
1 Introduction
The program flash swap feature available on Kinetis
microcontrollers provides a robust means for remote over-the-
air system software upgrades. This application note describes
how to take advantage of the swap feature. Common questions
are addressed and an application example is provided.

This application note is targeted toward system programmers
developing applications that can utilize flash swap. Methods
for over-the-air communications are mentioned, but are not the
focus of this application note.

For additional important information on flash swap, review the
reference manual for the respective devices discussed in this
application note.

2 Application requirements
A reliable over-the-air system update process is required for
many applications. A mechanism is needed to update system
software/firmware remotely to fix bugs and make important
software improvements. Critical applications, such as
electrical metering, require extremely minimal system
downtime during updates, must be tolerant of communication
errors, and should have no risk of problems causing the system
to cease to operate. The update process must be tolerant of
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difficult environments. In many applications with unreliable electrical power, the system update process must provide
consistent operation in the presence of power loss.

Updating system software remotely requires new code to be transmitted through a communication interface (for example,
Wi-Fi, Zigbee®, UART, SPI, I2C, USB, Ethernet, and so on). A software uploader program executing on the system must
receive and program the code to local memory. Typically, in-factory programming is accomplished with a local debug
connection like JTAG or Background Debug Mode (BDM), however these connections are not possible remotely. It is
economically infeasible to send a technician out to a system in the field for reprogramming. Therefore, a reliable over-the-air
update process is mandatory.

2.1 Remote firmware update systems

2.1.1 Traditional remote update systems
Traditional remote firmware updating systems rely on a bootloader application that executes on a system reset and selects the
application to run or executes an application update routine. A remote server sends new firmware to the system to program
into its local memory.

In most cases, when the system update process is started, the main application is halted. The main application code is then
erased and reprogrammed. There is only one copy of the main application, therefore if there were undetected errors when the
new code was received and programmed, the system may not operate correctly and could stop operating until a new
application is downloaded. The worst case scenario is when the system is unresponsive and unable to be forced into
bootloader mode for system updates.

Advantages
• Simple to implement
• Less flash memory is required because no backup copy of application is maintained

Disadvantages
• The main application must stop during the update process
• Not possible to go back to known working application
• May not be tolerant of power loss during the update process

2.1.2 Systems with code back-up
A system can be implemented with a complete software backup held in memory. If a serious error is detected, the system can
revert to the backup copy of the main application. A bootloader could be used to select the correct copy of the main
application to execute.

Advantages
• In a multitasking operating system it is possible to continue to execute the main application tasks while background

tasks are running to update the new copy of the application.
• Backup copy of code. Possible to revert back to the known working application.

Disadvantages
• Additional memory space required to store backup copy.
• Requires a bootloader (startup routine that selects which application to run).

Application requirements
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2.1.3 Systems using flash memory swap
In devices with two or more internal flash blocks that support swap, the memory base address of each flash block can be
exchanged. The address location of each flash block will thus be swapped in the logical memory map of the device. After a
reset, the built-in flash swap system essentially selects which software executes by the location of the flash block in the
logical memory map. This allows a code back-up system with the added ease of programming. You can execute out of one
block while erasing/programming the other block. On Kinetis devices, the flash swap system monitors/controls all the steps
of switching from the old application to new; there is an added assurance of reliable operation in the case of a power loss
during one of those steps.

Advantages
• Ease of programming. Application always executes out of the lower block in the memory map.
• Power loss tolerant.
• No bootloader required. No delay to the start of the main application.
• Well suited for a multi-tasking OS. Minimal application downtime. In a multi-tasking system it is possible to continue

to execute the main application tasks while background tasks are running to update the new copy of the application.
• Backup copy of code. Possible to revert to the known working application.

Disadvantages
• Additional flash memory space required to store backup copy.

3 Program flash swap overview
Kinetis devices are available with internal flash memory for program and data storage. For devices with two or more program
flash (p-flash) memory blocks that have the p-flash swap feature, the system programmer can configure the logical memory
map of the p-flash space such that either of the two physical p-flash blocks can exist at relative address 0x0000. The flash
swap feature is not mandatory.

This is particularly useful because on Kinetis devices the default vector table is located at address 0x0000. When the
processor exits reset, it fetches the initial stack pointer (SP) from address 0x0000 and the program counter (PC) from address
0x0004. Thus, swapping the base address of the two p-flash blocks allows the system to either boot from p-flash block 0 or p-
flash block 1 because either block can be located at base address 0x0000.

