math.lib (Little endian on Cortex-M4)
• arm_cortexM4b_math.lib (Big endian on Cortex-M4)
• arm_cortexM3l_math.lib (Little endian on Cortex-M3)
• arm_cortexM3b_math.lib (Big endian on Cortex-M3)
• arm_cortexM0l_math.lib (Little endian on Cortex-M0)
• arm_cortexM0b_math.lib (Big endian on Cortex-M3)

CMSIS DSP Library

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

4 Freescale Semiconductor, Inc.

The library functions are declared in the public file <arm_math.h> which is in the Include folder. Include this file and link the
appropriate library in the application and begin calling the library functions. The library supports single public header file
arm_math.h for the Cortex-M4/M3/M0 with little endian and big endian. The same header file is used for floating point unit
(FPU) variants. Define the appropriate pre-processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
ARM_MATH_CM0, this will depend on the target processor in the application.

Kinetis CMSIS 2.10 installer file can be downloaded from: http://compass.freescale.net/go/cmsis

3 Freescale MQX RTOS
The Freescale MQX Real-Time Operating System (RTOS) provides real-time performance within a small, configurable
footprint. This RTOS allows you to configure and balance code size with performance requirements. The easy-to-use API
and out-of-box experience ensures that first-time RTOS users can start developing their application on the day software is
installed. For experienced OS developers, it is easy to migrate legacy application code to a Freescale MQX-based platform.
The RTOS is tightly integrated with the latest ColdFire® processors from Freescale and provided with commonly used
device drivers. Powerful design and development tools are integrated with CodeWarrior™ tools to provide additional
profiling and debugging capability.

The Freescale MQX RTOS has modern component-based microkernel architecture that allows for customization by feature,
size, and speed, allowing engineers to select the components they want to include while meeting the tight memory constraints
of embedded systems.

3.1 Key benefits
• Small code density – The Freescale MQX RTOS is designed for speed and size efficiency in embedded systems. The

RTOS delivers true real-time performance with context switch and low-level interrupt routines hand-optimized in
assembly. It can be configured to take as little as 12 KB of ROM and 2.5 K RAM on the CFV2 including the kernel,
two task applications, 1 LW semaphore, interrupt stack, queues, and memory manager.

• Component-based architecture – Provides a fully-functional RTOS core with optional services. Freescale MQX RTOS
includes 25 components, eight are core components, and 17 are optional. Components are linked only if needed. This
prevents unused functions from bloating the memory footprint.

• Full and lightweight components – Key components are included in both full and lightweight versions for further size
control, RAM and ROM utilization, and performance options. These components include — lightweight semaphores,
events, timers, logs, and a memory component.

• Real-time, priority-based preemptive, multi-threading – In RTOS, threads execute in order of their priority. If a high-
priority thread becomes ready to run, it can, and within a small and bounded time interval take over the CPU from any
lower-priority thread that may be executing. Moreover, the high-priority thread can run uninterrupted until it has
finished what it needs to do. This approach known as priority-based preemptive scheduling, allows high-priority
threads to meet their deadlines consistently, no matter how many other threads are competing for CPU time.

• Optimized for Freescale architecture – Optimized assembly code to accelerate key real-time portions of the RTOS,
such as context switching.

• Scheduling – Freescale MQX RTOS provides faster development time by relieving engineers from creating or
maintaining an efficient scheduling system and interrupt handling. It is also significantly useful if multiple
communication protocols like USB or TCP/I are required.

• Code Reuse – Freescale MQX RTOS provides a framework with a simple API to build and organize the features across
Freescal's broad portfolio of embedded processors.

• Intuitive API – Writing code for Freescale MQX RTOS is straight forward with a complete API and available reference
documentation.

• Fast boot sequence – A fast boot sequence ensures the application is running quickly after the hardware has been reset
• Simple Message Passing – Messages can be passed from either a system pool or a private pool, can be sent with either

an urgent status, or a user define priority, and can be broadcast or task specific. For maximum flexibility, a receiving
task can operate on either the same CPU as the sending task or on a different CPU within the same system.

