
1 Overview
This application note discusses important considerations and
guidelines for implementing in-software flash programming
on Kinetis and ColdFire+ MCUs. The methods described
provide a means to perform in-software flash programming on
devices with a single flash block or devices that do not allow
memory reads while writes are occurring within the same
block.

The techniques described are utilized in the Kinetis 100 MHz
sample code. Also, the examples provided in this application
note use the TFS Flash Driver Software for Kinetis and
ColdFire+ MCUs. See References section for details.

The examples provided in the application note support:

• IAR Embedded Workbench 6.40
• Freescale CodeWarrior 10.2/10.3 with Freescale

compiler
• Freescale CodeWarrior 10.3 with GCC compiler

Any other development environment must be able to support
the methods described.

Contact IAR (iar.com) or Freescale CodeWarrior
(freescale.com/CodeWarrior) for additional help and
support.

Freescale Semiconductor Document Number:AN4695

Application Note Rev. 0, 04/2013

Avoiding Read While Write Errors
When Developing In-Software
Flash Programming Applications
for Kinetis and ColdFire+ MCUs
by: Chris Brown, Maclain Lobdell, and Melissa Hunter

© 2013 Freescale Semiconductor, Inc.

Contents

1 Overview..1

2 Introduction: In-software flash
programming...2

3 Procedure...4

4 Size of RAM function...4

5 Using the C90TFS Flash Driver Software
for Kinetis and ColdFire+ Microcontrollers.5

6 Instructions for creating a RAM
function..5

7 References...10

http://www.iar.com
http://www.freescale.com/codewarrior

2 Introduction: In-software flash programming
Many applications require the storage of data into non-volatile memory while in operation. The ability to erase/reprogram
embedded flash memory in-software enables the use of a bootloader to upgrade the application software or the capability to
securely store valuable data.

Embedded flash memory is grouped into blocks. Each block contains the circuitry required to read, erase, and program within
that block. Most of the flash memory technologies have a limitation of not allowing read operations at the same time as an
erase or program operation is occurring within the same block. Thus, erasing/programming a sector is not allowed if code
execution (fetching instructions = reading) is taking place within the same block even if the read is in a different flash sector
than the erase/program. This is called a Read While Write (RWW) violation and will result in a Read Collision error on
Kinetis and other microcontrollers.

To determine whether or not there is a potential for a Read While Write violation, consult the Flash Memory Configuration
section of the Chip Configuration Chapter for a specific part and/or the *.map file of the program. The Flash Memory
Configuration section contains a table that correlates the specific part numbers to the amount of flash memory, flash blocks,
and locations of the flash blocks. An example of such a table is given below.

Device Program
flash (KB)

Block 0 (P-
Flash) address

range

FlexNVM
(KB)

Block 1
(FlexNVM/P-

Flash address
range

FlexRAM
(KB)

FlexRAM
address range

MK60DN256ZVLQ10 256 0x0000_0000 –
0x0001_FFFF

– 0x0002_0000 –
0x0003_FFFF

– N/A

MK60DX256ZVLQ10 256 0x0000_0000 –
0x0003_FFFF

256 0x1000_0000 –
0x1003_FFFF

4 0x1400_0000 –
0x1400_0FFF

MK60DN512ZVLQ10 512 0x0000_0000 –
0x0003_FFFF

– 0x0004_0000 –
0x0007_FFFF

– N/A

MK60DN256ZVMD10 256 0x0000_0000 –
0x0001_FFFF

– 0x0002_0000 –
0x0003_FFFF

– N/A

MK60DX256ZVMD10 256 0x0000_0000 –
0x0003_FFF

256 0x1000_0000 –
0x1003_FFFF

4 0x1400_0000 –
0x1400_0FFF

MK60DN512ZVMD10 512 0x0000_0000 –
0x0003_FFF

– 0x0004_0000 –
0x0007_FFFF

– N/A

The *.map file will list the locations of all of the functions of the program being used. Through this file, the user can know
the location where flash programming function is stored as well as any other functions that may be pertinent to avoiding Read
While Write errors, (that is, interrupt service routines). For help on how to enable a specific tool to produce a *.map file,
consult the help documentation of the specific toolset.

2.1 Avoiding Read While Write violations: Flash command code
The following subsections describe two simple methods to workaround this restriction.