The swap system is controlled by issuing swap control commands that are similar to other flash commands on Kinetis
devices. The swap system requires initialization before swap is possible.

3.1 Key facts about p-flash swap
• The block that is currently located at relative address 0x0000 is known as the active block. This is also referred to as

the lower block. The other block is known as the nonactive block or upper block.
• The typical use-case is for the system to execute from one block (active block) while reprogramming the other block

(nonactive block). In most applications, the system application code is limited to fit within one flash block (active
block).

• After reprogramming the nonactive block and when it is ready for execution, the user can complete the swap process to
swap the blocks. The nonactive block becomes the active block and vice versa.

• A system reset begins code execution from the active block (the block located at base address 0x0000).
• The same procedure for swapping back and forth between blocks is used.

Program flash swap overview
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3.1.1 Kinetis (100 MHz) swap details
Kinetis 100 MHz devices with two p-flash blocks support swapping of the two blocks. The SWAP bit of the FTFL_FCNFG
register indicates which p-flash block is located at address 0x0000. The state of the SWAP flag is set by the swap system
within the flash module during the reset sequence.

The SWAPPFLSH bit in the SIM_FCFG2 register indicates if the swap system has been initialized and thus potentially ready
to be swapped.

Figure 1. P-flash swap (Kinetis 100 MHz)

3.1.2 Kinetis (120/150 MHz) swap details
Kinetis 120/150 MHz devices have two flash configuration options that support swap. Each are discussed below.

The SWAP bit of the FTFL_FCNFG register indicates which p-flash block/half is located at address 0x0000. The state of the
SWAP flag is set by the swap system within the flash module during the reset sequence.

3.1.2.1 512 KB p-flash option
Kinetis 120/150 MHz devices with two p-flash blocks (512 KB p-flash) support swapping between the two p-flash blocks.
This is similar to the 100 MHz Kinetis devices with 512 KB.

Figure 2. P-flash swap (Kinetis 120/150 MHz, 512K p-flash)

Program flash swap overview
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3.1.2.2 1 MB p-flash option
Kinetis 120/150 MHz devices with four p-flash blocks (1 MB) support swapping between two 2-block halves (p-flash blocks
0–1 and 2–3).

Figure 3. P-flash swap (Kinetis 120/150 MHz, 1M p-flash)

3.2 Swap command overview
There are four options to the swap command.

1. Set Swap Indicator Address (Initialize Swap system)
2. Set Swap in Update (Prepare) Mode
3. Set Swap in Complete Mode
4. Report Swap Status

Set Swap Indicator Address Command

This command initializes the swap system.  When issuing this command, you must provide an address for the flash swap 
indicators (discussed below).  This command sets the swap enable word and swap indicator address which is used by the 
swap system.  This step is required only once when for the first time a swap is performed.

Set Swap in Update Mode

This command programs the flash swap indicator value to indicate to the system that content updates of the upper block has 
been planned.  Additionally, it un-protects the sector holding the flash swap indicator within the nonactive block to allow it 
to be erased.  Erasing this sector during the Update (or Update-Erased) state is a requirement of the swap process. 

Set Swap in Complete Mode

This command programs the flash swap indicator value to indicate to the system that reprogramming the nonactive block is 
complete and is ready to swap the flash blocks. This command is to be issued after the contents of the nonactive (upper) 
block are erased/reprogrammed as required to update the system software.  This includes erasing the sector in the nonactive 
block that contains the flash swap indicator.  

Report Swap Status

Program flash swap overview
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This command checks the status of the swap system.  It returns the current swap state, current swap block status (which 
block is currently located at address 0x0000), the next swap block status (which block will be located at 0x0000 after a 
system reset), and if there are any errors.  

It is recommended to issue this command in the system initialization code that executes on a system reset.  This will help the 
system software identify if there were any errors with the swap system that could potentially be caused by power loss during 
a swap command execution.

See Error handling for more details.

3.2.1 Execute Swap command from internal SRAM
The Swap command must be executed from an SRAM routine to avoid a read-while-write violation. A read-while-write
violation is possible if code is executing out of a flash block in which an erase or program operation is taking place. Since the
flash swap system programs the flash swap indicators located in both flash blocks, it is necessary that the code is not
executing out of the flash when the swap commands are issued.

See example software that accompanies this application note for details.

