

APPLICATION NOTE

Order this document
as AN463/D

AN463

68HC05K0 Infra-red Remote Control

Tony Breslin,
MCU Applications Group,
Freescale Ltd., East Kilbride, Scotland

The MC68HC05K0 is a low cost, low pin count
single chip microcomputer with 504 bytes of user
ROM and 32 bytes of RAM. The MC68HC05K0 is
a member of the 68HC05K series of devices which
are available in 16-pin DIL or SOIC packages.
It uses the same CPU as the other devices in the
68HC05 family and has the same instructions and
registers. Additionally, the device has a 15-stage
multi-function timer and 10 general purpose
bi-directional I/0 lines. A mask option is available
for software programmable pull-downs on all of
the I/O pins and four of the pins are capable of
generating interrupts.

The device is ideally suited for remote-control
keyboard applications because the pull-downs and
the interrupt drivers on the port pins allow
keyboards to be built without any external
components except the keys themselves. There is
no need for external pull-up or pull-down resistors,
or diodes for wired-OR interrupts, as these features
are already designed into the device.

This application makes use of many of the device
features to control an infra-red television remote
control. The application could be very easily
modified to control any device with a similar
transmission protocol. It will run on any of the ‘K’
devices without modification.

Remote Control Specifications

The basic purpose of a television remote control is
to transmit a control instruction to the television.
The instruction is generated by a keystroke on the
remote control keyboard. The detection and
decoding of a key press and the transmission
encoding is carried out by the remote control micro
controller.

When a key on the remote control keypad is
pressed, the micro controller must first determine
what key is being pressed and generate an
individual code for the key. The key code is then
converted to a instruction code that is inserted into
the transmission command which, using a defined
protocol, is transmitted to the television receiver.
The command is continually transmitted as long as
the key is being held down.

As the remote control is battery powered it needs
to use as little power as possible. This is achieved
by entering STOP mode when no keys are being
pressed and effectively switches off the device.
The micro controller comes out of STOP mode
upon receipt of an interrupt request that is
generated when a key is pressed.

Remote Control Keyboard

The 68HC05K0 has ten general purpose I/O pins.
One of these is used for the transmission signal
output leaving nine pins for the keyboard control.
Of these, four pins on PortA have internal interrupt
request hardware. Using these four pins as inputs
allows key presses to be detected without any
external interrupt hardware. This leaves the five
remaining pins for outputs.

Using the internal pull-down facility and the rising
edge interrupt request on the four inputs permits
interrupts to be generated.

If the five outputs are
set to logic ‘1’, so driving an input from logic ‘0’
to logic ‘1’ when a key is pressed, an interrupt
request can be generated

. Using this
arrangement a five by four keyboard matrix can be
used.

An extra four keys can be controlled if the
Vdd line is used to drive one row of four keys to
logic ‘1’. Therefore the maximum amount of keys

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

rxzb30
ForwardLine

rxzb30
fslcopyrightline

2

Figure 1

Keyboard layout with associated scanned and transmitted codes

1 2 3

4 5 6

7 8 9

0

NORM

MUTE

PC+ PC-

VOL+

VOL-

TV/
TEXT

MIX CON+

CON-STOP SUB-
PAGE

INDEX

TIME

VDD

A7

A6

A5

A4

B0

A0 A1 A2 A3

31 32 34 38
11 12 13 00

71 72 74 78

b1 b2 b4 b8

d1 d2 d4 d8

e1 e2 e4 e8

f1 f2 f4 f8

14 15 16 01

17 18 19 06

10 2c 2d 07

39 3b 3a 0c

3e 3d 3c 0d

A depressed key will set one of the input columns
to logic ‘1’. By scanning the columns, and setting
each row output to logic ‘0’ and then checking if the
inputs all become logic ‘0’, the associated row for
the key can be determined. If rotating the logic ‘0’
through the five output pins fails to identify a key
column, then the key must be connected to the
Vdd line. This process gives an individual code for
each key which is a combination of the code from
the column inputs and the row outputs. This can
then be decoded to an instruction that is inserted
into the output signal for transmission.

Figure 1 shows the layout of the keyboard on the
left and the scanned and transmitted codes on the
right. The keyboard layout incorporates the various
television controls plus controls for TELETEXT. On
the left hand side the codes returned from
scanning the keyboard are shown in the upper
right-hand corner of each key and the code sent for
transmission for that key instruction are shown in
the bottom left-hand corner. The I/O pins for each
row and column are also shown for each key.