Introduction: In-software flash programming

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

2 Freescale Semiconductor, Inc.

2.1.1 Method 1: Execute flash commands from a separate flash block
The first method is to execute the flash erase/program software subroutines from a different flash block than the one with the
sectors being erased/programmed. This works well if the microcontroller has multiple flash blocks. With multiple flash
blocks, the application can place the flash subroutines in one block and designate all or part of the other block for data
storage.

2.1.2 Method 2: Execute flash commands from SRAM
The second method is recommended for situations when the MCU has only flash block, or the user needs to erase/reprogram
within each available block. In these scenarios, the critical parts of the flash subroutines are moved into SRAM for execution.
Thus, the Read While Write condition on the flash is avoided.

2.2 Avoiding Read While Write violations: ISR code
If an interrupt occurs during a flash erase/program operation, the Read While Write restriction will be violated if the interrupt
service routine (ISR) code is located in the same flash block as the erase/program operation is occurring on.

This situation can be avoided with three possible options:
• The first option is to disable/enable interrupts before/after the flash command operation. If interrupts are disabled, any

interrupt that occurs during the flash operation will be pending when interrupts are re-enabled.
• The second option is to ensure that the ISR code is never in the same block as in-software flash erase/programming is

performed.
• The third option is to relocate the expected ISR into RAM for the duration of the erase or program time. See

Instructions for creating a RAM function for more details on how to create a RAM function.

2.3 What this application note demonstrates
This application note shows how to create RAM functions for executing flash commands in RAM using two Integrated
Development Environments, Freescale CodeWarrior and IAR Embedded Workbench. The examples are based on C90TFS
Standard Flash Software Drivers for Kinetis and ColdFire+ Microcontrollers, but the concepts apply to other Freescale
microcontrollers and software as well. Examples of the RAM function methods can be found in the Kinetis 100 MHz sample
code projects. See References section.

2.4 Example application
Consider an example application in which the user wants to erase/reprogram sectors defined by the application as the “data
log region” while executing from the “code execution region”. Both of these regions are within the same flash block (P-Flash
Block 0). To avoid the Read While Write violation of erasing/programming within the same block as code is executing, use a
RAM function to launch the flash commands. This function is copied to SRAM from flash during system initialization.

Introduction: In-software flash programming

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

Freescale Semiconductor, Inc. 3

Figure 1. Use-case example: The application code and data log regions are within the
same flash block (P-flash block 0).

3 Procedure
The application executes from the “code execution region” in P-Flash Block 0. When the application wants to erase/
reprogram a sector in the “data log region”, it first prepares to execute the flash commands by loading the flash registers.

1. Before jumping to SRAM, set the Flash CCOB registers to prepare to launch a flash command.
2. Call an SRAM function which launches the flash command by clearing the CCIF flag, then waits for the CCIF flag to

set, indicating the command is complete.
3. After the command is complete, return from the SRAM function back to flash and continue code execution.

Figure 2. Code Execution: Code execution jumps from flash, to SRAM, and then back to
flash.

4 Size of RAM function
The function presented below to execute flash commands in SRAM (FlashLaunchCommand) takes approximately 16 bytes
of SRAM memory.

Procedure

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

4 Freescale Semiconductor, Inc.

5 Using the C90TFS Flash Driver Software for Kinetis and
ColdFire+ Microcontrollers

The examples in this application note utilize the C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers
from Freescale.

Following are the instructions on how to add C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers into
the project.

1. Add C90TFS driver source/header files into the project.
2. Add C90TFS driver paths to the project settings.
3. Include C90TFS driver header files needed in the user source files that will be accessing the flash commands.
4. In SSD_FTFx.h, be sure the FLASH_DERIVATIVE is set to the right configuration for the specific device being used.

For MD50DN512CMB10 - "N512":
 #define FLASH_DERIVATIVE FTFx_KX_512K_0K_0K_2K_0K
For MK50DX256CMD10 - "X256":
 #define FLASH_DERIVATIVE FTFx_KX_256K_256K_4K_2K_2K

5. Be sure to declare a global structure for the flash information, as given below.

/* Flash driver structure */
FLASH_SSD_CONFIG ftfl_cfg =
 {
 FTFx_REG_BASE, /* FTFx control register base */
 PFLASH_BLOCK_BASE, /* base address of PFlash block */
 PBLOCK_SIZE, /* size of PFlash block */
 DEFLASH_BLOCK_BASE, /* base address of DFlash block */
 DBLOCK_SIZE, /* size of DFlash block */
 EERAM_BLOCK_BASE, /* base address of EERAM block */
 EERAM_BLOCK_SIZE, /* size of EERAM block */
 0, /* size of EEE block */
 DEBUGENABLE, /* background debug mode enable bit */
 NULL_CALLBACK /* pointer to callback function */
 };

