
1 Introduction
The boot loader software is a prevailing technology for
modern System on Chip (SoC) application development. It
provides some level of initialization to the system and bridges
portability to the application program. In many cases, its role
is invaluable. However, the boot loader does have its set of
problems. It takes up resources and requires special skills to
build it. The boot loader is also susceptible to corruption due
to electrical surges, bad application programs, and so on, that
can render the boot loader inoperable and cause the system to
fail.

Freescale, however, provides its automobile customers an
alternative to custom boot loader software— the Boot Assist
Module (BAM). The BAM provides its users two interfaces
— the Enhanced Serial Communication Interface (ESCI) and
the Controller Area Network interface (CAN) — to upload
application program using the BAM protocols. To embellish
the BAM further, these two interfaces are equipped with the
ability to detect fixed baud rate and automatic baud rate.

The BAM protocol is unique: it provides a simple but secure
protocol, with password protection to ensure access rights to
its users. The passwords are classified as Public and FLASH.
The Public password option provides a fail-safe mechanism in
case the FLASH password is forgotten. Although the BAM
protocol does not provide any form of data integrity checks, it
echoes back every byte that it has received to the user, for
parity check.

Freescale Semiconductor Document Number:AN4674

Application Note Rev 1, 06/2013

Qorivva Boot Assist Module
Application
by: Mong Sim

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 BAM Prerequisite...2

3 Programming Language Prerequisite2

4 BAM Protocol..2

5 BAM Protocol for Controller Area
Network Interface (CAN)..4

6 BAM Qorivva Device Specific
Application Program ..7

7 BAM Host Specific Application
Program ..13

8 Summary...23

9 Appendix 1: BAM Qorivva Specific
Application Source Code..23

The BAM requires the user to send data in a certain format defined by the BAM protocol. Whether it operates in fixed baud
rate mode or automatic baud rate detection mode, the uploading application program must not violate the BAM protocol.
This application note provides instructions for creating an application program that is capable of uploading application
program to the SoC via the BAM ESCI and CAN interface in either fixed baud rate mode or automatic baud rate detection
mode.

2 BAM Prerequisite
The BAM module is available in the MPC55XX and MPC56XX Freescale Qorivva devices. The BAM module supports the
BAM protocol over the Enhanced Serial Communication and the Controller Area Network interfaces. However, in the
MPC57XX, the BAF (Boot Assists Flash) provide a similar functionality as BAM. These Qorivva devices are tailored to
target different market segments; therefore, these devices are configured differently. Although the BAM protocol remains the
same across different devices, the BAM module initialization and memory map vary across devices. The BAM chapter of
your Qorrivva device will provide information that complements this application note.

3 Programming Language Prerequisite
In this application note, the software examples are illustrated in Power Architecture assembly, C and C++ programming
language. Readers are required to have working knowledge of these programming languages. The example programs are
grouped into two types. The first type is the Target side program, which is a target specific program to be uploaded by the
Host application and executes in the Target system. The second type is the Host side program, which is an implementation of
the BAM protocol used to upload device specific application program to the Target system, the Qorivva device. All of these
software examples require various hardware and software tools. Here is a list of the hardware and software tools used in this
application note.

Software

• Microsoft Visual C++ Express 2010 microsoft.com
• Green Hills MULTI Compiler for Power PC ghs.com

Hardware

• XPC56XX Evaluations Motherboard with XPC563M144QFP Mini Module (EVB, The Target system)
• 12 VDC Power Supply for the EVB
• RS-232 cable
• Green Hill Probe for debugging
• Desktop PC with serial interface or any USB to serial cable
• SYSTEC USB CAN tool
• USB Cable to the CAN Tool
• DB9 Female to Female Connector to connect CAN Tool to EVB CAN port A
• Personal Computer with XP Operating System (The Host System)

4 BAM Protocol
The BAM provides two different protocols for downloading application program via the ESCI (some Qorivva Devices use
FlexLinD UART mode instead of ESCI) or the CAN interfaces (MPC5746 does not supports BAF over CAN protocol).
These two interfaces support both the fixed baud rate mode and automatic baud rate detection mode (Not all Qorivva devices
support automatic baud rate detection).

BAM Prerequisite

Qorivva Boot Assist Module Application, Rev 1, 06/2013

2 Freescale Semiconductor, Inc.

https://www.microsoft.com
https://www.ghs.com

Let us see how these protocols are formatted, what the fields are and how we can use the protocols to upload application
program to the Qorivva device.

NOTE
To select BAM protocol over eSCI or CAN by simply using the correct interface cable to
connect to that interface and start sending the BAM formatted data to that interface.

4.1 BAM Protocol for Enhanced Serial Communication Interface
(ESCI)

The BAM Protocol for the ESCI is a simple, yet secure, protocol. Although the BAM does not provide data integrity checks,
it echoes back every byte received to the sender. The sender is requested to ensure the echoed byte is correct before sending
the next byte out. If the echoed byte is a mismatch, the sender must terminate the transfer, reset the Qorivva device and
restart the transfer.