Transmission Protocol

The transmission protocol in this application is that
used by the MC144105 IR Remote Control
Transmitter. It uses a binary coded 9-bit data word
with the LSB being transmitted first. Each bit of the
transmitted signal is in the form of a bi-phase pulse
code modulated (PCM) signal, whose bit coding is
shown in Figure 2. For a transmitted ‘0’ there is a
512

µs pause followed by a 32kHz pulse train for
512µs. For a transmitted ‘1’ there is 32kHz pulse
train followed by a 512µs pause. This gives a bit
time of 1024µs for all bits.This is shown asFigure 2.

Figure 2

Bit coding of PCM signal

'0'

'1'

bit-n

1024µs

512µs

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

3

A complete transmission command consists of
several messages. Each command begins with a
start message of nine 1’s followed by the message
appropriate to the key pressed. This message is
repeatedly transmitted until the key is released.
The transmission is terminated after the key is
released by a end message of nine 1’s.

Every message consists of a pre-bit, a pre-bit
pause, a start bit and nine data bits. The pre-bit and
the start-bit are always logical ‘1’. The pre-bit allows
for the set up of the automatic gain control in the
receiving preamplifier. Figure 3 gives the exact
timing relationships for the transmissions.

The command timing in Figure 3 shows that after the
start transmission the message is continually
re-transmitted at intervals of 131ms (approximately
8Hz) until the key is released. This is shown as time
(c). The control timing shows the nine bit instruction
111001110 being transmitted starting with the LSB.
The pre-bit pause is equal to two bit periods and is
followed by a start-bit of logical ‘1’. The pulse train is
continuous during the transition between
transmitting a logic ‘0’ and a logic ‘1’. The modulating
pulse train has a frequency of approximately 32kHz
with a mark-to-space ratio of one to three.

The signal for transmission is output through one port
pin and is used to drive an IR diode amplifier circuit.

Command timing (a) = 32.8ms
(b) = 13.3ms
(c) = 131ms

start transmission
start command
control transmission

13 * bit time

Message timing (d) = 512

µ

s
(e) = 1.024ms
(f) = 3.072ms

(half-bit time)
(bit time)
(pre-pulse time)

16/fcarrier

Modulation (g) = 8

µ

s
(h) = 32

µ

s
(i) = 512

µ

s
(1/fcarrier)

(half-bit time)

16/fcarrier

Figure 3

Circuit timing

(1) (1) (0) (1) (1) (1) (0) (0) (1) (1) (1)

(a)

(b) (b)

(c)

(d) (d) (d)

(e) (e)

(f)

(g) (g) (h)
(i)

(c) COMMAND TIMING

START TRANSMISSION

MESSAGE TIMING

MODULATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Remote Control Operation

Figure 4

Flow diagram

setup ports
for keybrd

STOP

send end
message

NO

YES

YES

NO

interrupt

key still
 pressed

 send
 message

send start
 command

decode

 read
keybrd

 key
pressed

Figure 4 is a flow diagram showing the operation of
the remote control on power-up or reset. After the
initial set-up of the ports as inputs or outputs the
remote control goes into STOP mode. It will remain
in STOP mode as long as the device is not reset or
a key is not pressed. When a key is pressed an
interrupt request is generated. A short time delay
makes sure that it is a true key press and not noise
and also allows time for any switching effects on
the inputs to pass prior to checking the inputs.

The keyboard is then read to find which key has
been pressed and the code for the key is decoded
into an instruction and transmitted to the television.
If the key is held down the instruction is
re-transmitted until the key is released. This is
useful for the instructions which count through the
television channels or adjust the volume, colour or
brightness controls.

When the key is released a terminating instruction
is sent to the receiver to inform it that the next
message received is a separate instruction. This is
useful in the case of a one time instruction like
sending a channel number. In this example the
receiver will tune to a channel only once; to tune to
another channel the key must be released and a
new instruction sequence received.

After terminating the transmission the ports are
reset ready for the next key press and the
processor returns to the STOP mode.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

5

Figure 5

Infra-red remote control

RESET

PB1

PB0

IRQ

PA0

PA1

PA2

PA3

OSC1

OSC2

VDD

PA7

PA6

PA5

PA4

VSS

6
8
H

C
0
5
K

0

5v

GND	

8
k2

4
7

Ω

4
7
0

µ
F

IR
 D

IO
D

E
S

0
.4

7
Ω

10M2MHz

220pF

220pF

5v

2
*I

N
4
1
4
8

The remote control circuit is shown in Figure 5. The
hardware consists of the keyboard, the oscillator
and the infra-red amplifier. The oscillator can be a
crystal or a ceramic resonator with a frequency of
2MHz. The oscillator frequency is important since
the transmission timing is based around a 1MHz
internal clock frequency.

