

© Freescale Semiconductor, Inc., 2012, 2013. All rights reserved.

MPC56xxB LCD segment
driver
Driving LCD displays with standard GPIO

by: Viktor Felinger

1 Introduction
MPC56xxB LCD driver is a collection of header and

source files, in the C programming language, that

enables driving of bare twisted nematic (TN) and

super twisted nematic (STN) liquid crystal displays

(LCDs) with multiple backplane electrodes. The

driver is optimized for low cost display driving

solutions and offers two waveform generation

methods:

1. use of GPIO pins and 2 external resistors per

backplane electrode

2. use of GPIO pins and external RC networks to

generate the required waveforms. Based on the

solutions presented in this application note,

customers can deploy MPC56xxB devices as a

cost effective replacement for a

microcontroller with LCD interface or to

completely replace an external LCD

Table Of Contents

MPC56xxB LCD segment driver 1
1 Introduction .. 1
2 Driving TN and STN LCDs Using General Purpose

MPC56xxB Pins ... 2
3 Driver Implementation Using MPC56xxB GPIO, PIT,

DMA and PWM .. 9
4 References ... 16

 MPC56xxB LCD segment driver, Rev. 0

2 Freescale Semiconductor

controller.

For more reference on TN LCDs, refer to AN3219 from http://www.freescale.com

2 Driving TN and STN LCDs Using General
Purpose MPC56xxB Pins
Driving LCDs with a set of general purpose input/output (GPIO) pins on a microcontroller can

result in a very cost effective and flexible solution. The microcontroller load resulting from the

LCD drive is usually relatively low, and the cost of the specialized on-chip or off-chip LCD

controller can be saved. Waveforms for statically driven LCDs require only two discrete voltage

levels (see Figure 1). General purpose outputs of a typical microcontroller can therefore be

connected directly to the LCD. However, statically driven LCDs are not suitable in many

applications because of the high number of connections required, and their associated cost.

Dynamically driven LCDs require more than two voltage levels to be present in the driving

waveforms. In general, these are not trivial to obtain with the simple CMOS I/O structure used in

the general purpose pins of modern microcontrollers. The following two methods present the

ways to obtain additional voltage levels by using several GPIO pins and external network of

passive components.

2.1 Creating Waveforms with Arbitrary Duty and Bias
Ratios

A simple algorithm exists for creating waveforms with any duty and bias ratios. The algorithm is

outlined in a pseudo-C programming language as given below. The voltage levels used by the

algorithm range from 0 (corresponding to the lowest voltage) up to b (corresponding to the

highest voltage). The algorithm does not create any link between the duty factor n and the bias

factor b. This means that it is possible to create waveforms with 1/4 duty ratio and only 1/2 bias

ratio. On the other hand, it is also possible to drive an LCD with only two backplane electrodes

(1/2 duty ratio) with waveforms that make use of many voltage levels (for example, 1/5 bias

ratio).

/* Even refresh cycle */

for (phase=0;phase<n;phase++) {

Drive electrode BPphase to voltage level 0

Drive all other BP electrodes to voltage level b-1

Drive FP electrodes of visible segments to voltage level b

Drive FP electrodes of invisible segments to voltage level b-2

}

/* Odd refresh cycle */

for (phase=0;phase<n;phase++) {

Drive electrode BPphase to voltage level b

Drive all other BP electrodes to voltage level 1

http://www.freescale.com/

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 3

Drive FP electrodes of visible segments to voltage level 0

Drive FP electrodes of invisible segments to voltage level 2

}

 Algorithm for Creating Waveforms with Arbitrary Duty and Bias Ratios

2.2 Waveform generation based on DMA
Waveform generation on a microcontroller without a dedicated LCD interface needs to be driven

either by the main core, a co-processor or a set of modules setup in a way to allow update of

GPIO states based on predefined timing. The waveform generation methods in this application

note are based on a setup comprising of MPC56xxB DMA, PIT, SIUL and eMIOS units

(detailed setup description on following pages). The DMA driven approach has following

advantages as compared to a processor or co-processor solution (refer to AN3219 available from

http://www.freescale.com):

 no code has to be executed during waveform generation

o Advantage: more computing power for the application

 no interrupts for waveform generation

o Advantage: more flexibility for application - no attention has to be paid to

interrupt handling related to LCD interface.