6. Then initialize the flash driver by calling the init function.

printf("Initializing Flash Driver: ");
returnCode = pFlashInit(&ftfl_cfg);

7. Finally, the C90TFS Flash Driver Software functions are ready to be used in the application. Here is an example of the
swap function being called:

returnCode = pPFlashSwap(&ftfl_cfg, FLASH_SWAP_INDICATOR_ADDR, SwapCallback,
FlashCommandSequence);

6 Instructions for creating a RAM function

6.1 IAR Embedded Workbench 6.40
1. In the linker file, initialize the .textrw_init and .textrw sections manually, using the code given below.

initialize manually { section .textrw_init };
initialize mnaually { section .textrw };

2. Define and place sections in the linker file.

Using the C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

Freescale Semiconductor, Inc. 5

CodeRelocate is a .textrw_init section placed in ROM. This is a flash section which will store RAM functions to be
copied to RAM when the system initializes.

CodeRelocateRam is a .textrw section placed in RAM. This is a RAM section, which will be the home of RAM
functions after they are copied from flash.

define block CodeRelocate { section .textrw_init };
define block CodeRelocateRam { section .textrw };

place in ROM_region { readonly, block CodeRelocate};

place in RAM_region { readwrite, block CodeRelocateRam,
 block CSTACK, block HEAP };

3. In the software source files, prefix the function prototype with “__ramfunc”. IAR will place this function in the
CodeRelocate section to be copied to CodeRelocateRam.

The C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers utilize a FlashCommandSequence
function for executing all flash commands. This entire function can be placed into SRAM. This is the simplest method
to implement, but it is the least SRAM-efficient. To reduce SRAM usage, just a critical subset can be placed in SRAM.

The following function, just performs the critical steps that need to run from SRAM when launching a flash command.

/* Flash launch command */
__ramfunc UINT32 FlashLaunchCommand (PFLASH_SSD_CONFIG PSSDConfig)
{
 /* clear CCIF bit */
 REG_WRITE(PSSDConfig->ftfxRegBase + FTFx_SSD_FSTAT_OFFSET,
 FTFx_SSD_FSTAT_CCIF);

 /* check CCIF bit */
 while(FALSE == (REG_BIT_TEST(PSSDConfig->ftfxRegBase +
 FTFx_SSD_FSTAT_OFFSET, FTFx_SSD_FSTAT_CCIF)))
 {
 /* wait till CCIF bit is set */
 }
}

4. In the startup initialization source file, reference sections using #pragma directives are shown below.

#pragma section = "CodeRelocate"
#pragma section = "CodeRelocateRam"

5. In the software initialization routine, declare and initialize pointers for various data sections. These pointers are
initialized using values pulled from the linker file.

/* Get addresses for any code sections that need to be copied from ROM to RAM
* The IAR tools have a predefined keyword that can be used to mark individual
* functions for execution from RAM. Add "__ramfunc" before the return type in
* the function prototype for any routines you need to execute from RAM
* instead of ROM. ex: __ramfunc void foo(void);
*/

uint8* code_relocate_ram = __section_begin("CodeRelocateRam");
uint8* code_relocate = __section_begin("CodeRelocate");
uint8* code_relocate_end = __section_end("CodeRelocate");

6. In the startup initialization routine, copy the RAM functions from ROM to RAM.

/* Calculate the number of bytes to copy */
 uint32 n;
 n = code_relocate_end - code_relocate;

 /* Copy functions from ROM to RAM */

 while (n--)
 *code_relocate_ram++ = *code_relocate++;

7. Call the function to launch the flash command from within the FlashCommandSequence function of the C90TFS
flash software drivers. Call the function just after the CCOB registers are loaded and before the error flags are checked.

Instructions for creating a RAM function

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

6 Freescale Semiconductor, Inc.

// CallRAM function to launch command
FlashLaunchCommand (PSSDConfig);

6.2 Freescale CodeWarrior for Microcontrollers v.10.2/10.3 with
Freescale compiler

1. In a header file, define a custom section for relocating code. Use the pragma compiler directive #pragma
define_section to define a section called ".relocate_code".