Freescale MQX RTOS

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 5

3.2 Download Freescale MQX RTOS
To download the MQX installer:

1. Visit www.freescale.com and register with Freescale to get the required access.
2. Go to http://www.freescale.com/mqx, login, and download the MQX installer.

3.3 Install Freescale MQX RTOS
To install Freescale MQX RTOS:

1. Execute the installation wizard. The default settings install Freescale MQX in the path: C:\ProgramFiles \Freescale
\Freescale MQX 3.x

2. You must read the FSL_MQX_release_notes.pdf file that has important information about the source code and example
code delivered in the release.

3.4 Setup Freescale MQX RTOS
Freescale MQX has a directory structure. The detailed information about this structure can be found in the
FSL_MQX_release_notes.pdf file. The developer can change the board support package (BSP) and platform support package
(PSP) settings using the user_config.h file. Adding and removing flags in this file enables you to add or remove components,
change settings for the different drivers, and add or remove logging settings. After a modification is done in the
user_config.h, it is necessary to recompile the libraries.

4 CMSIS DSP Library Examples
This application note is based on the Freescale MQX RTOS Rev.3.7, IAR Workbench Rev 6.21, and the TWR-K40X256
board. It uses four tasks named main_task (auto start task with high priority), triangle_task, matrix_task, and the fft_task (the
last three tasks have the same priotiry). The default task stack size is 1000 bytes. The three tasks (triangle_task, matrix_task
and fft_task) show how to use the CMSIS DSP library basic math functions, matrix functions, and transforms functions.

4.1 Add CMSIS DSP library to the MQX project
At this point you can use any MQX project in IAR or an example project, for Freescale MQX 3.7 MQX examples search on
www.freescale.com.

This case uses a “ hello ” project that can be found at this path …\Freescale\Freescale MQX 3.7 \mqx \examples\hello. The
following steps show how to add the CMSIS DSP library to the MQX project.

1. Open hello_twrk40x256.eww workspace.
2. Add CMSIS DSP library file to hello project.
3. Add CMSIS DSP library related header file path to hello project by going to the menu Project->Option. On the C/C++

Compiler and select the tab Preprocessor. Then add paths to, Additional include directories. Below the paths and for
reference, add a CMSIS DSP library Rev.2.10 installation path. C:\Program Files\Freescale\CMSIS 2.1 for Freescale
Kinetis MCUs\KINETIS_CMSIS_2.10\CMSIS\Include C:\Program Files\Freescale\CMSIS 2.1 for Freescale Kinetis
MCUs\KINETIS_CMSIS_2.10\Device\FSL \MK40DZ10\Include

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

6 Freescale Semiconductor, Inc.

4. Enable the CMSIS DSP library on IAR by going to menu Project->Options. On General Options select the tab Library
Configuration. Then check the Use CMSIS checkbox, and afterwards the DSP library checkbox. For more details see
Figure 3.

Figure 3. Enable CMSIS DSP library on IAR
5. Add #include <arm_math.h> in the hello.c file. You can now use CMSIS DSP library functions.

4.2 CMSIS DSP library basic math functions example
(triangle_task)

This example demonstrates sin and cos calculation for the input signal. The trigonometric function equation, sin2 (x) + cos2

(x) = 1, whatever the input x value is, the calculation must equal 1. It uses 32-bit floating point numbers, adds multiple
calculation functions, and sin(x), cos(x) functions.

The example uses 32-bit floating point type variables, such as float32_t cosOutput;

The code below shows input x in radian to obtain the related cos(x) value:

cosOutput = arm_cos_f32(testInput_f32[i]);

API introduction:

float32_t arm_cos_f32 (float32_t x)

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 7

Fast approximation to the trigonometric cosine function for floating-point data.

Parameters:
[in] x input value in radians.