 Accurate Phase and cycle Timing by PIT triggering a linked DMA chain

o Advantage of the above is all timings which need to be considered for waveform

generation are fixed by chip design. This solves the problem of any signal delay

for particular electrode and avoids DC voltage offset between backplanes and

frontplanes.

2.3 Method 1 for waveforms with 1/2 Bias Ratio
In this method, the additional voltage levels can be obtained by using several GPIO pins and/or

external resistor networks. Waveforms with 1/2 bias ratio (see Figure 1)use three voltage levels

for the backplane electrodes, and only two voltage levels for the frontplane electrodes, however

it is possible to extend the driver and use three voltage levels for frontplanes as well. This means

that the frontplane electrodes of the LCD can be connected directly to GPIO pins of the

microcontroller. To keep the duty ratio favorable, dynamically driven LCDs typically feature

more frontplane electrodes than backplane electrodes. Therefore, most LCD electrodes can be

driven directly by the GPIO pins, and only few backplane electrodes require some additional

circuitry.

2.3.1 Voltage levels

The third voltage level required for driving the backplane electrodes with 1/2 bias ratio

waveforms can be obtained conveniently by making use of the input capability of the GPIO pins.

MPC56xxB GPIO pin represents a high impedance load when output and input buffers are

switched off. In such a state, a simple resistor network can be used to determine the voltage level

on the pin. Whenever the GPIO pin is configured as an output, it overdrives the resistor network

and applies a high or low voltage level to the backplane electrode. The resistor arrangement

http://www.freescale.com/

 MPC56xxB LCD segment driver, Rev. 0

4 Freescale Semiconductor

between microcontroller GPIO pins and LCD backplane electrodes and GPIO pin states

(PCR[OBE] – Pad Configuration Output Buffer enable/disable, GPDO – GPIO output register) is

shown in Figure 1.

Figure 1. ½ bias waveform resistor arrangement and GPIO pin states

The values of the resistors should not be <3.3k , because the current needs to be able to charge /

discharge the display capacitance in an acceptable rise/ fall time to avoid contrast problems.

The voltage level imposed by the resistive divider will be influenced only by leakage currents of

the microcontroller and the LCD, which are typically in the low μA range, or lower. Another

factor influencing the choice of values for the resistors is the time constant of the circuit formed

by the resistors and the stray capacitance of the connection between the microcontroller and the

LCD. The stray capacitance can be significant in cases where the LCD is connected using long

PCB tracks, a connector or a flat cable. For the waveforms to maintain their properties, the time

constant of the RC circuit must be small compared to the length of one phase (t).

2.3.2 Generating 1/2 Bias Ratio Waveforms

MPC56xxB driver uses below modules for ½ bias ratio waveform generation:

 Periodic Interrupt Timer (PIT) - triggers DMA accesses

 Direct Memory Access (DMA) - DMA copy values from RAM locations to PIT load

value register, pad configuration registers (PCR) and masked parallel data output register

(MPGPDO). Switching between different memory locations is based on DMA channel

linking capabilities.

 System Integration Unit (SIUL) – pad configuration registers (PCR) enables, disables

output driver for backplanes. MPC56xxB offers masked parallel data output registers

(MPGPDO) which allow the update of selected outputs (flexible assignment of GPIO

frontplane pins).

Figure below shows the basic principle of bias 2 waveform generation.