The infra-red amplifier uses two transistors and two
standard diodes to limit the current through the IR
diodes to approximately 1A. There is a need for a
large capacitor close to the IR diodes because of
the high switching current of the circuit.

Hardware

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

Software

dependent upon the receiver software. In this
example the eight bit instruction ‘14’ changes the
channel to number four. In another receiver
application the receiver may interpret the
instruction code ‘14’ as increase volume.

The transmission routine is entered with the
instruction for transmission in ‘keyst3’. After the
pre-bit and the start-bit are transmitted the
instruction byte is rotated (LSB first) into the carry
flag. A logic ‘1’ is sent for transmission if the flag is
set after rotation and a logic ‘0’ is sent for
transmission if the flag is cleared. Each bit is
transmitted as shown in Figure 1. The routines
‘send0’ and ‘send1’ send a pause of 512

µ

s
followed by a 32kHz pulse train for 512

µ

s and a
32kHz pulse train for 512

µ

s followed by a 512

µ

s
pause respectively. In the situation when a ‘1’
follows a ‘0’ then a pulse train of 1024

µ

s is
required. To avoid breaks in this pulse train the
‘send0’ routine checks the next bit to be
transmitted to see if a double length pulse train
must be transmitted. The ‘send1’ routine then has
to check that a double length pulse train has not
been sent in the previous one and a half bit periods
before sending a pulse train.

The routine ‘burst’ produces the 32kHz pulse train for
a duration set by a count in the accumulator. As the
instruction time for setting the PortB bit 1 pin high or
low is five clock cycles then the minimum processor
clock period is derived by dividing the minimum
output state time, which is 8

µ

s when the output is
high, by the minimum number of clock cycles to
change this state. This gives an internal clock period
of 8

µ

s/5 equalling 1.6

µ

s. Adding a three cycle delay
will require an internal clock period of 8

µ

s/8 = 1

µ

s,
allowing a 2MHz oscillator to be used.

The code size is approximately 300 bytes, leaving
memory space for more features to be added to the
controller.

The listing of the remote control assembler code is
contained at the end of this application note. The
first section of the listing sets up the ports prior to
going into STOP mode and waiting for a key to be
pressed. PortA bits 0-3 are set up as inputs with the
pull-downs enabled. Bits 4-7 are set up as outputs
logic ‘1’ as is PortB bit 0. PortB bit 1 is set-up as
output logic ‘0’ to switch off the IR amplifier before
going into STOP mode.

The next section of code named ‘presd’ is the
routine pointed to by the interrupt vector and is
entered when a key is pressed. This routine first
calls the keyboard scanning routine to determine
which key has been pressed. It then calls the
decoding routine to convert the code from the
keyboard to a code that will be accepted by the
television. The start message is then transmitted
and is followed by the instruction message. There
is then a check to see if the same key is still being
pressed. If it is then the instruction message is
re-transmitted until the key is released and the end
message is transmitted.

As the transmission protocol requires nine data bits
and only one byte instructions are being decoded a
flag has to be set for the ninth bit of the
transmission routine. For the start and end
transmissions this flag is set to 1 to give the nine
1’s message. For all instructions the ninth bit is 0 so
the flag is cleared.

The decoding routine compares the code from the
keyboard scan routine with data array ‘keydat’. On
a match it takes the corresponding element from
the array ‘tvdat’ as the instruction code for
transmission.

The values of the instruction codes shown in the
right-hand side of Figure 1 are specific for the
receiver application. Each receiver using the same
communications protocol will receive the same
nine bit instruction but what the instruction does is

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

7

Debug

signal by pressing a key the first signal out will be
the start message of nine 1’s. To capture the
instruction the key should be held down and as the
instruction will be continually re-transmitted then
the capture can be initiated at this point.

