
1 Introduction
This application note implements an I2C driver on MQX
based on interrupt and blocking mechanism, which masked the
details of the I2C module operations and simplifies the
application code to a great extent. It covers both the master
and slave modes. The code is validated on the K60N512-TWR
board.

2 How the driver is designed
This driver is fully driven by interrupt. Following is the
operation of driver in master and slave modes.

• Master mode: When it is working as a master and
sending data, the application task passes the address and
length of buffer to driver and after that, it is blocked.
After the driver finishes transmitting the data in the
buffer, it resumes the application task. To reduce
memory consumption, the driver does not make its own
buffer and copy the data from application to it. The
driver uses the buffer at application layer directly. In the
same way, when the master is receiving, it passes the

Freescale Semiconductor Document Number:AN4652

Application Note Rev. 0, 01/2013

An I2C Driver Based on Interrupt
and Blocking Mechanism for MQX
by: Guo Jia

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 How the driver is designed..1

3 Program flow...2

4 Communication time sequence.................................3

4.1 Typical time sequence...................................3

4.2 Modification to the typical time
sequence...4

5 Key function and macro explanation.........................4

6 Demo code for using this driver................................5

6.1 Demo code for master....................................5

6.2 Demo code for slave......................................7

7 How to install this driver...9

8 Conclusion...11

9 References...11

address and length of buffer to the driver, and then, it is pended by the driver until driver finishes the reading operation.
See Figure 1.

• Slave mode: There are some differences when it is working as a slave. A slave is working in a passive way, not as a
master does. So, when it is sending data, it keeps blocked until the master reads it. When it is reading, it will keep
blocked until the master sends data to it. See Figure 1.

See the following figure for the illustration of the design.

Figure 1. Illustration of the design

3 Program flow
Figure 2 shows the program flow chart for the operation of the I2C driver in both Master and Slave modes. For more
information, see K60P120M100SF2RM: K60 Reference Manual, available on freescale.com.

Program flow

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

2 Freescale Semiconductor, Inc.

http://www.freescale.com

Figure 2. Typical I2C interrupt routine

4 Communication time sequence

Communication time sequence

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 3

4.1 Typical time sequence
The communication time sequence is referred from the MMA7660 device, and this is a typical sequence which can meet the
requirement of a lot of applications. For other sequence with special requirement, the driver needs to be modified a little to
adapt to the new application. See Figure 3 for master writing sequence and Figure 4 for master reading sequence.

Figure 3. Writing sequence

Figure 4. Reading sequence

4.2 Modification to the typical time sequence
As on some Kinetis device, when I2C module is working in slave state, it cannot generate an interrupt when it receives a
STOP signal sent by the master. So, the driver does not know when to give the data to the application task. To solve this
issue, one command is occupied. When the register address is 0xFF, the slave assumes it to be a STOP signal and passes the
data to task.

5 Key function and macro explanation
The following table describes a list of all the macros and the explains the function of each of these.

Function/Macro
name

Explanation

_ki2c_isr The entry function for I2C interrupt

_isr_ii2c_slave The interrupt service routine for slave

_isr_ii2c_master The interrupt service routine for master

_ki2c_int_fb_tx The interface with application, for sending data, mapped to
fwrite.

_fb_tx_master For master, sending data

_fb_rx_master For master, receiving data

_ki2c_int_fb_rx The interface with application, for receiving data, mapped to
fread.

_fb_tx_slave For slave, sending data

Table continues on the next page...

Key function and macro explanation

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

4 Freescale Semiconductor, Inc.

Function/Macro
name

Explanation

_fb_rx_slave For slave, receiving data

#define
DEBUG_ENABLE

This is a macro which enables to dump the information for
debugging. For normal usage, it is masked.

6 Demo code for using this driver
The following subsections provide the demo code for using the I2C driver in Master and Slave modes.

6.1 Demo code for master
struct STRU_I2C_BUFFER
{
 char dst_addr;
 char reg_addr;
 char data[100]; // Here is the buffer for sending or
 // receiving data
};

struct STRU_I2C_BUFFER i2c_buf_rx;
struct STRU_I2C_BUFFER i2c_buf_tx;
int_32 i2c_fb_test_master(void)
{
 uint_32 param;
 int i;
 int len;

 file_iic0 = fopen("ii2c0fb:", NULL);
 if (file_iic0 == NULL)
 {
 printf("\nOpen the IIC0 driver failed!!!\n");
 return IIC_ERR;
 }

 param = 100000;
 ioctl(file_iic0, IO_IOCTL_I2C_SET_BAUD, ¶m);

 i2c_buf_tx.dst_addr = 0x50; // The I2C slave address
 i2c_buf_tx.reg_addr = 0; // You may view this as a register
 // address or a command to slave.
 i2c_buf_rx.dst_addr = 0x50; // The same as above, for receiving

 i2c_buf_rx.reg_addr = 0; // The same as above, for receiving

 for(i=0;i<8;i++) // initialize data
 i2c_buf_tx.data[i] = 0xb0+i;

 while(1)
 {
 printf("---------------------\n");
 // send 4 bytes to slave
 len = fwrite(&i2c_buf_tx, 1, 4, file_iic0);
 if(len < 4)
 printf("send failed, len = %d \n", len);
 else
 printf("send ok, len = %d \n", len);