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 5

Figure 2. PIT trigger and DMA link flow for ½ bias waveform

2.4 Method 2 - PWM based
The LCD driver uses a second method for optimal VONRMS/VOFFRMS ratio for LCDs with up to

6 backplanes. As mentioned earlier in this application note, for best possible VONRMS/VOFFRMS

ratio and as a result better contrast, a higher number of discrete voltage levels deliver better

contrast results when driving LCD displays. For LCD segments from 3 up to 6 backplanes a

waveform with 4 different voltage levels (1/3 bias ratio) deliver best results (see Table 1).

2.4.1 Voltage levels

Waveform generation with standard MPC56xxB GPIO for bias 3 is based on a combination of

internal microcontroller modules which operate independent of CPU and external components.

To generate different voltage levels an external RC circuit converts a digital PWM signal to an

analog voltage level needed for backplane and frontplane waveform generation. The RC values

have to be carefully selected to allow:

• Selection of typical values available on the market.

Advantage: low cost components

• Small footprint (down to form factor 0402).

Advantage: better match possible limited space on the PCB

• Good quality waveform.

Advantage: lower EMC noise due to smooth rise/fall times

 MPC56xxB LCD segment driver, Rev. 0

6 Freescale Semiconductor

Figure below shows the MCU to LCD connection, PWM signal at MCU output and

corresponding voltage levels at LCD input.

Figure 3. PIT trigger and DMA link flow for ½ bias waveform

2.4.2 Generating Bias Ratio Waveforms
MPC56xxB driver uses below modules for waveforms with 3 to 6 voltage levels:

 Periodic Interrupt Timer (PIT) - one PIT channel is used for time partitioning of the

waveform which includes phase and optional contrast adjustment cycles. PIT channel

triggers a DMA channel.

 Direct Memory Access (DMA) - DMA copies values from RAM locations to PIT load

value register and eMIOS register for PWM duty cycle. Switching between different

memory locations is based on DMA channel linking capabilities.

 System Integration Unit (SIUL) – pad configuration registers (PCR) enables, disables

output driver for backplanes. Offers masked parallel data output registers (MPGPDO)

which allow the update of selected outputs (flexible asisgnment of GPIO frontplane

pins).

Figure below shows basic principle of PIT triggering and DMA channel linking flow for 1/3 bias

waveform generation.

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 7

Figure 4. PIT trigger and DMA link flow for 1/3 bias waveform

After each DMA read/write transaction, the source and destination address can be adjusted by a

fixed offset only. For this reason, it is recommended to assign one group of eMIOS channels

adjacent to each other in the memory map to backplane pins and the other group of eMIOS

channels adjacent to each other to frontplane pins. If this is not possible and the eMIOS channel

in between is operating in a mode which uses CBDR register, than a new DMA channel should

added to the DMA chain. Figure below explains the concept based on a simple use case:

Use case:

• Group1: DMA1 for Backplanes, DMA1 is linked by DMA for PIT

• eMIOS ch 28 / 29 / 30 / 31, OPWMT mode

• Group2: DMA2 for Frontplanes, DMA2 is linked by DMA1

• eMIOS ch 2-7 / 9, OPWMT mode

• Group3: DMA2 for Frontplanes, DMA3 is linked by DMA2

• eMIOS ch 11-13, OPWMT mode

• Group4: non-LCD channel which requires CBDR register -> DMA write would corrupt the

content

• eMIOS ch 0 / 1 / 10, i.e. OPWMB mode

• Group5: non-LCD channel which do not require CBDR register -> DMA write is don‗t care

• eMIOS ch 8, i.e. MCB mode

 MPC56xxB LCD segment driver, Rev. 0

8 Freescale Semiconductor

Figure 5. Example of PWM channel assignment and corresponding DMA flow

2.5 Suitability of Waveforms
The above sections explain two different methods of generating waveforms when driving an

LCD using GPIO pins of a microcontroller. Using the 1/2 bias waveforms based on method 1 are

optimal when driving an LCD with two backplane electrodes (1/2 duty ratio). When the 1/2 bias

ratio waveforms are used for LCDs with three and more backplane electrodes, the

VONRMS/VOFFRMS ratio is lower, compared to the optimum waveforms. For Bias 2 the voltage

band between VONRMS and VOFFRMS is reduced by 20% in the case of a 1/3 duty ratio, by 28%

in the case of a 1/4 duty ratio, and by 32% in case of a 1/5 duty ratio.