On applying power to the circuit the RESET vector
will initialise the program counter at the beginning
of the software. When examining the output at
PortB bit 1 with an oscilloscope or logic analyser it
should be noted that when trying to capture the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

Listing

0026 ***
0027 * INFRA RED REMOTE CONTROL FOR K0,K1 *
0028 ***
0029 * WRITTEN BY A.BRESLIN 13.1.92 *
0030 ***
0031 * THIS PROGRAM READS AND ENCODES A KEY FROM A 24 KEY KEYBOARD *
0032 * TO A FORM OF BIPHASE PULSE CODE MODULATION (PCM) FOR INFRA *
0033 * RED TRANSMISSION. IT USES THE TRANSMISSION PROTOCOL OF THE *
0034 * MC144105 IR REMOTE CONTROL TRANSMITTER *
0035 ***
0036
0037
0038 0000 porta equ 00
0039 0001 portb equ 01
0040 0004 ddra equ 04
0041 0005 ddrb equ 05
0042 0008 tcsr equ $08
0043 0010 papd equ $10
0044
0045 00e0 org $e0
0046
0047 00e0 keyst1 rmb 1 ; initial code from keyboard
0048 00e1 keyst2 rmb 1 ; keycode
0049 00e2 keyst3 rmb 1 ; code transmitted
0050 00e3 dflag rmb 1 ; flag for last and 9th bits
0051
0052
0053 **
0054 * THE PORTS ARE SET UP USING PORTA 0-3 AS INPUTS MAKING USE *
0055 * OF THE INTERNAL INTERUPT GENERATION ON THESE I/0 LINES. *
0056 * STOP MODE IS ENTERED UNTIL A KEY IS PRESSED *
0057 **
0058
0059 0200 org $200
0060
0061 0200 9a start cli
0062 0201 ad 04 wpres bsr setup
0063 0203 9c rsp
0064 0204 8e stop
0065 0205 20 fa bra wpres
0066
0067 0207 a6 f0 setup lda #$f0 ; porta 0-3 inputs
0068 0209 b7 04 sta ddra ; 4-7 as outputs
0069 020b b7 00 sta porta ; set outputs high
0070 020d b7 10 sta papd ; 0-3 pulldown
0071 020f a6 03 lda #$03 ; portb 0-1 outputs
0072 0211 b7 05 sta ddrb
0073 0213 a6 01 lda #$01 ; set portb 0 high
0074 0215 b7 01 sta portb
0075 0217 81 rts
0076
0077

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

9

0078 **
0079 * THE KEY READ IS DECODED FOR TRANSMISSION. *
0080 * THE TRANSMISSION PROTOCOL REQUIRES A START MESSAGE OF 9 *
0081 * ONES FOLLOWED BY THE KEYPRESSED CODE. THIS CODE IS *
0082 * CONTINUALLY RETRANSMITTED IF THE KEY IS HELD DOWN. AN END *
0083 * CODE OF 9 ONES TERMINATES THE TRANSMISSION AND THE DEVICE *
0084 * RETURNS TO STOP MODE. *
0085 **
0086
0087 0218 ad 34 presd bsr keyscn ; get key pressed
0088 021a b6 e1 lda keyst2 ; save key to check
0089 021c b7 e0 sta keyst1 ; if key held down
0090 021e ad 67 bsr decode ; decode key pressed
0091 0220 12 e3 bset 1,dflag ; set nineth bit to 1
0092 0222 a6 ff lda #$ff ; send start data
0093 0224 b7 e2 sta keyst3 ; to transmission routine
0094 0226 ad 71 bsr trnmit ; nine one's
0095 0228 b6 e1 sndagn lda keyst2 ; send key press message
0096 022a b7 e2 sta keyst3 ; byte
0097 022c 13 e3 bclr 1,dflag ; set nineth bit to 0
0098 022e ad 69 bsr trnmit
0099 0230 b6 00 lda porta ; check if key still pressed
0100 0232 a4 0f and #$0f ; end if no key pressed
0101 0234 26 0f bne endtrn
0102 0236 ad 16 bsr keyscn ; else check if same
0103 0238 b6 e0 lda keyst1 ; key pressed
0104 023a b1 e1 cmp keyst2
0105 023c 26 07 bne endtrn ; end if not
0106 023e ae c8 ldx #$c8 ; delay
0107 0240 5a tloop decx ; before next
0108 0241 26 fd bne tloop ; transmission
0109 0243 20 e3 bra sndagn
0110 0245 12 e3 endtrn bset 1,dflag ; send end message
0111 0247 a6 ff lda #$ff ; of nine ones
0112 0249 b7 e2 sta keyst3
0113 024b ad 4c bsr trnmit
0114 024d 80 rti ; re-enter stop mode
0115
0116 **
0117 * WHEN A KEY IS PRESSED THE DEVICE COMES OUT OF STOP MODE *
0118 * THE KEYBOARD IS SCANNED TO SEE WHICH KEY IS PRESSED *
0119 **
0120
0121 024e cd 02 fc keyscn jsr datwt ; wait for debounce
0122 0251 b6 00 lda porta ; check if key press
0123 0253 b7 e0 sta keyst1 ; store inputs
0124 0255 a4 0f and #$0f ; mask outputs
0125 0257 27 a7 beq start ; stop if no key pressed
0126 0259 ae ef ldx #$ef ; set one row low
0127 025b 9f nxtrow txa ; read ouput lines
0128 025c b4 e0 and keyst1 ; combine with inputs
0129 025e b7 e1 sta keyst2 ; store key code
0130 0260 bf 00 stx porta ; to find row which clears inputs
0131 0262 b6 00 lda porta ; check for inputs cleared
0132 0264 a4 0f and #$0f ; mask outputs
0133 0266 27 1c beq gotit ; zero in key-press row clears inputs
0134 0268 58 lslx ; check if last row
0135 0269 5c incx ; set lsb to 1
0136 026a 24 02 bcc tryb ; try portb output if not porta
0137 026c 20 ed bra nxtrow ; try next porta output row
0138
0139 026e b6 e0 tryb lda keyst1
0140 0270 b7 e1 sta keyst2
0141 0272 ae f0 ldx #$f0
0142 0274 bf 00 stx porta ; set all porta outputs high
0143 0276 11 01 bclr 0,portb ; set portb 0 output low
0144 0278 b6 00 lda porta ; check for inputs cleared
0145 027a a4 0f and #$0f ; mask outputs
0146 027c 27 06 beq gotit ; zero in key-press row clears inputs
0147 027e b6 e1 lda keyst2 ;
0148 0280 a4 3f and #$3f ; set individual code since last row
0149 0282 b7 e1 sta keyst2 ; store code
0150 0284 10 01 gotit bset 0,portb ; set portb column high again
0151 0286 81 rts
0152