4.1.1 ESCI Fixed Baud Rate
The BAM protocol for ESCI fixed baud rate format, shown in Table 1, consists of a Password field, a Start Address field, a
Data Size field and a Data field. The Qorivva devices support both BookE (Classic Power Architecture fixed length code)
and VLE (Variable Length Encoding). Specifying the type of code, Book or VLE, will be explained in the Data Size section.

Table 1. BAM Protocol for ESCI Fixed Baud Rate Format

Password Start Address Data Size Data

4.1.2 ESCI Automatic Baud Rate Detection
The BAM protocol for ESCI automatic baud rate detection, shown in Table 2, has an additional Synchronization Byte field
before the Password field. This Synchronization Byte is used by the BAM hardware to calculate the unknown incoming data
baud rate transmitted by the Host system. The BAM uses this calculated baud rate and apply to the ESCI for subsequent data
communication.

Table 2. BAM Protocol for ESCI Automatic Baud Rate Format

Sync Byte Password Start Address Data Size Data

An additional pull down resistor is also required between the signal pin “EVTO” and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger to verify if the SIU_RSR [ABR] bit is set at address 0xC3F900F for MPC5634M. If
you are using a different device, please refer to your device Reference Manual for correct setting.

4.1.3 ESCI Synchronization Byte Field: 0x00
The Synchronization Byte must be used in automatic baud rate detection. The BAM requires the host to send a
synchronization byte of 0x00 prior to sending the Password. The BAM uses the Synchronization Byte to detect the incoming
data baud rate.

The BAM will not echo the Synchronization Byte.

BAM Protocol

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 3

4.1.4 ESCI Password Field: 8 Bytes
The FLASH password is eight bytes long and is programmed by the factory into the internal shadow flash of the device. The
Public password, however, resides within the BAM and cannot be changed — user can only change the FLASH password. A
valid password must be always programmed in the shadow flash, regardless of which boot mode is used. For a password to
be valid, none of its four 16-bit half words must equal to 0x0000 or 0xFFFF. Please see the specific device reference manual
for more detailed information.

The BAM module will receive and echo the password transmitted by the Host system and compare it with its FLASH or
Public password. If the password is a mismatch, the BAM module will terminate the transaction. If the echoed byte is
mismatched, the sender must terminate the transfer, reset the Qorivva device and restart the transfer.

NOTE
If the FLASH password is corrupted due to the reprogramming of the shadow FLASH,
the Qorivva device will be locked and all access to the Qorivva device will be denied.

4.1.5 ESCI Start Address Field: 32-Bits Word
The Start Address Field serves two purposes. First, it is the starting address at which the BAM will store the application
program from the host. Second, the BAM will jump to the memory location specified by this Start Address Field and
relinquish control to the code after the upload is completed.

4.1.6 ESCI Data Size Field: 32-Bits Word
The Data Size Field tells the BAM the size of application program in bytes. In addition, the most significant bit of this field
(VLE mode bit), if set, tells the BAM that the application program is in variable length encoded (VLE). If the MSB of this
field is clear, the application program is in BookE format.

4.1.7 ESCI Data Field: The Application Program
The Data Field contains application program to be uploaded by the Host system to the Qorivva device via the BAM. The size
of the application program is defined by the Data Size Field.

5 BAM Protocol for Controller Area Network Interface (CAN)
The BAM protocols for ESCI and CAN are similar if you examine how the data is arranged. The only difference is the
format of the hardware interface which is used. The ESCI is byte oriented whereas the CAN interface is block oriented.
Instead of sending data byte by byte using the ESCI, you can send a block of eight bytes of data over the CAN interface.

The BAM only implements standard frame transmission over CAN.

BAM Protocol for Controller Area Network Interface (CAN)

Qorivva Boot Assist Module Application, Rev 1, 06/2013

4 Freescale Semiconductor, Inc.

5.1 CAN Automatic Baud Rate Protocol Detection Message
Format

The BAM protocol for CAN Automatic Baud Rate detection Message Format, shown in Table 3, is used when CAN
Automatic Baud Rate detection mode is configured. This format consists of a message ID field and a message size field.

Table 3. CAN Automatic Baud Rate Message Format

MSG ID MSG Size

5.2 CAN Message Format
The BAM Protocol for CAN Message Format, shown in Table 4, includes a Message ID field, a Message Size field and a
Data field. This CAN Message Format is used to encapsulate the Password Message, the Start Address and Data Size
Message and the Data Message. There are a total of seven message IDs. These IDs are described in detail in the Message ID
CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13.

Table 4. CAN Fixed Baud Rate Message Format

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

5.3 CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13
The BAM protocol for CAN has seven unique Message IDs. Six IDs serves as three pairs for transmit and echo and one
Message ID is used to inform the Qorivva device that a Synchronization Message is encapsulated for CAN automatic baud
rate detection. Please see the Message IDs as tabulated in Table 5.