Whether method 1 waveforms are suitable to drive LCDs with 3 or more backplanes depends on

the display specification. Narrower band between VONRMS and VOFFRMS may require a more

accurate temperature compensation to maintain the best possible optical properties of the display

over a wide temperature range. This depends on properties of the particular LCD — variation of

VS and VT with temperature can usually be found in data sheets provided by LCD manufacturers.

Advantage of method 1 is that only a few external resistor are required (2*number of

backplanes).

For the best possible VONRMS/VOFFRMS ratio, a higher number of discrete voltage levels must be

used when driving LCDs with three and more backplane electrodes.

Method 2 based on PWM approach and external RC components delivers optimal

VONRMS/VOFFRMS for bias 3 to 6 waveforms and as a result offer optimum contrast for

backplane LCD displays from 3 up to 10 backplanes.

Figure below shows the number backplanes (n) and bias (b) configurations supported by this

driver:

 n/b configurations covered by Method 1: shaded fields =2, n=2,3,4

 n/b configurations covered by Method 2: bold area, all fields

 Best VONRMS/VOFFRMS ratio : bold text

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 9

n / b 2 3 4 5 6 7 8

2 2.236 2.236 1.844 1.612 1.475 1.387 1.325

3 1.732 1.915 1.732 1.567 1.453 1.374 1.318

4 1.528 1.732 1.648 1.528 1.433 1.363 1.311

5 1.414 1.612 1.581 1.494 1.414 1.352 1.304

6 1.342 1.528 1.528 1.464 1.397 1.342 1.297

7 1.291 1.464 1.483 1.438 1.382 1.332 1.291

8 1.254 1.414 1.446 1.414 1.367 1.323 1.285

9 1.225 1.374 1.414 1.393 1.354 1.314 1.279

10 1.202 1.342 1.387 1.374 1.342 1.306 1.274

Table 1. VONRMS/VOFFRMS Ratio for Different Combinations of Duty and Bias

Some MPC56xxB microcontrollers have 2 voltage domains for GPIO supply. Please note that if

the pads for LCD waveform generation belong to different voltage domains they should be at the

same voltage level.

3 Driver Implementation Using MPC56xxB
GPIO, PIT, DMA and PWM
The flow of data, between an LCD driver and the application that uses the driver, is in one

direction only. The application generates the display data (i.e., tells the driver which segments

should be visible and invisible), and the driver generates the appropriate waveforms. All data is

written by the application and read by the driver. The concept ensures that the application is not

interrupted by the waveform generation task and the application itself has only to update the

display data in the system memory, as appropriate. From the application‘s point of view, the

LCD driver behaves like a virtual LCD peripheral with a specific area of the system RAM used

to share the display data.

3.1 Supported devices
The driver can run on all MPC56xxB devices with DMA unit. Table below summarizes the

devices and packages the driver can run on as well as the maximum numbers of backplane and

frontplane connections for each solution:

 MPC56xxB LCD segment driver, Rev. 0

10 Freescale Semiconductor

Device Package Solution 1
#GPIO

Solution 1
#backplanes+
#fronplanes

Solution2
eMIOS outputs

Solution 2
#backplanes+
#fronplanes

MPC5601D LQFP64 45 45 12 12

MPC5602D LQFP100 79 79 28 27*

MPC5605B LQFP100 77 77 37 36*

MPC5605/6B LQFP144 121 121 64 62*

MPC5605/6/7B LQFP176 149 149 64 62*

MPC5644/5/6B LQFP176 149 149 64 62*

MPC5644/5/6B LQFP208 173 173 64 62*

MPC5644/5/6B BGA256 199 199 64 62*

Table 2. MPC56xxB LCD driver support and maximum numbers of backplanes and frontplanes

NOTE

Please note that within a 32ch eMIOS block at least one channel is

needed for timebase.