Demo code for using this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 5

 // clear receiving buffer
 memset(i2c_buf_rx.data, 0, 4);
 // receive 4 bytes from slave
 len = fread(&i2c_buf_rx, 1, 4, file_iic0);
 printf("get i2c data, len = %x\n", len);
 for(i=0; i<len; i++)
 printf("%x \n", i2c_buf_rx.data[i]);
 _time_delay(10);
 }
}

Figure 5 shows the running result for this demo.

Demo code for using this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

6 Freescale Semiconductor, Inc.

Figure 5. Console output for master reading

6.2 Demo code for slave
In this demo code, two tasks are created for sending and receiving separately. But this is not a must; the user can send and
receive data in the same task too.

Demo code for using this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 7

NOTE
As the driver shares the same buffer with the task, make sure that the data must not be
modified by other tasks or interrupts when the driver is working.

#define I2C0_SLAVE_ADDRESS 0x50
char buf_i2c_rx[256];
char buf_i2c_tx[256];

void task_slave_rx(uint_32 initial_data)
{
 uint_32 param;
 uint_32 len;
 int i;

 printf("I2C slave demo for FB. *******************\n");
 file_iic0 = fopen("ii2c0fb:", NULL);

 // Set to slave mode with specified slave address
 param = I2C0_SLAVE_ADDRESS;
 ioctl(file_iic0, IO_IOCTL_I2C_SET_SLAVE_MODE, ¶m);

 _task_create(0, TASK_I2C_SLAVE_TX, 0);

 while(1)
 {
 // clearing and reading
 memset(buf_i2c_rx, 0, 256);
 len = fread(buf_i2c_rx, 1, 256, file_iic0);
 if(len > 0)
 {
 // show data received
 printf("get i2c data, len: %d\n", len);
 for(i=0;i<len;i++)
 printf("%x\n", buf_i2c_rx[i]);
 }
 else
 printf("read failed.\n");
 }
}

void task_slave_tx(uint_32 initial_data)
{
 int i;
 int len;
 for(i=0;i<256;i++)
 buf_i2c_tx[i] = i;

 while(1)
 {
 len = fwrite(buf_i2c_tx, 1, 4, file_iic0);
 if(len < 4)
 printf("send fail. len = %d \n", len);
 else
 printf("send OK. len = %d \n", len);
 }
}

Figure 6 shows the running result for this demo.

Demo code for using this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

8 Freescale Semiconductor, Inc.

Figure 6. Console output for slave reading

7 How to install this driver
To install the driver, please follow these steps:

1. Copy the file i2c_int_k_fb.c released with this application note (contained in AN4655SW.zip, on freescale.com) to the
folder <mqx_install>\mqx\source\io\i2c\int and add it to the BSP project. See the following figure.

How to install this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 9

http://www.freescale.com

Figure 7. Add i2c_int_k_fb.c to BSP project
2. Add the following line to i2c_ki2c.h:

extern uint_32 _ki2c_int_fb_install (char_ptr, KI2C_INIT_STRUCT_CPTR);
3. In <mqx_install>\mqx\source\bsp\twrk60n512\init_bsp.c, add the following lines, there's a demo file in the software

AN4652SW.zip associated with this application note.

#if BSPCFG_ENABLE_II2C0_FB
 _ki2c_int_fb_install("ii2c0fb:", &_bsp_i2c0_init);
#endif
#if BSPCFG_ENABLE_II2C1_FB
 _ki2c_int_fb_install("ii2c1fb:", &_bsp_i2c1_init);
#endif

4. In <mqx_install>\config\twrk60n512\user_config.h, add the following lines:

#define BSPCFG_ENABLE_II2C0_FB 1
#define BSPCFG_ENABLE_II2C1_FB 0

5. Then, rebuild it, and the driver is available in application project.

How to install this driver

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

10 Freescale Semiconductor, Inc.

8 Conclusion
In this application note, an I2C driver based on interrupt and blocking mechanism for MQX is introduced. At the beginning,
its mechanism is introduced, then the program flow and time sequence is shown. In order to make it easy for reader, key
function explanation, demo code, and steps for installment are also discussed.

9 References
The following reference documents are available on freescale.com.

• K60P120M100SF2RM: K60 Reference Manual
• AN3902: How to Develop I/O Drivers for MQX

Conclusion

An I2C Driver Based on Interrupt and Blocking Mechanism for MQX, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 11

http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4652
Rev. 0, 01/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

	Introduction
	How the driver is designed
	Program flow
	Communication time sequence
	Typical time sequence
	Modification to the typical time sequence

	Key function and macro explanation
	Demo code for using this driver
	Demo code for master
	Demo code for slave

	How to install this driver
	Conclusion
	References