Table 5. BAM Protocol for CAN Message ID

ID Description

0x00 Automatic Baud Rate Detection Message ID send by the host

0x11 Password Message ID send by the host

0x01 Password Message ID echo by the BAM

0x12 Start Address and Data Size Message ID send by the host

0x02 Start Address and Data Size Message ID echo by the BAM

0x13 Data Message ID send by the host

0x03 Data Message ID echo by the BAM

BAM Protocol for Controller Area Network Interface (CAN)

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 5

5.4 CAN Synchronization Message
The Synchronization Message, shown in Table 6, must be used in CAN Automatic Baud Rate detection. The BAM requires
the host to send a Synchronization Message with a message ID of 0x00 and a message size of 0x00 prior to sending the
Password Message. The BAM uses this message to detect the incoming data baud rate.

Table 6. BAM Protocol for CAN Synchronization Message

MSG ID MSG Size

The Qorivva Device will not echo the Synchronization message.

5.5 CAN Password Message
Please refer to ESCI Password Field: 8 Bytes for FLASH and Public Password.

The Password Message, shown in Table 7, has a message ID of 0x11 and a message size of eight follows by the eight bytes
of password. For this example, the password is “FEEDFACECAFEBEEF.”

Table 7. BAM Protocol for CAN Password Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x11 0x08 0xFE 0xED 0xFA 0xCE 0xCA 0xFE 0xBE 0xEF

PASSWORD

Table 8. Qorivva Device Echoes CAN Password Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01 0x08 0xFE 0xED 0xFA 0xCE 0xCA 0xFA 0xBE 0xEF

PASSWORD

The Qorivva Device will echo the Password Message, shown in Table 8, with an ID of 0x01.

5.6 CAN Start Address and Data Size Message
The Start Address and Data Size Message, shown in Table 9, has a message ID of 0x12 and a message size of eight followed
by the Start Address on the first four bytes and the Data Size on the lower four bytes. For this example, the Start Address is
0x40000000 and the Data Size is 0x1400.

Table 9. BAM Protocol for CAN Start Address and Data Size Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x12 0x08 0x40 0x00 0x00 0x00 0x00 0x00 0x14 0x00

Address VLE + Data Size

BAM Protocol for Controller Area Network Interface (CAN)

Qorivva Boot Assist Module Application, Rev 1, 06/2013

6 Freescale Semiconductor, Inc.

In addition, the most significant bit of Date Size (MSB of Byte 4, the VLE mode bit) if set, tells the BAM that the application
program is in variable length encoded (VLE). If the VLE mode bit is clear, the application is in BookE format. For this
example, the application program is in BookE format.

Table 10. Qorivva Device Echoes Start Address and Data Size Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x02 0x08 0x40 0x00 0x00 0x00 0x00 0x00 0x14 0x00

Address VLE + Data Size

The Qorivva Device will echo the Start Address and Data Size Message, shown in Table 10, with an ID of 0x02.

5.7 CAN Data Message
The Data Message, shown in Table 11, has a message ID of 0x13 and a message size of eight bytes or less is a target specific
application program that you want to send to the Target system. The size of the application program is defined in the Start
Address and Data Size message in the Date Size.

The Host application must send multiple data messages (If the defined data size is greater than eight bytes) up to the size
defined in the Data Size field.

Table 11. BAM Protocol for CAN Data Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x13 0x08 Qorivva Application Code

Table 12. Qorivva Device Echoes Data Message

MSG ID MSG Size Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x03 0x08 Qorivva Application Code

The Qorivva Device will echo the Data Message, shown in Table 12, with an ID of 0x03.

6 BAM Qorivva Device Specific Application Program
By now, you are familiar with the BAM Protocol formats over ESCI and CAN interfaces. We still need a BAM Qorivva
Device specific application program to be transferred to the Target system. This device specific application program must
have the following features as appended so that the uploaded application program can be successfully executed in the Target
system. Here are the features.

• The application program must execute from RAM
• The application program must NOT initialize RAM space occupied by the application program (this is like erasing the

application program)
• The application program must initialize all the RAM space allocated for data and stack immediately after the BAM

relinquished control to the application program.
• The application program image must be contiguous – any space in between the fragments of codes must be filled with

bytes. The bytes content can be of any value.
• The application program must execute from the beginning of the RAM image.

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 7

This application note explains how to build the BAM Qorivva Device Specific Application Program using Green Hills
MULTI Assembly and C programming language.

6.1 Building a RAM Application for BAM
Green Hills Compiler is used to illustrate this example. Create a “Standalone RAM” project using the project wizard with
“Startup Libraries” as shown in Figure 1.

Figure 1. Startup Libraries Option

Once the project is created, modify the program to provide a simple blinking LED function. Then compile and run the
program and make sure it execute correctly.

6.2 Modify Linker File
Next, we are going to modify the linker file. Open the “standalone_ram.ld” linker file and modify the following section,
shown in Figure 3 and append two markers at the end of the linker file.

In the “MEMORY” section make the following changes.

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

8 Freescale Semiconductor, Inc.

Figure 2.

In the “DEFAULTS” section make the following changes.

Figure 3. Memory Map

End of the linker file is appended by these two markers, shown in Figure 4. These two markers will provide the start address
and the ending address where the SRAM needs to be initialized.