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

0153 **
0154 * THE DECODE ROUTINE USES TWO ARRAYS. IT COMPARES THE KEY *
0155 * VALUE WITH THE ARRAY KEYDAT AND WHEN A MATCH IS FOUND THE *
0156 * CORRESPONDING ELEMENT IN THE ARRAY TVDAT BECOMES THE *
0157 * TRANSMITTED CODE. *
0158 **
0159
0160 0287 ae 18 decode ldx #$18 ; data array offset to zero
0161 0289 d6 03 02 nxtel lda keydat,x ; look at each element of array
0162 028c b1 e1 cmp keyst2 ; compare with key read
0163 028e 27 03 beq match ; decode if match
0164 0290 5a decx ; else try next element
0165 0291 26 f6 bne nxtel ; norm if no match found
0166 0293 d6 03 1a match lda tvdat,x ; get key code
0167 0296 b7 e1 sta keyst2 ; store code to transmit
0168 0298 81 rts
0169
0170 **
0171 * THE TRANSMISSION PROTOCOL REQUIRES A PRE-BIT, A PRE-BIT *
0172 * PAUSE, A START BIT AND NINE DATA BITS, WHERE THE PRE-BIT *
0173 * AND THE START BIT ARE LOGIC '1'. *
0174 **
0175
0176 0299 10 e3 trnmit bset 0,dflag ; initialise for first bit
0177 029b ad 32 bsr send1 ; send pre-bit
0178 029d cd 02 fc jsr datwt ; pre-bit pause
0179 02a0 cd 02 fc jsr datwt ; equalling four half data periods
0180 02a3 cd 02 fc jsr datwt ;
0181 02a6 cd 02 fc jsr datwt ;
0182 02a9 ad 24 bsr send1 ; send start bit
0183 02ab ae 08 ldx #$08 ; transmit 8 data bits
0184 02ad 34 e2 nxtbit lsr keyst3 ; get next bit
0185 02af 25 04 bcs data1 ; send 1 if carry set
0186 02b1 ad 28 bsr send0 ; send 0 if carry clear
0187 02b3 20 02 bra bitsnt
0188 02b5 ad 18 data1 bsr send1
0189 02b7 5a bitsnt decx ; countdown bits sent
0190 02b8 26 f3 bne nxtbit ; send next bit if count not zero
0191 02ba 03 e3 04 brclr 1,dflag,send00 ; if flag set
0192 02bd ad 10 bsr send1 ; send 1 as nineth bit
0193 02bf 20 02 bra endend ;
0194 02c1 ad 18 send00 bsr send0 ; else send 0
0195 02c3 ae 18 endend ldx #$18
0196 02c5 ad 35 loopw bsr datwt ; delay between successive
0197 02c7 ad 33 bsr datwt ; transmissions
0198 02c9 ad 31 bsr datwt
0199 02cb 5a decx
0200 02cc 26 f7 bne loopw
0201 02ce 81 rts
0202
0203
0204 **
0205 * TO TRANSMIT A LOGIC '1' A 32kHz PULSE TRAIN FOR 512us IS *
0206 * FOLLOWED BY A 512us PAUSE. *
0207 **
0208
0209 02cf 01 e3 04 send1 brclr 0,dflag,last0 ; check if last bit was zero
0210 02d2 a6 10 lda #$10 ; burst if last bit was 1
0211 02d4 ad 15 bsr burst ; 32kHz pulse for 512us
0212 02d6 ad 24 last0 bsr datwt ; wait 512us
0213 02d8 10 e3 bset 0,dflag ; set flag as 1 sent
0214 02da 81 rts
0215