Returns:
cos(x)

The code below shows the obtained sin2(x) value:

 arm_mult_f32(&sinOutput, &sinOutput, &sinSquareOutput, 1);

API introduction:

void arm_mult_f32 (float32_t * pSrcA,
 float32_t * pSrcB,
 float32_t * pDst,
 uint32_t blockSize
)

Floating-point vector multiplication.

Parameters:
[in] *pSrcA points to the first input vector
[in] *pSrcB points to the second input vector
[out] *pDst points to the output vector
[in] blockSize number of samples in each vector

Returns:
None

You can get a detailed example code at the related software <triangle.c> file.

4.3 CMSIS DSP library matrix functions example (matrix_task)

This example will demonstrate matrix calculation. Using matrix equal: to check matrix calculation. There are
two matrix named A and B, A is 3X2 matrix, B is 2X3 matrix, AB will be 3X3 matrix, (AB)T is 3X3 matrix.

The example uses 32-bit floating point structure variables, such as the arm_matrix_instance_f32 A. The
arm_matrix_instance_f32 is the CMSIS DSP library instance structure for the floating-point matrix.

uint16_t numRows

uint16_t numCols

float32_t * pData

The code below shows how to initialize Matrix A:

const float32_t A_f32[6] = { 1.6, 2.7, 0.1, 1.6, -3.6, -4.3 }; //Matrix A data
 srcRows = 3;
 srcColumns = 2;
 arm_mat_init_f32(&A, srcRows, srcColumns, (float32_t *)A_f32);

The initialization matrix A as 3X2 matrix below:
1.6 2.7
0.1 1.6
–3.6 –4.3

API introduction:

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

8 Freescale Semiconductor, Inc.

void arm_mat_init_f32 (arm_matrix_instance_f32 * S,
 uint16_t nRows,
 uint16_t nColumns,
 float32_t * pData
)

Floating-point matrix initialization.

Parameters:
[in,out] *S points to an instance of the floating-point matrix structure
[in] nRows number of rows in the matrix
[in] nColumns number of columns in the matrix
[in] *pData points to the matrix data array

Returns:
None

The code below shows how to calculate matrix multiplication. Matrix AB is matrix A multiply matrix B result.

status = arm_mat_mult_f32(&A, &B, &AB);

API introduction:

arm_status arm_mat_mult_f32 (const arm_matrix_instance_f32 * pSrcA,
 const arm_matrix_instance_f32 * pSrcB,
 arm_matrix_instance_f32 * pDst
)

Floating-point matrix multiplication.

Parameters:
[in] *pSrcA points to the first input matrix structure
[in] *pSrcB points to the second input matrix structure
[out] *pDst points to output matrix structure

Returns:
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of
size checking.

The code below shows how to transpose matrix.

status = arm_mat_trans_f32(&A, &AT);
arm_status arm_mat_trans_f32 (const arm_matrix_instance_f32 * pSrc,
 arm_matrix_instance_f32 * pDst
)

Floating-point matrix transpose.

Parameters:
[in] *pSrc points to the input matrix
[out] *pDst points to the output matrix

Returns:
The function returns either ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of
size checking.

Matrix calculation result:

Matrix A is initialization as 3X2 matrix below:
1.6 2.7
0.1 1.6
–3.6 –4.3

Matrix B is initialization as 2X3 matrix below:

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 9

–2.0 3.0 1.6
–4.3 0.73 –3.6

The actual calculation result of Matrix A multiple matrix B transpose below:
–14.81 –7.08 25.69
6.771 1.468 –13.939
–7.16 –5.6 9.72

Using CMSIS DSP libray matrix function, Matrix A multiple matrix B transpose calculation result below:
–14.8100004 –7.0800004 25.69000024
6.77100038 1.46800017 –13.93989991
–7.15999984 –5.5999999 9.72000122

Using CMSIS DSP libray matrix function, Matrix B transpose multiple matrix A transpose calculation result below:
–14.8100004 –7.0800004 25.69000024
6.77100038 1.46800017 –13.93989991
–7.15999984 –5.5999999 9.72000122

The test result shows using the CMSIS DSP library matrix (AxB)T is the same with BTxAT.