3.2 Structure of the driver

The driver is split into several files:

Main.c – main application function

LCD.c – contains all the functions to initialize and run LCD interface

init.c – includes functions for basic system initialization

dma.c – dmamux and dma initialization functions

pit.c – periodic interrupt timer initialization functions

emios.c – includes functions to setup the time base and PWM channels

LCD.h - user defined macros for mapping the appropriate resources to the driver

The driver functions use macros to access hardware resources of the microcontroller. All the

application dependent macros are located in the ―lcd.h‖ header file. It is possible, therefore, to

customize the driver functions by editing the header file only.

3.3 Using the Driver
All hardware specific configurations of the driver are performed through modification of the

macro definitions located in the ―lcd.h‖ header file. The user is responsible for providing correct

definitions for these hardware access macros. Descriptions of the individual macros and

examples of their definitions are given in the following sections.

3.3.1 Define application specific parameters in LCD.h

Following code from LCD.h defines LCD related specific parameters:

#define PWM 1 // waveform generation method

// 0 – method1 - 2 bias with 2 external resistors per backplane

// 1 – method2 - all bias levels based on PWM with external RC components

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 11

#define PIT_CH_NR 0 // PIT channel number to be used for waveform timing

#define PIT_INIT_VALUE 0x1000 // this is the init value for PIT

//delay before starting the waveform genearion after init

#define DMA_CH_for_PIT 0 // DMA channel for copying waveform timing values

from Ram to PIT

#if EMIOS

#define DMA_CH_for_EMIOS_BP 1 // DMA channel for copying PWM duty

cycle values for backplanes from RAM to eMIOS

#define DMA_CH_for_EMIOS_FP 2 // DMA channel for copying PWM duty cycle

values for frotplanes from RAM to eMIOS

#else

#define DMA_CH_for_PCR 1 // DMA channel for copying pad configuration

data for backplanes from RAM to SIUL pad configuration registers

#define DMA_CH_for_MPGPDO 2 // DMA channel for copying pad configuration

data for backplanes from RAM to SIUL pad configuration registers

#endif

#define LCD_BP_CNT 4 // number of backplanes

#define LCD_FP_CNT 28 // number of frontplanes

#define LCD_IDLE_CNT 1 // number of contrast adjustment phases per refresh

cycle

#define CONTRAST_RMS_INCREASE 1 // '1' - voltage levels for BP and FP

will be set to opposite

// voltage levels during contrast adjustment phases to increase RMS

// '0' - voltage levels for BP and FP will be set to the same

// voltage levels during contrast adjustment phases to decrease RMS

 // in this driver version this paremeter is

valid for method 2 only (EMIOS=1)

#define LCD_FRAME_FREQUENCY 60 // LCD refresh cycle frequency in Hz

#define MPGPDO_REG_CNT 4 // number of MPGPDO registers

#define BIAS_CNT 3 // waveform type, voltage levels =

bias +1

#define emios_peripheral_prescaler 1 // peripheral set 3 prescaler

#define emios_predivider 1 // emios global prescaler value

#define PWM_period_cycles 99 // number of emios clock cycles

withon one PWM period

3.3.1.1 Application specific parameters for Method 1

Following steps are needed to adjust the driver to application specific connections between

microcontroller and LCD pins:

1. Define the pad information for backplane ports

const vuint8_t BP_SIUL_INFO [LCD_FP_CNT][3]

this contant has following format:

 MPC56xxB LCD segment driver, Rev. 0

12 Freescale Semiconductor

[PCR_NUMBER, MPGPDO_NUMBER, BIT_POSITION_IN_MPGPDO]