3.2.2 Address passed to all swap commands
The address required by all the swap commands is the active block swap indicator address that was set by the initialization
command. The same address must be used for each swap command. It does not matter whether you are swapping from block
0 to 1 or block 1 to 0, and so on.

See Flash swap indicators for more details.

4 Swap steps

4.1 Swap procedure
The procedure for swapping the flash blocks is simple. The same procedure for swapping back and forth between the blocks
is used.

4.1.1 First swap
1. First initialize the system by issuing the initialization command. This step is required only once when for the first time

a swap is performed. When first initialized, the swap system goes straight to Update-Erased.
2. Erase the nonactive (upper) block.
3. Reprogram the nonactive (upper) block with new software.
4. Issue the command to set the system to the Complete state. The swap will take effect after a reset (including a software

reset).
5. After a reset, the blocks are swapped and the swap system comes up in the Ready state.

Swap steps
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4.1.2 Procedure for additional swaps
After the first swap has been completed, the process starts with the Ready state.

1. Issue the command to set the system to the Update state.
2. Erase the nonactive (upper) block. Once the erase is complete, the system will automatically move to the Update-

Erased state.
3. Reprogram the software in the nonactive block.
4. Issue the command to set the system to the Complete state.
5. Reset the microcontroller (any reset including software reset).
6. After a reset, the blocks are swapped and the swap system comes up in the Ready state.

4.2 Erasing the nonactive upper block
You can use block erase or sector erases. It is only specifically required to erase the flash swap indicator sector in the
nonactive block. However, to update the software in the nonactive block, you must first erase it. Once the erase is complete,
the system will automatically move to the Update-Erased state.

Swapping between blocks without erasing/reprogramming the entire nonactive block is possible. You just need to erase the
sector with the flash swap indicator (when in the Update state). This is useful for swapping back to a known good application
in the nonactive block.

See Flash swap indicators for more details.

4.3 Order of the steps
Freescale recommends that the new code be uploaded to the nonactive (upper) block when the swap system is in the Update-
Erased state and before the system is moved to the Complete state. Thus, if there is a power loss during the process, the swap
system will know that it was in the middle of updating and it should revert to the previous swap state that was known to be
good.

The order that the flash swap command options are issued is important. The command options cannot be issued out of
sequence or an error can occur. See the section Error handling for details.

4.4 Summary of typical procedure to swap (after the first swap)
1. Check Status
2. Ready -> Update
3. Erase upper block (or just sector with flash swap indicator in the nonactive upper block)
4. Update -> Update-Erased (automatic)
5. Reprogram upper block – check contents of upper block (skip over swap indicator location when programming)
6. Swap Update-Erased -> Complete
7. Reset
8. Complete -> Ready (automatic)

Swap steps
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Figure 4. Flash Swap (Kinetis 120/150 MHz, 1M p-flash)
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5 Swap details

5.1 Flash swap indicators
The flash swap indicators (indicator0 and indicator1) are two locations within the p-flash memory space. One is within the
lower half and the other in the upper half of the total p-flash. The two flash swap indicators are located at the same address
offset relative to the base of each p-flash half. The system programmer specifies where the flash swap indicators are to be
located when initializing the flash swap system.

What is the purpose of the flash swap indicators?

The flash swap indicators are used by the swap system to store codes that the system uses to ensure robust operation in the 
presence of potential power losses during swap operations.  The swap system programs the flash swap indicators with 
specific codes at each step of the swap process.  This provides the system with a tracking mechanism so that it can reliably 
determine the swap status on a system reset.  

On a reset, the swap system interrogates the swap indicators to determine the swap state and whether there was any
interruption during a swap flow. You have to do nothing with the swap indicators other than erase them during the Update
stage of the swap process.

How big are the flash swap indicators?

2 bytes within each p-flash block

What should be programmed to the flash swap indicators?

The system programmer does not need to program the flash swap indicators or scrutinize their contents because the flash 
swap system handles this automatically.  However, the swap state report mapping table in the reference manual provides 
details of the codes programmed into the swap indicators.  The table describes codes during each step in the swap process or 
in cases where an error was detected (possible power loss during a swap).  

Where to locate the flash swap indicators?

The system programmer specifies where the flash swap indicators are to be located when initializing the flash swap system.  
Any flash sector can be used except the first two sectors which contain the vectors and flash configuration fields.  Depending 
on the device, the swap indicator must be 32-bit, 64-bit, or 128-bit aligned.  