Using the CMSIS DSP library calculation result with the actual calculation result, the difference is below 0.000001.

Obtain detailed example code at this application note related software <matrix.c> file.

4.4 CMSIS DSP Library transforms functions example (fft_task)
The Fourier transform is a mathematical operation that decomposes a signal into its constituent frequencies. The original
signal depends on time, and therefore is called the time domain representation of the signal, whereas the Fourier transform
depends on frequency and is called the frequency domain representation of the signal. The term Fourier transform refers both
to the frequency domain representation of the signal and the process that transforms the signal to its frequency domain
representation.

This example uses the CMSIS DSP Library complex FFT functions. Complex Fast Fourier Transform(CFFT) and Complex
Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse
Discrete Fourier Transform(IDFT). This example uses 1024 points and a 32-bit floating point sin wave as an input signal,
using Complex Fast Fourier Transform(CFFT) functions to transform the input signal from the time domain to frequency
domain. It then uses the Complex Inverse Fast Fourier Transform(CIFFT) function to transform the previous frequency
signal back to the time domain. After, compare the signal after FFT-IFFT with the original signal.

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

10 Freescale Semiconductor, Inc.

Figure 4. 32-bit 1024 point input signal A

Figure 5. 32-bit A signal FFT output

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 11

Figure 6. 32-bit A signal FFT-IFFT output

The CMSIS DSP library complex FFT functions operate on blocks of input and output data, each call to the function
processes 2*fftLen samples through the transform.

The code below shows how to copy the input value to the fft input buffer.

#define MAX_BLOCKSIZE 2048
arm_copy_f32(testInputA_f32, A, MAX_BLOCKSIZE/2);
API introduction:
void arm_copy_f32 (float32_t * pSrc,
 float32_t * pDst,
 uint32_t blockSize
)

Copies the elements of a floating-point vector.

Parameters:
[in] *pSrc points to input vector
[out] *pDst points to output vector
[in] blockSize length of the input vector

Returns:
None

The code below shows how to intialize the CFFT function to compute a 1024 point FFT and transform input A signals from
time domain to frequency domain.

#define MAX_BLOCKSIZE 2048
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, MAX_BLOCKSIZE/2, 0, 1);
arm_cfft_radix4_f32(cfft_instance_ptr, A);

API introduction:

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

12 Freescale Semiconductor, Inc.

arm_status arm_cfft_radix4_init_f32 (arm_cfft_radix4_instance_f32 * S,
 uint16_t fftLen,
 uint8_t ifftFlag,
 uint8_t bitReverseFlag
)

Initialization function for the floating-point CFFT/CIFFT.

Parameters:
[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
[in] fftLen length of the FFT.
[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.

Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR
if fftLen is not a supported value.

Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of
CIFFT or otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag
for output to be in normal order otherwise the output is in bit reversed order.
The parameter fftLen specifies the length of CFFT/CIFFT process. Supported FFT lengths are 16, 64, 256, 1024.
This function also initializes the twiddle factor table pointer and bit reversal table pointer.
void arm_cfft_radix4_f32 (const arm_cfft_radix4_instance_f32 * S, float32_t * pSrc)
Processing function for the floating-point CFFT/CIFFT.

Parameters:
[in] *S points to an instance of the floating-point CFFT/CIFFT structure.
[in,out] *pSrc points to the complex data buffer of size 2*fftLen. Processing occurs in-place.

Returns:
None

The code below shows how to initialize the CIFFT function to compute 1024 point A signal FFT output and transform it back
to the time domain. The called functions are the same with the previous CFFT, and different at the third parameter: [in]
ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.

#define MAX_BLOCKSIZE 2048
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, MAX_BLOCKSIZE/2, 1, 1);
arm_cfft_radix4_f32(cfft_instance_ptr, A_FFT);

Obtain detailed example code at this application note related software <fft.c> file.