PCR_NUMBER – as specified in datasheet, chapter package pinout and signal

description

MPGPDO_NUMBER – number of masked parallel general perpuse data register

(MPGPDO) the backplane port belongs to (please refer to corresponding reference

manual)

BIT_POSITION_IN_MPGPDO – bit position within the MPGPDO register (please refer

to corresponding reference manual)

2. Define the pad information for frontplane ports

const vuint8_t FP_SIUL_INFO [LCD_FP_CNT][3]

this contant has following format:

[PCR_NUMBER, MPGPDO_NUMBER, BIT_POSITION_IN_MPGPDO]

Same meaning as for backplanes (see above)

3. Define the data structure for masked parallel general perpuse data register

(MPGPDO)

Driver code contains some example templates for this structure. The mask bits for

MCU ports connected to LCD should be enabled in all phases. All other mask bits

should be disabled to avoid conflicts with application. The data output value for

backplanes and frontplanes should be set to ‗0‘ for all phases in cycle 0 and to ‗1‘ for

all phases in cycle 1. This makes sure all segments are invisible after initialization. If

contrast adjustment phase is needed (LCD_IDLE_CNT=1) please consider:

• To increase VONRMS and brighten the visible segments (please note that this

will increase the VOFFRMS of invisible segments) :

• Cycle0 contrast adjustment phase: set output to ‗1‘ for backplanes and

‗0‘ for frontplanes

• Cycle1 contrast adjustment phase: set output to ‗0‘ for backplanes and

‗1‘ for frontplanes

• To decrease the VOFFRMS and darken the invisible segments (please note

that this will decrease the VONRMS of invisible segments)

• Cycle0 contrast adjustment phase: set output to ‗1‘ for backplanes and

‗1‘ for frontplanes

• Cycle1 contrast adjustment phase: set output to ‗0‘ for backplanes and

‗0‘ for frontplanes

• Please note that duration of contrast adustment phase and thus the

VONRMS/VOFFRMS can be changed by calling LCD_contrast function.

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 13

3.3.1.2 Application specific parameters for Method 2

Following steps are needed to adjust the driver to application specific connections between

microcontroller and LCD pins:

1. Define the pad and PWM channel information for backplane ports

const vuint8_t BP_EMIOS_INFO [LCD_FP_CNT][3]

this contant has following format:

 [PCR_NUMBER, EMIOS_CH_NUMBER, PCR_EMIOS_AF]

PCR_NUMBER – as specified in datasheet, chapter package pinout and signal

description

EMIOS_CH_NUMBER – eMIOS channel number

PCR_EMIOS_AF – eMIOS alternate output function as specified in datasheet, chapter

package pinout and signal description

2. Define the pad and PWM channel information for frontplane ports

const vuint8_t FP_EMIOS_INFO [LCD_FP_CNT][3]

this contant has following format:

[PCR_NUMBER, EMIOS_CH_NUMBER, PCR_EMIOS_AF]

Same meaning as for backplanes (see above)

3.3.2 Software Functions
void LCD_init(unsigned int bus_frequency, int contrast_adj)

 initializes the data, phase and contrast adjustment parameter in LCD_data structure.

These parameters are dependent on the selected system frequency, the LCD

frequency (defined in LCD.h) and optional duration of contrast adjustment phase

which

► unsigned int bus_frequency — This parameter specifies the frequency

used by the on-chip timer, which is used to time the waveform generation

process. The function uses this parameter to calculate the number of

―ticks‖ the timer must count to time the normal and the contrast

adjustment phases.