Consider for example a device that contains two p-flash blocks of 256 KB (block 0: 0x00000-0x3FFFF, block 1: 
0x40000-0x7FFFF) and sector size of 2 KB (0x800). If the swap indicators are placed in the last sector of the flash blocks, 
the flash swap system will designate 0x3F800 as the swap indicator location for block 0 and 0x7F800 as the swap indicator 
location for block 1.  In this example, the address provided to the swap system is simply 0x3F800.  

NOTE
It is recommended to place the flash swap indicators in the last sector of the p-flash
block. This will allow the largest contiguous flash area for the application code.

Where is the flash swap indicator address (offset) stored?

The address of the flash swap indicators (offset address from the base of each block) is stored in an area of flash called the 
program flash block 1 IFR. 

Can the flash swap indicator location be changed?

Swap details
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The flash swap indicator address cannot be modified unless the Erase All Blocks command is issued that clears the swap 
system back to uninitialized (on supported devices).  Therefore, it is important not to forget the address provided to the swap 
system during swap initialization. 

Flash Swap Indicator Protection

Once set, the flash swap indicator locations cannot be programmed by the user.  Additionally, the sector containing the flash 
swap indicator in the active block cannot be erased.  The sector containing the flash swap indicator in the nonactive block 
can only be erased when the swap system is in the Update or Update-Erased state.  Be sure not to program over the swap 
indicators as this causes an error.

Figure 5. When it is allowable to erase the flash swap indicator sector

Figure 6. When it is allowable to erase sectors other than the flash swap indicator
sectors

* You can erase any sector other than the swap indicator sectors at any time. However, you must not erase within the block
that you are currently executing. In rare cases in which you want to erase the active block, jump to a subroutine in RAM and
execute from RAM.

Swap details
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5.2 Swap enable field (word)
A swap enable field also known as swap enable word is also stored in the Program Flash Block 1 IFR. This location is
programmed by the swap system when the swap initialization command is issued. The contents of this location simply tell the
swap system that swap has been initialized and that a valid flash swap indicator address has been specified.

5.3 Common questions
Why is swap so complicated? - Power Loss Tolerance

Reading the swap documentation may lead you to the question, “why is swap so complicated?”  The answer is power loss 
tolerance.  In less robust systems, if the power is lost at a vulnerable time, the system could become corrupted.  For systems 
using the flash memory swap feature, if a power loss occurs during the swap process, the built-in system detects errors and 
reliably determines the last known valid flash block configuration.  

Are systems using swap limited to applications that fit within one of the two flash blocks (half the total flash memory
size)?

In most use cases, the system application will be limited to executing within one flash block (active block).  However, the 
swap system does not restrict code from executing in the nonactive block.  Therefore, code can execute from either block at 
any time.

It is possible to use advanced techniques to expand the size of the application over the size of half the p-flash and still use
flash swap. This would sacrifice some protection against problems, but gain more room for code. This is outside the scope of
this application note.

Can the sector with the flash swap indicator be used for data/program storage?

Typically, the user specifies an unused flash sector to place the flash swap indicators.  However, the swap system will not 
disturb the other data in the flash sector containing the indicators.  So, that space can be used for program or data storage.  
The space should be designated in the linker file accordingly.  See Important considerations for details.

5.4 Important considerations
Always program the vector table and flash configuration fields

You must program the interrupt vector table and flash configuration fields (FSEC, FOPT, and so on) to the nonactive upper 
block before swapping.  If not, the vector table and flash configuration will not be set correctly in the new active block after 
the swap.  This will result in unwanted configurations and could potentially secure the device. 

Project linker file considerations

No special considerations are required in the code.  Just link your code as it would normally fill the lower block.  It is 
recommended to allocate a section in the linker file for the active (lower) flash swap indicator location to avoid the 
application attempting to overwrite it.

5.5 Error handling
There are two main situations you should check for errors.

Swap details
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5.5.1 Issue Swap Status command option after a reset
Run the Swap Status command option to report the swap status after any reset to detect the following potential conditions.

1. Possible power loss during firmware update / swap process: Swap state not Ready

A reset occurred in the middle of the firmware update process. This is evident if the system is in the Update or Update-
Erased state after a reset. Typically, the system will be in the Ready state unless in process of updating the firmware.

If this happens, continue the swap process from the current swap state. It is recommended to erase and reprogram
firmware in the nonactive block to ensure that it is programmed fully.