Figure 4. Memory Region Markers

After you have done all the above, compile the program and make sure it still executes as expected. If not, back track and
correct the error and repeat the process.

6.3 Modify the C Runtime File
Finally, we need to add a minimum initialization code to the CRT file “crt0.ppc” (C RunTime) resident in the “tgt\libstartup”
directory so that the RAM Application can execute successfully via the BAM upload. Open the “crt0.ppc” file with an editor
and locate the code fragment in this file as appended in Figure 5.

Once you have located the code fragment, insert the initialization code listed in Figure 6 between the “addic” opcode and the
macro “#endif /* PPC64 */” flow control statement.

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 9

Figure 5. Code Fragment in crt0.ppc

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

10 Freescale Semiconductor, Inc.

Figure 6. Initialization Code

The initialization code disables the core and software watchdogs, enable the BTB (Branch Target Buffer), initializes the
portion of internal SRAM not occupied by the RAM Application code. We also need to define the “SWT_CR” at the
beginning of the “crt0.ppc” file as shown in Figure 7.

Figure 7. Software Watchdog Control Register

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 11

6.4 Generate image file
A common question is if we can use the S-Record (ASCII-Hex-Space format) or ELF (Executable and Linkable Format) file
instead of a ram image file. It is possible to use, however, using S-Record or ELF files requires more complex software to
convert the application program into a contiguous RAM image file. Application program in S-Record and ELF file formats
are stored in sections and the sections may not be contiguous.

We are almost ready to test if the RAM Application works over BAM. Before we do that, we need the compiler to help us
generate a memory image of the RAM Application. Let me show you how to configure the compiler to produce a memory
image of your application program.

Go to the Project Window and right click at the “bamappl.prj: Program” and choose the “Set Build Options.” A window will
appear, click on the “Build Options in Category:” and choose the “Generate Additional Output” and change its “Value” to
“Memory Image File” as shown in Figure 8. When you have done that, click the “Done” button on the bottom right to close
the window. Recompile the project and the compiler will produce an additional file namely, “bamappl.mem.”

Figure 8. Generate RAM Image File

Some compilers like the Green Hills MULTI generate SPE code by default. If this is the case, you have two options to ensure
that your RAM Application works (Most of Qorivva devices support SPE, please refer to your device RM). One, enable your
device SPE feature with the appended code as shown in Figure 9.

Two, configure your compiler not to generate SPE codes as shown in Figure 10.

Figure 9. Enable SPE

BAM Qorivva Device Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

12 Freescale Semiconductor, Inc.

Figure 10. Disable SPE Code Generation

Now we are ready to upload this application via the BAM to our Target system. If everything works, we should see four
LEDs blinking in binary counting order. Please see Appendix1 for the source code of this application program. For a copy of
this project, please contact your Freescale Sales Representative.

7 BAM Host Specific Application Program
At this stage, you have learned the BAM protocols over ESCI and CAN interfaces. You also learned how to create a BAM
Qorivva Specific Application Program and how to generate image file using the compiler. What we are short of is a delivery
system program, the BAM Host Specific Application Program.

The BAM Host Specific Application Program is an application program running in the host system that is capable of
uploading the Qorivva Device Specific application program to the Target system (Qorivva device) via the ESCI or CAN
interface using the BAM protocol.

Before we talk about the minimum implementation of the BAM Host Specific Application Program, let me show you how
the Host system and the Target system data transaction sequences over the ESCI and the CAN interfaces work so that we can
picture what is the minimum implementation we need for the BAM Host Specific Application Program.

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 13

These two sequences are given in two ladder diagrams, one for the ESCI and one for the CAN respectively.

7.1 ESCI and Host Data Transaction Sequence
Figure 11. ESCI Ladder Diagram

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

14 Freescale Semiconductor, Inc.

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 15

Figure 11 shows the transaction sequence between the Target system ESCI and the Host system RS232 port with the
following parameters and a detail explanation in Table 13.

Table 13. ESCI and Host Transaction Sequence

Description Value Remarks

Synchronization Byte 0x00 Host sends this byte only if automatic
baud rate detection is configured (See
4.1.3). If fixed baud rate is configured,
user must NOT send this byte.

The Qorivva Device will NOT echo
this byte.

Password 0xFE, 0xED, 0xFA,

0xCE, 0xCA, 0xFE,
0xBE and 0xEF

After the Synchronization Byte (Only in
automatic baud rate detection mode),
the Host will transmit the password byte
by byte starting with 0xFE and end with
0xEF.

The Qorivva Device will echo every
byte it received from the Host.

Start Address 0x40, 0x00, 0x00 and 0x00 After the Password, the Host will
transmit the Start Address starting with
0x40 and end with 0x00 (The Start
Address is 0x40000000).

The Qorivva Device will echo every
byte it received from the Host.

Data Size 0x80, 0x00, 0x14 and 0x00 After the Start Address, the Host will
transmit the Data Size starting with 0x80
and end with 0x00 (The Data Size is
0x80001400). The most significant bit
set on the Data Size indicates that the
application program is in VLE mode. The
size of the application program is
0x1400 or 5120 bytes.