#pragma define_section relocate_code ".relocate_code" far_abs RX

NOTE
In the Kinetis sample code, this is defined in the file CW.h.

2. The attribute __declspec() is used to specify a storage location for objects. So, prepending functions with
__declspec(relocate_code) will place them into the relocate_code section that was just defined by the
pragma statement.

The user can define a keyword in the header file such as “__relocate_code__” to make an easier-to-read
substitution of this attribute.

#define __relocate_code__ __declspec(relocate_code)
3. In the linker file, insert .relocate_code section in the .data_bss section. The .data_bss section is saved space in

the SRAM for initialized data, but the RAM function can be placed there as well. This section is linked to the SRAM,
but the data is loaded to the flash via a startup routine.

AT(__DATA_ROM) designator.

 .data_bss : AT(__DATA_ROM)
 {
 __DATA_RAM = .;
 *(.data)
 *(.sdata)
 *(.relocate_code)
 *(.relocate_const)
 *(.relocate_data)
 *(.test)
 __DATA_END = .;
 . = ALIGN(0x10);
 __START_BSS = .;
 *(.sbss)
 *(SCOMMON)
 *(.bss)
 *(COMMON)
 __END_BSS = .;
 . = ALIGN(0x10);
 __HEAP_START = .;
__heap_addr= .;
__heap_size = (4 * 1024);
.= . + __heap_size;
 __HEAP_END = .;
 __SP_END = .;
.= . + (1 * 1024);
__BOOT_STACK_ADDRESS = .;
 } > ram

4. In the software source files, prefix the function with the keyword “__relocate code” defined in step 2 or use
__declspec (relocate_code). CodeWarrior will place this function in the relocate_code section.

The C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers utilize a FlashCommandSequence
function for executing all flash commands. This entire function can be placed into SRAM. This is the simplest method
to implement, but it is the least SRAM-efficient. To reduce SRAM usage, just a critical subset can be placed in SRAM.

Instructions for creating a RAM function

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

Freescale Semiconductor, Inc. 7

The following function just performs the critical steps that need to run from SRAM when launching a flash command.

/* Flash launch command function prototype */
extern void FlashLaunchCommand(PFLASH_SSD_CONFIG PSSDConfig);

__relocate_code__
void FlashLaunchCommand (PFLASH_SSD_CONFIG PSSDConfig)
{
/* Flash launch command */

 /* clear CCIF bit */
 REG_WRITE(PSSDConfig->ftfxRegBase + FTFx_SSD_FSTAT_OFFSET,
 FTFx_SSD_FSTAT_CCIF);

 /* check CCIF bit */
 while(FALSE == (REG_BIT_TEST(PSSDConfig->ftfxRegBase +
 FTFx_SSD_FSTAT_OFFSET, FTFx_SSD_FSTAT_CCIF)))
 {
 /* wait till CCIF bit is set */
 }
}

5. In the software initialization source file, bring in symbols from the header file as externs. These symbols define the
sections:

extern uint32 __DATA_ROM[];
extern uint32 __DATA_RAM[];
extern char __DATA_END[];

6. In the software initialization routine, declare and initialize pointers for various data sections. These pointers are
initialized using values pulled from the linker file:

uint8 * data_ram, * data_rom, * data_rom_end;

/* Note data_rom_end is actually a RAM address in CodeWarrior */
data_ram = (uint8 *)__DATA_RAM;
data_rom = (uint8 *)__DATA_ROM;
data_rom_end = (uint8 *)__DATA_END;

7. In a startup initialization routine, copy the contents from DATA_ROM to DATA_RAM.

NOTE
data_rom_end is actually a RAM address in CodeWarrior, so when calculating
the number of bytes to copy, use data_ram instead of data_rom as the starting
point.

/* Calculate the number of bytes to copy */
 uint32 n;
 n = data_rom_end - data_ram;

/* Copy initialized data from ROM to RAM */
 while (n--)
 *data_ram++ = *data_rom++;

8. Call the function to launch the flash command from within the FlashCommandSequence function of the C90TFS
flash software drivers. Call the function just after the CCOB registers are loaded and before the error flags are checked.

// Call RAM function to launch command
FlashLaunchCommand (PSSDConfig);

6.3 CodeWarrior for Microcontroller 10.3 with GCC compiler
1. In a header file, define a custom section for relocating code. Use the __attribute__ declaration specifier to specify

where a function should be placed in memory. The user can define a macro for this attribute as given below.