► int contrast_adj — This parameter influences the length of the contrast

adjustment phases. The contrast adjustment phases and the normal phases

will be of the same length when contrast_adj is equal to zero. Values

above zero extend the duration of the contrast adjustment phases; values

below zero reduce it.

void LCD_contrast (unsigned int bus_frequency, int contrast_adj)

 this function can be called during run time to change the length of the contrast

adjustment phases without the need to shutdown and restart the driver. It calculates

and writes new values for period, phase time and contrast adjustment to LCD_data

 MPC56xxB LCD segment driver, Rev. 0

14 Freescale Semiconductor

structure and updates the PIT DMA array by calling

INIT_PIT_DATA_FOR_DMA().

void update_waveform (uint32_t BP_NUMBER, uint32_t FP_NUMBER, uint8_t visible)

 updates the corresponding DMA data structure for an LCD segment defined by BP

and FP number depending on whether it should be visible or invisible

void INIT_WAVEFORM_FOR_DMA (void)

 Called by LCD_init() to create Data Structures for DMA

 Calls: INIT_PIT_DATA_FOR_DMA()

 Driver Option (#define PWM=0 in LCD.h) calls

► INIT_BACKPLANE_PCR_DATA_FOR_DMA()

► INIT_MPGPDO_DATA_FOR_DMA()

 DrDriver Option (#define PWM=1 in LCD.h) calls

► INIT_EMIOS_DATA_FOR_DMA()

void INIT_MODULES_FOR_LCD(void)

• Called by LCD_init() to initialize all modules needed for LCD waveform

generation

• Driver Option (#define PWM=0 in LCD.h)

► Init Pad configuration registers for back- and frontplanes

• Driver Option (#define PWM=1 in LCD.h)

► Init PWM timebase by calling EMIOS_0_BUS_B_init(2,

PWM_period_cycles);

► Init PWM channels for back- and frontplanes by calling

EMIOS_0_OPWMT_CH_init(PCR_N, N, CADR, CBDR, ALTCADR)

• DMA_Init()

• PIT_CH_ENABLE(N, LDVAL)

void INIT_PIT_DATA_FOR_DMA (void)

• creates an array of timer values for waveform generation. PIT channel triggers the

DMA which writes the new timer value from array into the LDVAL register to

determine the duration of next waveform phase

 void INIT_BACKPLANE_PCR_DATA_FOR_DMA(void)

• creates an array of pad configuration data to be copied to backplane PCR registers

via DMA

 void INIT_MPGPDO_DATA_FOR_DMA(void)

• creates an array based on PCR numbers for front and backplanes. Array is filled

with values to be copied to Masked Parallel GPDO Data via DMA

void INIT_EMIOS_DATA_FOR_DMA(void)

• calculates the number of PWM cycles within one waveform phase and

corresponding timer values for PWM period and duty cycles. Creates an array for

 MPC56xxB LCD segment driver, Rev. 0

Freescale Semiconductor 15

PWM duty cycle values based on the bias define parameter (#define BIAS_CNT

in LCD.h). The duty cycle values stored in array structures are copied to eMIOS

CBDR registers in each phase via DMA.

void LCD_ALL_PINS_LOW(void)

• drives all PB and FP pins to low level

void LCD_start(void)

• enables the LCD waveform generation

void LCD_stop(void)

• disables the LCD waveform generation

3.4 Driver Performance
The solutions offered here is DMA driven and does not require any code to be executed during

waveform generation and as a result no attention has to be paid to interrupt handling related to

LCD interface. This offloads the CPU from waveform generation tasks and leaves more

performance for the application. DMA reads data from RAM and writes it through the AIPS

bridge to corresponding PIT, SIUL or eMIOS register. Below calculation show the percentage of

crossbar port bandwidth required by DMA for waveform generation:

Crossbar Bandwidth for Solution 1

Assumptions

 120 Hz LCD display

 3 backplanes, 30 frontplanes

 1 idle cycle for contrast adjustment

Number of waveform phases

 (#BPs+#IDLE)*2 = (3+1)*2 = 8 Phases

 Number of Read Writes

 PIT DMA – 1xRAM read, 1x AIPS write

 MPGPDO DMA – 4xRAM read, 4xAIPS writes

 PCR DMA – 2xRAM read, 2xAIPS writes

 Sum of RAM/AIPS reads/writes per Phase = 7

 Sum of RAM/AIPS reads/writes per second = 7reads * 8phases * 128Hz = 7,168 KHz

RAM port bandwidth calculations

 Crossbar Frequency = 64MHz

 Driver RAM bandwidth [%] = 7,168KHz / 64000KHz = 0.11 %

 Driver AIPS bandwidth (1 wait state) [%] = (7,168KHz *2) / 64000KHz = 0.22 %

Crossbar Bandwidth for Solution 2 (PWM)