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

11

0216 **
0217 * TO TRANSMIT A LOGIC '0' A 512us PAUSE IS FOLLOWED BY A *
0218 * 32kHz PULSE TRAIN FOR 512us. IF A LOGIC '1' FOLLOWS A '0' *
0219 * THE 32kHz IS CONTINUED FOR 1024us TO AVOID A PROCESSING *
0220 * DELAY *
0221 **
0222
0223 02db ad 1f send0 bsr datwt ; wait 512us
0224 02dd 00 e2 04 brset 0,keyst3,next1 ; check if next bit is 1
0225 02e0 a6 10 lda #$10 ; single burst if 1
0226 02e2 20 02 bra datset ; data set
0227 02e4 a6 20 next1 lda #$20 ; double burst required
0228 02e6 ad 03 datset bsr burst ; 32kHz pulse for 512us
0229 02e8 11 e3 bclr 0,dflag ; clear flag as 0 sent
0230 02ea 81 rts
0231
0232 **
0233 * THE 32kHz PULSE TRAIN HAS A MARK TO SPACE RATIO OF 1 TO 3 *
0234 **
0235
0236 02eb 13 01 burst bclr 1,portb ; portb 1 low
0237 02ed 21 fe brn *
0238 02ef 12 01 bset 1,portb ; portb 1 high
0239 02f1 21 fe brn *
0240 02f3 13 01 bclr 1,portb ; portb 1 low
0241 02f5 9d nop
0242 02f6 4a deca ; decrement count
0243 02f7 27 02 beq endbur ; end of burst ?
0244 02f9 20 f0 bra burst
0245 02fb 81 endbur rts
0246
0247
0248 02fc a6 52 datwt lda #$52 ; count
0249 02fe 4a loop deca ; to provide 512us delay
0250 02ff 26 fd bne loop ; after instruction times
0251 0301 81 rts
0252
0253 0302 31 f1 e1 d1 b1 71 keydat fcb $31,$f1,$e1,$d1,$b1,$71
0254 0308 32 f2 e2 d2 b2 72 fcb $32,$f2,$e2,$d2,$b2,$72
0255 030e 34 f4 e4 d4 b4 74 fcb $34,$f4,$e4,$d4,$b4,$74
0256 0314 38 f8 e8 d8 b8 78 fcb $38,$f8,$e8,$d8,$b8,$78
0257
0258 031a 11 3e 39 10 17 14 tvdat fcb $11,$3e,$39,$10,$17,$14
0259 0320 12 3d 3b 2c 18 15 fcb $12,$3d,$3b,$2c,$18,$15
0260 0326 13 3c 3a 2d 19 16 fcb $13,$3c,$3a,$2d,$19,$16
0261 032c 00 0d 0c 07 06 01 fcb $00,$0d,$0c,$07,$06,$01
0262
0263
0264 0332 80 softin rti
0265
0266 03fa org $3fa
0267
0268 03fa 02 18 fdb presd ; scan keybrd on int
0269 03fc 03 32 fdb softin ; software interrupt
0270 03fe 02 00 fdb start ; resett

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN463/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Remote Control Specifications
	Remote Control Keyboard
	Transmission Protocol
	Remote Control Operation
	Hardware
	Software
	Debug
	Listing