4.5 MQX tasks scheduling
This application note creates four tasks, main_task (auto start task with high priority), triangle_task, matrix_task, fft_task
(last three tasks with same priority) and uses FIFO task scheduling. FIFO is the default scheduling policy. In FIFO
scheduling, the task that runs (becomes active) next is the highest-priority task that has been waiting the longest time.

The active task runs until any of the following occurs:
• The active task voluntarily relinquishes the processor, because it calls a blocking MQX function.
• An interrupt occurs that has higher priority than the active task
• A task that has higher priority than the active task becomes ready

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 13

Figure 7. task scheduling

The Main_task creates three sub-tasks (triangle_task, matrix_task, fft_task) with the same priority, after that main_task
terminates itself the three ready sub-tasks start to run. The three sub-tasks run in a circle, each task runs and blocks itself until
another task restarts it. For detailed scheduling tasks see Figure 7.

The Freescale MQX provides at task-aware debugging tool. The task-aware debugging is an advanced kernel analysis tool
that allows you to gain greater visibility into the embedded system. Developers can obtain detailed data about system
performance enabling optimization work that can reduce potential performance bottlenecks in their embedded application

.

Key features:
• Task summary display
• Task stacks display
• Task semaphore display
• Task ready List display
• Tasks queues display
• Memory pools display
• Memory blocks display
• Memory partitions display
• Semaphore display
• Mutexes display
• Events display
• Logs display
• IO devices display
• Interrupts display

Figure 8 shows the task summary display while the CMSIS DSP library tasks run.

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

14 Freescale Semiconductor, Inc.

Figure 8. TAD tool task list

Tasks are the key building blocks of an RTOS. The Freescale MQX RTOS task states include four logical states:

• Blocked
• Active
• Ready
• Terminated

The first state is Blocked. This means that the task is not ready and is waiting on something. It may be waiting on a signal to
occur, a timeout to expire, or a condition to become true. Another state a task can be in is the active state. This means the task
is ready and is currently in control of the processor because it is the highest priority ready task.

The Ready state happens when a task can run, but it is not the active task because it is not the highest priority task.

A task can be in the Terminated state. This means a task has finished all its work and no longer exists, or it was explicitly
destroyed.

The Active task can go into the terminated state if the task finishes its work or becomes explicitly terminated. If it calls a
blocking call, then it goes into the blocked state. This means it is now waiting for some condition to become true.

Finally, if a higher priority task becomes ready, its time expires, or an interrupt occurs, then the active tasks go into a ready
state. At that point a context switch occurs, and a task that was in the ready queue gets promoted to being the active task. If a
task becomes unblocked because that condition became true, then it goes into the ready state and the schedule determines if it
is the highest priority task that could be running, and does a context switch if that is the case.

When a task is first created, it goes into the ready state. Figure 9 shows the visual representation of the different task states.

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 15

Figure 9. Task states

The Main_task is an auto start task. When the MQX starts, the main_task is in an active state. Then the main_task will create
three sub-tasks with low priority. It calls the _task_destory() function to terminate the main_task and the three sub-tasks start
to run.

Using the Task-Aware Debugging tool, you can find the main_task state changes from Active to Terminating after the
_task_destroy(main_id); code is executed.

Figure 10 shows the main_task state is Active before _task_destroy(), and the other three sub-tasks in Ready state.

Figure 10. main_task states 1

After executing _task_destroy(main_id); code, the main_task state becomes Terminated. The main_task is then removed
from the Task-Aware Debugging tool task summary list. Figure 11 shows there is no main_task.

The function _task_destroy does the following for the task being destroyed:
• Releases memory resources that the task allocated with functions from the _mem and _partition families

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

16 Freescale Semiconductor, Inc.

• Closes all queues that the task owns and frees all the queued elements
• Releases any other component resources that the task owns

Prototype
_mqx_uint _task_destroy(_task_id task_id)

Parameters
task_id [IN] — One of the following: task IDs of the
task to be destroyed
MQX_NULL_TASK_ID (destroy the calling task)

Returns
MQX_OK
MQX_INVALID_TASK_ID

Figure 11. main_task states 2

4.6 MQX tasks stack size management
During the MQX task creation phase it needs to allocate each task stack size. The customer can gauge each task stack size
usage status and modification task stack size to enhance memory usage efficiency with the Task-Aware Debugging tool
assistant.