Assumptions

 120 Hz LCD display

 MPC56xxB LCD segment driver, Rev. 0

16 Freescale Semiconductor

 4 backplanes, 40 frontplanes

Number of waveform phases

 (#BPs)*2 = (4)*2 = 8 Phases

 Number of Read Writes

 PIT DMA – 1xRAM read, 1x AIPS write

 eMIOS DMA – 44xRAM read, 44xAIPS writes

 Sum of RAM/AIPS reads/writes per Phase = 45

 Sum of RAM/AIPS reads/writes per second = 45reads * 8phases * 128Hz = 46,08 KHz

RAM port bandwidth calculations

 Crossbar Frequency = 64MHz

 Driver RAM bandwidth [%] = 46,08KHz / 64000KHz = 0.72 %

 Driver AIPS bandwidth (1 wait state) [%] = (46,08KHz *2) / 64000KHz = 1.44 %

Above calculations show that the percentage of LCD related transactions on the crossbar are in a

very low range. For real world application, performance decrease can be considered as negligible

as for code executed out of Flash, the required bandwidth for RAM and AIPS ports will typically

be significantly lower than 50%.

3.5 Driver Resources

Table below shows the driver resources for both solutions:

Unit Method 1 (external R) Method 2 (PWM+external RC)

Flash 9.1K 8.7K

RAM 1.4K 1.5K

DMA ch 3 3

PIT ch 1 1

GPIO depending on #BP and #FP depending on #BP and #FP

Table 3. Driver resources

4 References
1. ―Twisted nematic liquid crystal display‖, Stephen Palmer, LC-TEC Displays AB, 2005

2. ―100 Years of Commercial Liquid-Crystal Materials‖, Werner Becker and Hans-Juergen

Lemp, Merck & Co Inc., 2004

How to Reach Us:

Home Page:
www.freescale.com

Web Support:

http://www.freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits or integrated circuits based on the information in this
document.
Freescale reserves the right to make changes without further notice to any
products herein. Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over time.
All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not
convey any license under its patent rights nor the rights of others. Freescale
sells products pursuant to standard terms and conditions of sale, which can
be found at the following address:
http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior,
ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT,
PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony, and
VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &
Tm. Off.
Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC,
Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play,
SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners.
© 2012, 2013 Freescale Semiconductor, Inc.

AN4702

Rev 0

04/2013

	MPC56xxB LCD segment driver
	1 Introduction
	For more reference on TN LCDs, refer to AN3219 from http://www.freescale.com

	2 Driving TN and STN LCDs Using General Purpose MPC56xxB Pins
	2.1 Creating Waveforms with Arbitrary Duty and Bias Ratios
	2.2 Waveform generation based on DMA
	2.3 Method 1 for waveforms with 1/2 Bias Ratio
	2.3.1 Voltage levels
	2.3.2 Generating 1/2 Bias Ratio Waveforms
	2.4 Method 2 - PWM based
	2.4.1 Voltage levels
	2.4.2 Generating Bias Ratio Waveforms
	2.5 Suitability of Waveforms

	3 Driver Implementation Using MPC56xxB GPIO, PIT, DMA and PWM
	3.1 Supported devices
	3.2 Structure of the driver
	3.3 Using the Driver
	3.3.1 Define application specific parameters in LCD.h
	3.3.1.1 Application specific parameters for Method 1
	3.3.1.2 Application specific parameters for Method 2

	3.3.2 Software Functions
	3.4 Driver Performance
	3.5 Driver Resources

	4 References