The Qorivva Device will echo every
byte it received from the Host.

Data Byte 0…Byte N-1 After the Data Size, the Host will
transmit the Data, application program.
The size of the Data is defined in the
Data Size field.

The Qorivva Device will echo every
byte it received from the Host. If the
Qorivva Device has received the
number of bytes as defined in the
Data Size Field, the BAM will
relinquish control to the application
program by executing a jump
command to the memory location
defined by the Start Address Field.

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

16 Freescale Semiconductor, Inc.

7.2 CAN and Host Data Transaction Sequence
Figure 12. CAN Ladder Diagram

Figure 12 shows the transaction sequence between the CAN and a CAN tool connected to the Host computer with the
following parameters and a detail explanation in Table 14.

Table 14. CAN and Host Transaction Sequence

Description ID Size Data Remarks

Synchronization
Message

0x00 0x00 - Host transmits this
Synchronization
Message only if
automatic baud rate
detection is configured
(See 4.2.4). If fixed
baud rate is configured,
user must NOT send
this Message.

The Qorivva Device
will not echo this
Message.

Password Message 0x11 0x08 0xFE, 0xED, 0xFA,
0xCE, 0xCA, 0xFE,
0xBE and 0xEF

After the
Synchronization
Message (Only in

Table continues on the next page...

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 17

Table 14. CAN and Host Transaction Sequence (continued)

Description ID Size Data Remarks

automatic baud rate
detection mode), the
Host will transmit the
Password Message to
the Qorivva Device.

Device Echoes 0x01 0x08 0xFE, 0xED, 0xFA,
0xCE, 0xCA, 0xFE,
0xBE and 0xEF

The Qorivva Device will
echo the Message it
received from the Host.

Start Address and Data
Size Message

0x12 0x08 0x40, 0x00, 0x00, 0x00,
0x80, 0x00, 0x14 and
0x00

After the Password
Message, the Host will
transmit the Start
Address and Data Size
Message to the Qorivva
Device (Start Address:
0x40000000, Data Size:
0x1400 and VLE
mode).

Device Echoes 0x02 0x08 0x40, 0x00, 0x00, 0x00,
0x80, 0x00, 0x14 and
0x00

The Qorivva Device will
echo the Message it
received from the Host.

Data Message 0x13 0x08 Byte 0…Byte 7 After the Start Address
and Data Size
Message, the Host will
transmit the Data of
size defined in the Data
Size field.

Device Echoes 0x03 0x08 Byte 0…Byte 7 The Qorivva Device will
echo the Message it
received from the Host.

This process will
repeat step 6 and 7
until all the data is
transmitted to and
received from the
Qorivva Device. If
the Qorivva Device
has received the
number of bytes as
defined in the Data
Size Field, the BAM
will relinquish control
to the application
program by
executing a jump
command to the
memory location
defined by the Start
Address Field.

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

18 Freescale Semiconductor, Inc.

7.3 Minimum Implementation of the Host Program
If we analyze these two ladder diagrams Figure 11 and Figure 12, it is clear that we only need three software routines to
perform the actual transfer of application program to the Target system. Additionally, we need other software constructs and
components to build this application. Let us look at the appended code fragment as shown in Figure 13.

In automatic baud rate detection mode, the WriteChar routine sends a synchronization byte to the BAM. This routine is
appropriate because it only transmits a byte. The WriteVerifyChar routine transmits the password, start address, and data
size. It reads the data from the RAM and verifies what it sends with the echoed byte, to ensure data integrity. If there is any
disparity, this method will terminate the session immediately. Finally, WriteVerifyFileChar, this routine is similar to the
WriteVerifyChar method with the exception that it reads the data from a file.

The routines shown in Figure 13 are applicable for transferring application program to the Target system via ESCI. If you
modify these routines so that it can load one to eight bytes of data, and encapsulates the data in a CAN message, you have a
delivery system over the CAN interface.

The BAM Host Specific Application Program has been created, using the above models, the Enhanced Serial Loader (eSL)
using Visual C++ Express 2010. The eSL is a BAM specific application program on the Host system that understands the
BAM Protocol. The eSL implements BAM protocol over ESCI, two CAN tools (iTAS and SysTech) and CAN tool using the
EVB CAN port (Software is implemented using Green Hills MULTI). The eSL also implements Qorivva BAM emulation for
testing BAM Host application. We will use the eSL as our Host program for this application note.

Figure 13. Transfer SRAM Image Routine

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 19

Figure 14. Enhanced Serial Loader Command Line Options

Figure 14 shows the command line option of eSL. For more information on eSL and a copy of eSL, please contact your
Freescale Sales Representative.

7.4 Test the BAM Specific Applications
Before we test our implementations, we need to know how to setup the system for test. Here are the steps you need for
different configuration, please see Table 15. This example uses the MPC5634M device.

Table 15. Test Setup

Configuration Description Remarks

ESCI Connect the RS232 to the Host COM
port (or USB port if you are using a USB-
to-Serial cable) and Target system ESCI
0.