2. Possible power loss during swap command: Error flag set

A reset occurred in the middle of the firmware update process that resulted in corrupted flash swap indicator values.
This condition is reported by the MGSTAT0 error flag in the FSTAT register after running the Swap Status command
option. The swap system has been designed to be fully tolerant of this condition. However, the flash swap indicators
need to be cleaned up. This is accomplished by running through the swap procedure once.

5.5.2 Check error flags after issuing a swap command
Check error flags ACCERR and MGSTAT0 in the FSTAT register for errors documented in the Swap Control Command
Error Handling table found in the reference manual for the device. It is recommended to check for errors after any command,
not just swap.

6 Multitasking application overview
In a multitasking operating system, the main tasks can continue running while new firmware is being loaded by a separate
uploader/programmer task. The software uploader task sets the swap system to Update mode, receives new application code
(from a communication interface), programs it to the non-active upper program flash block, then sets the swap system to
complete the swap. After the system is reset, the flash blocks are swapped and the new application boots up. Thus the
application downtime is very minimal. The process can be repeated again as long as the new application also has the
uploader/programmer/swap task. The requirements for the application would be that it fits within half the program flash and
that the software has a task that can receive and program the new application and perform the swap.

Main Application Tasks
• Continue running during new firmware upload

Uploader Task

When activated, the uploader task performs the following:
• Issues command to put swap system to the Update state
• Erases the upper block sectors to be reprogrammed
• Receive new line of application code (from SCI, TCP/IP, and so on)
• Programs new line of code to the upper flash block
• Checks the code for errors
• Issues command to put swap in Complete state
• Performs software reset
• After the system is reset, the flash blocks are swapped and the new application boots up
• The process can be repeated again with the exact same steps

Multitasking application overview
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7 Software example
A software example is provided with this application note to demonstrate the swap feature. The example is not based on a
multi-tasking operating system.

7.1 Software components

7.1.1 Flash Driver Software
The example uses the Flash Driver Software for Kinetis Microcontrollers (C90TFS_FLASH_DRIVER). The drivers are
useful for compiling into an embedded application to add flash control capability. The example uses version 0.2.9 (beta)
which has updated flash swap support.

7.1.2 Kinetis sample code
The Kinetis sample code for the K60 100 MHz version (KINETIS512_SC) was used as the basis for the example. Both an
IAR and CodeWarrior project is provided. The flash drivers were added into the projects.

Supported Integrated Development Environments (IDE)
• IAR Embedded Workbench for ARM version 6.30 or later
• CodeWarrior for MCUs version 10.1

7.2 Hardware
Kinetis K60 100 MHz MCU Module (TWR-K60N512) with MCU device marked 4N30D or later required. See note below.

NOTE
Kinetis 100 MHz revision 1.4 or later required. The mask set number marked on the
package is 4N30D. Subsequent revisions may be marked 5N30D, and so on. Revisions
earlier than revision 1.4, may not support swap or may disable the Erase-All-Blocks
command after swap initialized. Thus, on those early revisions, some debuggers will not
be able to re-download to flash if they rely on the Erase-All-Blocks command to pre-
erase the flash. Additionally, it was not possible to set the swap system back to
uninitialized on those early devices.

7.3 Anatomy of the software

7.3.1 Flash driver swap functions
The flash driver provides two functions.

Software example
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7.3.1.1 PFlashGetSwapStatus
Located in the file PFlashGetSwapStatus.c. This function returns the swap state details and checks whether any errors were
detected in the swap state determination.

7.3.1.2 PFlashSwap
These are located in the files: PFlashSwap.c. This function performs the swap control commands.

7.3.2 Callback function
The calling application has the ability to pass a callback function to the PFlashSwap function. This callback function is then
called by the PFlashSwap driver function after each time it advances the swap state. When the PFlashSwap function calls the
callback function, it passes the swap state back to the calling application. Using this information, the application can
determine whether to continue to the next swap state.

Additionally, this provides an excellent place to perform the firmware update. When the swap driver reports to the callback
function that the swap system is in the Update state, the callback function downloads new system software (firmware), and
erases/reprograms the upper block as needed.

7.4 Running the demo
NOTE

The following instructions assume previous installation and basic knowledge of the IDE
and terminal utility. See Quick Start Guide for TWR-K60N512 for details available in
http://www.freescale.com.