Instructions for creating a RAM function

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

8 Freescale Semiconductor, Inc.

#define __relocate_code__ __attribute__((section(".relocate_code"), long_call))
2. In the link file, insert .relocate_code section in the .data section:

.data : AT(___ROM_AT)
{
 . = ALIGN(4);
 _sdata = .;
 *(.data)
 (.data)
 *(.relocate_code)
 . = ALIGN(4);
 _edata = .;
} > m_data

3. For program execution to copy the section from ROM to RAM, a link copy table must be defined in the linker file. The
following is an example of such a table:

_romp_at = ___ROM_AT + SIZEOF(.data) + SIZEOF(.user_data2);
.romp : AT(_romp_at) {
 __S_romp = _romp_at;
 LONG(___ROM_AT);
 LONG(_sdata);
 LONG(___data_size);
 LONG(___m_data2_ROMStart);
 LONG(___m_data2_RAMStart);
 LONG(___m_data2_ROMSize);
 LONG(0);
 LONG(0);
 LONG(0);
} > m_data2

NOTE
The startup initialization routine will call the function
__copy_rom_sections_to_ram, that copies the contents from ROM to RAM.

4. In the flash driver source files, declare and define the FlashLaunchCommand function with the keyword
"__relocate_code__". For example:

/* Flash launch command function prototype */
void FlashLaunchCommand(PFLASH_SSD_CONFIG PSSDConfig) __relocate_code__;

void __relocate_code__ FlashLaunchCommand (PFLASH_SSD_CONFIG PSSDConfig)
{
/* Flash launch command */

 /* clear CCIF bit */
 REG_WRITE(PSSDConfig->ftfxRegBase + FTFx_SSD_FSTAT_OFFSET,
 FTFx_SSD_FSTAT_CCIF);

 /* check CCIF bit */
 while(FALSE == (REG_BIT_TEST(PSSDConfig->ftfxRegBase +
 FTFx_SSD_FSTAT_OFFSET, FTFx_SSD_FSTAT_CCIF)))
 {
 /* wait till CCIF bit is set */
 }
}

5. Call the function to launch the flash command from within the FlashCommandSequence function of the C90TFS
flash software drivers. Call the function just after the CCOB registers are loaded and before the error flags are checked.

// Call RAM function to launch command
FlashLaunchCommand (PSSDConfig);

Instructions for creating a RAM function

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

Freescale Semiconductor, Inc. 9

7 References
The following reference materials can be used for this application note.

• KINETIS512_SC: Bare-metal sample code projects for Kinetis 100MHz V1 microcontroller family, available on
freescale.com

• C90TFS_FLASH_DRIVER: TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers, available on
freescale.com

• AN4329: Relocating Code and Data Using the CodeWarrior Linker Command File (LCF), available on freescale.com
• IAR Technical Note 11578: Execute in RAM after copying from flash/ROM (v5.20 and later) , available on iar.com
• IAR Technical Note 75500. Using "__ramfunc" on assembly source (EWARM 5.x & 6.x):, available on iar.com
• Porting Freescale ARM Compiler-based Projects to use ARM GCC (included in the CodeWarrior 10.3 build at

<CodeWarrior root directory >\MCU\Help\PDF\Porting_ARM_GCC.pdf)

References

Avoiding Read While Write Errors When Developing In-Software Flash Programming Applications for
Kinetis and ColdFire+ MCUs, Rev. 0, 04/2013

10 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://supp.iar.com/Support/?note=11578&from=note+17934
http://www.iar.com
http://supp.iar.com/Support/?note=75500&from=note+11578
http://www.iar.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4695
Rev. 0, 04/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

	Overview
	Introduction: In-software flash programming
	Avoiding Read While Write violations: Flash command code
	Method 1: Execute flash commands from a separate flash block
	Method 2: Execute flash commands from SRAM

	Avoiding Read While Write violations: ISR code
	What this application note demonstrates
	Example application

	Procedure
	Size of RAM function
	Using the C90TFS Flash Driver Software for Kinetis and ColdFire+ Microcontrollers
	Instructions for creating a RAM function
	IAR Embedded Workbench 6.40
	Freescale CodeWarrior for Microcontrollers v.10.2/10.3 with Freescale compiler
	CodeWarrior for Microcontroller 10.3 with GCC compiler

	References