Connect power to the EVB

All ESCI configurations

BAM only supports ESCI 0

ESCI Fixed Baud Rate The BAM ESCI baud rate for the
MPC5634M is calculated using the
following equation: Baud Rate = fsys /
832

The EVB used in this application note
has an 8Mhz crystal, hence the baud
rate is 9600 with one start bit and one
stop bit.

Table continues on the next page...

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

20 Freescale Semiconductor, Inc.

Table 15. Test Setup (continued)

Configuration Description Remarks

Rate ESCI Automatic Baud An additional pull down resistor is also
required between the signal pin “EVTO”
and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger
to verify if the SIU_RSR [ABR] bit is set.

Please see Table 5 for maximum and
minimum baud rate supported.

eSL for ESCI eSL –c 4 –b 9600 –p
FEEDFACECAFEBEER – a 40000000 –
r bamappl.mem

 eSL –x 1 –c 4 –p
FEEDFACECAFEBEER – a
40000000 – r bamappl.mem

Starts eSL for ESCI fixed baud rate

Starts eSL for ESCI automatic baud rate

CAN Connect the CAN Tool to Host system
USB port and the Target system CAN A
port.

Connect power to the EVB

All CAN configurations

BAM only supports CAN A.

CAN Fixed Baud Rate The BAM CAN baud rate for the
MPC5634M is calculated using the
following equation: Baud Rate = fsys / 40

The fixed baud rate for the CAN is
200bits/s.Refer to Table 6 for more
detail.

CAN Automatic Baud Rate An additional pull down resistor is also
required between the signal pin “EVTO”
and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger
to verify if the SIU_RSR [ABR] bit is set.

Refer to Table 5 for maximum and
minimum baud rate supported.

eSL for CAN eSL –c 4 –B 0307 –p
FEEDFACECAFEBEER – a 40000000 –
r bamappl.mem

eSL –x 1 –c 4 –p
FEEDFACECAFEBEER – a
40000000 – r bamappl.mem

Starts eSL for CAN fixed baud rate. The
– B is the SysTech CAN bit rate setting.
This will set the bit rate 200Kbit/s.

Starts eSL for CAN automatic baud
rate.

Table 16. Maximum and Minimum Detectable Baud Rates

fsys = fxtal [MHz] Max baud rate for
CAN (fsys/8)[bit/s]

Min CAN baud rate
(fsys/(25 * 256) [bit/s]

Max baud rate for SCI
(fsys/160) [bit/s]

Min baud rate for SCI
(fsys/(16*2^16) [bit/s]

8 1M 1250 50K 7.6

On CAN fixed baud rate mode, the BAM configures the Target system (Qorivva device, MPC5634M) baud rate to 200Kb/s
based on the equation provided in Table 16. This is correct; however, the actual configuration under the hood is a little more
complex. It is important to know this so that you can try to use the same setting to setup your CAN tool if possible for better
reception. The BAM divides the system clock frequency by 4 by setting the Prescaler Division Factor in the CAN control
register to achieve a 2 MHz CAN clock. This 2 MHz clock is further divided down to 200Kb/s as shown in Table 17.

Table 17. CAN Bit Timing for Fixed Baud Rate

SYNC_SEG TIME SEGMENT 1 TIME SEGMENT 2

1 Time Quanta 7 Time Quanta 2 Time Quanta

PROSEG=4+1 PSEG1=1+1 PSEG2=1+1

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 21

After you have setup the systems based on the configuration in Table 15, open a command Window in the Host system. This
application is built to run on Microsoft XP Windows Operating System. and Window 7. Click on the “Start” button on
bottom left of the status bar and choose the option “Run…” A window will pop up and type in “cmd” and enter. A command
window will appear. Start eSL with the following parameter as shown in Table 15. Power on the EVB and choose “2)
Transfer SRAM Image Now!”

Figure 15 shows eSL has successfully uploaded the RAM Application to the EVB via ESCI interface and Figure 16 shows
the upload via the CAN interface.

Figure 15. Uploading the RAM Application to the EVB via the ESCI

NOTE
If you are using a USB-to-Serial cable, the data transfer will not go any faster even if you
increase the baud rate of the transfer (In Automatic Baud Rate Detection mode). This is
due to the slow USB host polling rate. Depending on the Operating System that you are
using, it can be as low as 8ms or 125Hz. There are ways to overcome this problem. One
of the ways to overcome this problem is to transfer a block of data equal to the size of the
USB buffer and read back the echoed block and compare for data integrity.

BAM Host Specific Application Program

Qorivva Boot Assist Module Application, Rev 1, 06/2013

22 Freescale Semiconductor, Inc.

Figure 16. Uploading the RAM Application to the EVB via the CAN

8 Summary
Not all Qorivva devices support automatic baud rate detection and CAN interface. Also, in the MPC57XX Qorivva devices, a
similar module known as the Boot Assist Flash (BAF) also provides the same BAM protocol for ESCI and CAN. Some
Qorivva devices use FlexLinD UART mode instead of ESCI.