7.4.1 Instructions
1. Download and install the demo software. Install to a directory of your choice. This directory will be referred to <Install

Dir>.
2. Plug in the USB cable between your computer and the board to provide power and debugger connection.
3. Open the PE Terminal Utility as described in the Quick Start Guide. Ensure the baud rate is 115200, no parity, and 8

bits. Click Open Serial Port.
4. Open IAR or CodeWarrior.
5. Open the swap demo project

IAR
• Open the workspace <Install Dir>\build\iar\swap_demo\swap_demo.eww

CodeWarrior
• Set the workspace to <Install Dir>\
• Import the project in the folder <Install Dir>\build\cw\swap_demo\

6. Select the target configuration
IAR

• Select the FLASH_512KB_PFLASH configuration.

CodeWarrior
• Select the MK60N512VMD100_INTERNAL_FLASH configuration

7. Compile the project
8. Download and Debug

IAR
• Click the Download and Debug button

Software example

Robust Over-the-Air Firmware Updates Using Program Flash Memory Swap on Kinetis Microcontrollers,
Rev. 0, 06/2012

14 Freescale Semiconductor, Inc.
General Business Information

http://www.freescale.com


CodeWarrior
• Open Debug Configurations
• Select k60-swap_demo_MK60N512VMD100_INTERNAL_FLASH_PnE_OSJTAG

Figure 7. Debug configurations
• Click Debug

9. In the PE Terminal Utility, the output will be displayed to the screen.

First, the code checks which block is located at address 0x0000.  
Next, the code issues the swap command to check the swap system status.  The first time you execute the code, the 
swap system will report Uninitialized.

Figure 8. Terminal utility output: before first swap
10. The code executes a command line interface. Type swap to start the swap demo. The swap driver will sequence the

swap system through each swap state and call a callback function that reports the swap state back to the calling
function.

11. When the swap system is in the Update state, the callback function simulates a firmware update, by erasing and
reprogramming the nonactive (upper) block by copying the contents of the active (lower) block to the nonactive (upper)
block.

Software example
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NOTE
This example places the flash swap indicator in the last sector of each block.
Programming the flash swap indicator is not allowed, so when programming the
nonactive (upper) block, this location is avoided.

Figure 9. Terminal utility output: during first swap
12. The code executes a software reset in 3 s to complete the swap.

Figure 10. Terminal utility output: after first swap
13. When the reset occurs, the code will boot up again. The flash blocks are now swapped. Block 1 is located at address

0x0000. The swap state is now in the Ready state. Type the swap command again to swap back to block 0.

NOTE
If the debugger is connected when the software reset occurs, the debugger will halt.
Either, resume the debugger or disconnect it and press the reset button on the
board.

Software example
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7.4.2 Setting up Remote System (CW 10.1)
The first time you run the demo in CodeWarrior 10.1, it may ask you to set up a Remote System. This is not required with
later versions of CodeWarrior.

1. Open Debug Configurations, under Remote System, click New…

2. The New Connection window will open. Under CodeWarrior Bareboard Debugging, select Hardware or Simulator.

3. Write in a name of your choice (e.g. K60_OSJTAG) for the Connection name and select K60DN512Z for System
type. Click Finish.

Software example
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7.4.3 Recovering connection problem after running demo
There is a potential issue in which CodeWarrior cannot erase/reprogram the device after the flash swap demo is executed.
This is not related to the silicon revision.

To work around this, use the Flash File to Target tool to erase the flash. The Flash File to Target tool uses the Erase-All
command which will erase the entire flash and clear the swap system back to uninitialized.

1. Open the Flash File to Target too by clicking the arrow next to the lightning bolt icon.

Software example
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2. Select Flash File to Target

3. Click Erase Device

8 Conclusion
Program Flash Memory Swap is one of the many attractive features of Freescale’s Kinetis microcontrollers. The Swap
feature is ideal for systems that require a very robust firmware update mechanism that provides the safety of a backup copy
and minimal application downtime. Program Flash Swap is simple to use and reduces software complexity. It is well suited
for multi-tasking operating systems such as Freescale’s complimentary MQX RTOS.

For further resources, please review the software example provided with this application note as well as the References
section.

9 References
1. Kinetis Microcontroller documentation, software, and tools available at http://www.freescale.com/kinetis.
2. Flash Driver Software for Kinetis Microcontrollers. Keyword search C90TFS_FLASH_DRIVER at http://

www.freescale.com.
3. Kinetis Sample Code. Keyword search KINETIS512_SC at http://www.freescale.com.
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