Four tasks are created with default 1000 bytes stack size. Figure 12 shows the task stack usage.

Figure 12. TAD tool stack usage summary

CMSIS DSP Library Examples

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 17

The Matrix_task stack used is only 9%, the current 1000 bytes stack size is too big for the matrix_task. Modify matrix_task
size to 300 byte to enhance memory use.

Modify matrix_task stack size at <CMSIS_dsp_lib_main.c> file:

 /* Task Index, Function, Stack, Priority, Name, Attributes,
Param, Time Slice */
{ MATRIX_TASK, matrix_task, 1000, 9, "matrix", 0,
0, 0 },

Modify stack size to 100

{ MATRIX_TASK, matrix_task, 300, 9, "matrix", 0,
0, 0 },

Afterwards, re-compile the project and use the TAD tool to find the matrix_task stack used. Figure 13 shows the matrix_task
stack used the percentage enhanced.

Figure 13. TAD tool stack usage summary

5 Conclusion
Many customers use MQX for different applications, as well as motor control and other DSP applications. The ARM CMSIS
DSP algorithms is a good tool for DSP development that supports MQX,.

The ARM CMSIS DSP library works easily with MQX RTOS. The CMSIS DSP software library API function description
and parameters information in the CMSIS DSP library help file can be found in the Freescale CMSIS software installation ..
\KINETIS_CMSIS_2.10\CMSIS\Documentation folder. This folder provides examples on how to use the CMSIS DSP
software library. The Speex recorder demo is another Freescale application lab with the ARM CMSIS DSP library FIR filter
function. It demonstrates how to use the QEDesign tool and the ARM CMSIS DSP library implementing a band pass filter
from 600–2000 Hz in the Speex decoder output.

Freescale MQX RTOS includes Real-Time TCP/IP Communication Suite (RTCS), Freescale MQX File System (MFS), and
Freescale MQX USB Host/Device Stack. The RTCS provides IP networking for Freescale MQX Software Solutions.
Freescale MQX RTCS provides an assortment of TCP/IP networking application protocols and uses the Freescale MQX
RTOS drivers for Ethernet and serial connectivity. The Freescale MQX File System (MFS) is an embedded FAT file system
compatible with Microsoft Windows and MS-DOS file systems. It can format, read, write, and exchange files with any
operating systems running a FAT-12, FAT-16, or FAT-32 file system. Freescale MQX USB Host/Device Stack supports
USB class drivers and implementation designs.

For more detailed information about Freescale MQX RTOS software visit www.freescale.com\mqx link.

Conclusion

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

18 Freescale Semiconductor, Inc.

Freescale MQX RTOS and ARM CMSIS DSP library speeds up customer design to market. Use the Freescale provided
Task-Aware Debugging tool to monitor Freescale MQX tasks, memory states, and optimize memory resource usage
efficiency.

Conclusion

Using CMSIS-DSP Algorithms with MQX, Rev. 0, 3/2012

Freescale Semiconductor, Inc. 19

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4489
Rev. 0, 3/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	CMSIS DSP Library
	ARM® Cortex-M4 Core
	CMSIS
	CMSIS DSP Library

	Freescale MQX RTOS
	Key benefits
	Download Freescale MQX RTOS
	Install Freescale MQX RTOS
	Setup Freescale MQX RTOS

	CMSIS DSP Library Examples
	Add CMSIS DSP library to the MQX project
	CMSIS DSP library basic math functions example (triangle_task)
	CMSIS DSP library matrix functions example (matrix_task)
	CMSIS DSP Library transforms functions example (fft_task)
	MQX tasks scheduling
	MQX tasks stack size management

	Conclusion