If you have any question, please contact your local FAE or visit our website at freescale.com for more information.

9 Appendix 1: BAM Qorivva Specific Application Source
Code

MAIN.C
/*
 * LICENSE:
 * Copyright (c) 2012 Freescale Semiconductor
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice
 * shall be included in all copies or substantial portions
 * of the Software.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

Summary

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 23

https://www.freescale.com

 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Composed By: Sim, Mong Tee
 * Dated : July 25, 2012
 * Compiler : Green Hill Multi
 *
 * Objective : This application program is intended for Freescale customer
 * who one way or the other would like to tap the power of the
 * BAM feature presents in the Freescale PPC products line
 *
 * Addendum : This microcontroller specific program to be used
 * in conjunction with the Serial Loader (VC++ Express) written
 * by me. Application note for this application can be found at
 * Freescale website or you can request from your area FAE
 *
 */

#include "boardport.h"

//---
// MAIN
//---
void main(void)
{
 uint32_t stmElapseTime = 0;
 uint32_t stmStartTime = 0;
 uint8_t cntLED = 0;

 STM_init(STM_CLOCK); //setup the clock for the system time module
 LED_init(); //init the GPIO that drives the LED

 while(1)
 {
 while(stmElapseTime > (0.25*STM_sec)) // set a quarter second
 {
 stmStartTime = STM_read(); // start new time for next
 LED_count(cntLED++); // LEDs count
 stmElapseTime = 0;
 cntLED &= 0x0F;// we only have 4 LEDs
 }

 stmElapseTime = STM_elapse(stmStartTime);
 }

}

MLED.C

#include "boardport.h"

#ifdef __cplusplus
extern "C" {
#endif
//---
// LED_init function
//---
void LED_init(void)
{

 SIU.PCR[PLED0].R = GPIO_OP; // init all the GPIO
 SIU.PCR[PLED1].R = GPIO_OP; // that are connected to the
 SIU.PCR[PLED2].R = GPIO_OP; // LEDs on the EVB
 SIU.PCR[PLED3].R = GPIO_OP;

Appendix 1: BAM Qorivva Specific Application Source Code

Qorivva Boot Assist Module Application, Rev 1, 06/2013

24 Freescale Semiconductor, Inc.

 SIU.GPDO[PLED0].R = 1;
 SIU.GPDO[PLED1].R = 1;
 SIU.GPDO[PLED2].R = 1;
 SIU.GPDO[PLED3].R = 1;
}

//---
// LED_count function
//---
void LED_count(uint8_t state)
{
 SIU.GPDO[PLED0].B.PDO = (state & 0x01) ? 0 : 1; // On or Off individual
 SIU.GPDO[PLED1].B.PDO = (state & 0x02) ? 0 : 1; // based on the value in
 SIU.GPDO[PLED2].B.PDO = (state & 0x04) ? 0 : 1; // state
 SIU.GPDO[PLED3].B.PDO = (state & 0x08) ? 0 : 1;
}

…

#ifdef __cplusplus
}
#endif

STM.C
#include "boardport.h"

#ifdef __cplusplus
extern "C" {
#endif

//---
// STM_init
//---
void STM_init(uint32_t STM_CR)
{
 STM_CR = 0x00000001 | (STM_CR << 8); //do not stop in debug mode
 //STM_CR = 0x00000003 | (STM_CR << 8); //stop in debug mode
 STM.CR.R = STM_CR;
}

//---
// STM_read
//---
uint32_t STM_read(void)
{
 return STM.CNT.R; //read current counter value
}

//---

//---
// STM_elapse - Non-block function
//---
uint32_t STM_elapse(uint32_t BeginTime)
{
 uint32_t CurrTime = 0;
 uint32_t DiffTime = 0;
 CurrTime = STM.CNT.R;
 if (BeginTime > CurrTime)
 {
 DiffTime = (0xFFFFFFFF - BeginTime) + CurrTime; // If overflow
 }
 else
 {

Appendix 1: BAM Qorivva Specific Application Source Code

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 25

 DiffTime = CurrTime - BeginTime; // within range
 }

 return DiffTime; // return the elapse time

}

…

#ifdef __cplusplus
}
#endif

BOARDPORT.H
#ifndef __BOARDPORT_H_
#define __BOARDPORT_H_

#include <string.h>

//---
// System Clock setting resident in init.s

#define MHz 1000000
#define SYSCRYSTAL 8*MHz
#define SYSCLK SYSCRYSTAL

#define MPC5634M_EVB 1
#define MPC5674F_EVB 0
#define MPC5643L_EVB 0

#define ESCI_PORT 0
#define CAN_PORT 0
#define PIT_MOD 0

#include "typedefs.h"
#include "typedefs_UINT8.h"

#if MONACO_EVB
#include "MPC5634M_MLQB80.h"
#endif

#include "stm.h"
#include "mled.h"

#if ESCI_PORT
#include "serial.h"
#endif

#if CAN_PORT
#include "can.h"
#endif

#if PIT_MOD
#include "pit.h"
#endif

#endif // __BOARDPORT_H_

MLED.H
#ifndef __MLED_H__
#define __MLED_H__

#include <stdint.h>

#if MPC5643L_EVB

#define GPIO_OP 0x028c //as output
#define GPIO_IP 0x018c //as input

Appendix 1: BAM Qorivva Specific Application Source Code

Qorivva Boot Assist Module Application, Rev 1, 06/2013

26 Freescale Semiconductor, Inc.

 #define PLED052
 #define PLED153
 #define PLED254
 #define PLED355

#endif

#if MPC5674F_EVB

#define GPIO_OP 0x028c //as output
#define GPIO_IP 0x018c //as input

 #define PLED0179
 #define PLED1180
 #define PLED2181
 #define PLED3182

#endif

#if MPC5634M_EVB

#define GPIO_OP 0x028c //as output
#define GPIO_IP 0x018c //as input

 #define PLED0188
 #define PLED1189
 #define PLED2190
 #define PLED3191

#endif

#define DLED0 0
#define DLED1 1
#define DLED2 2
#define DLED3 3

#define DLED_ON 1
#define DLED_OFF 2

void LED_init (void);
void LED_count (uint8_t state);
void LED_toggle (uint8_t whichLED);
void LED_onoroff (uint8_t whichLED,uint8_t ledState);

#endif

STM.H
#ifndef __STM_H__
#define __STM_H__

#include <stdint.h>
//---
// STM API
//---
#define STM_CLOCK SYSCLK
#define STM_START 1
#define STM_ELAPSE 0
#define STM_us 1
#define STM_ms 1000
#define STM_sec 1000000

#define STM_VECT200 200
#define STM_VECT201 201

Appendix 1: BAM Qorivva Specific Application Source Code

Qorivva Boot Assist Module Application, Rev 1, 06/2013

Freescale Semiconductor, Inc. 27

#define STM_IRQ0 0
#define STM_IRQ1 1
#define STM_IRQ2 2
#define STM_IRQ3 3

void STM_init (uint32_t STM_CR);
uint32_t STM_read (void);
uint32_t STM_elapse (uint32_t BeginTime);
void STM_delay (uint32_t delay);

void STM_clearCCR (uint32_t ch);
void STM_clearAllCCR (void);
void STM_setCCR (uint32_t ch);
void STM_setAllCCR (void);
void STM_setCMP (uint32_t ch,uint32_t ticks);
void STM_setAllCMP (uint32_t ch0,uint32_t ch1,uint32_t ch2,uint32_t ch3);
void STM_setIRQ (uint32_t ch);
void STM_setAllIRQ (void);

void STM_initISR0 (uint32_t nextTrigger0);
void STM_initISR1 (uint32_t nextTrigger1);
void STM_initISR2 (uint32_t nextTrigger2);
void STM_initISR3 (uint32_t nextTrigger3);
void STM_initISR123 (uint32_t nextTrigger1,uint32_t nextTrigger2,uint32_t
nextTrigger3);

#endif // _STM_H_

Appendix 1: BAM Qorivva Specific Application Source Code

Qorivva Boot Assist Module Application, Rev 1, 06/2013

28 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and

software implementers to use Freescale products. There are no express

or implied copyright licenses granted hereunder to design or fabricate

any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to

any products herein. Freescale makes no warranty, representation, or

guarantee regarding the suitability of its products for any particular

purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or

incidental damages. “Typical” parameters that may be provided in

Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer

application by customer's technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/

SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior,

ColdFire, ColdFire+, C-Ware, Energy Efficient Solutions logo, Kinetis,

mobileGT, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,

Symphony, and VortiQa are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, CoreNet,

Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorIQ

Qonverge, QUICC Engine, Ready Play, SafeAssure, SafeAssure logo,

SMARTMOS, Tower, TurboLink, Vybrid, and Xtrinsic are trademarks of

Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number AN4674
Revision 1, 06/2013

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Introduction
	BAM Prerequisite
	Programming Language Prerequisite
	BAM Protocol
	BAM Protocol for Enhanced Serial Communication Interface (ESCI)
	ESCI Fixed Baud Rate
	ESCI Automatic Baud Rate Detection
	ESCI Synchronization Byte Field: 0x00
	ESCI Password Field: 8 Bytes
	ESCI Start Address Field: 32-Bits Word
	ESCI Data Size Field: 32-Bits Word
	ESCI Data Field: The Application Program

	BAM Protocol for Controller Area Network Interface (CAN)
	CAN Automatic Baud Rate Protocol Detection Message Format
	CAN Message Format
	CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13
	CAN Synchronization Message
	CAN Password Message
	CAN Start Address and Data Size Message
	CAN Data Message

	BAM Qorivva Device Specific Application Program
	Building a RAM Application for BAM
	Modify Linker File
	Modify the C Runtime File
	Generate image file

	BAM Host Specific Application Program
	ESCI and Host Data Transaction Sequence
	CAN and Host Data Transaction Sequence
	Minimum Implementation of the Host Program
	Test the BAM Specific Applications

	Summary
	Appendix 1: BAM Qorivva Specific Application Source Code

