
Freescale Semiconductor
Application Note

Document Number: AN4730
Rev. 0, 5/2013

Contents

Introduction . 1
1.1 General Description. 2
How to Create a Wireless UART Application 2

2.1 Generating an Application . 2
2.2 Modification of the Application. 6
Use of Wireless UART Application 8

3.1 Basic FreeMASTER Settings 9
3.2 General Wireless UART Example 10
Conclusion. 12
References . 12

ZigBee Wireless UART Used with
the FreeMASTER Application
Karel Povalac

1 Introduction
This document describes the use of the ZigBee Wireless
UART application with the FreeMASTER Run-Time
debugging tool. The solution allows wireless data
transmission over a serial port. This has the advantage of
providing a non-galvanic connection to replace wired
serial data communications in applications that require
galvanic isolation. Example applications include
electricity meters directly connected to the mains, motor
control units, or other high-voltage devices. Wireless
UART communication channel can also be used for
bootloader applications. Uploading a new firmware
image is described in the Freescale application note
AN2295, available from Freescale.com.

1

2

3

4
5

© Freescale Semiconductor, Inc., 2013. All rights reserved.

How to Create a Wireless UART Application
1.1 General Description
This application note shows a simple way to build a ZigBee wireless UART application. The Freescale
BeeKit software Graphical User Interface (GUI) is used to do this. The BeeKit Wireless Connectivity
Toolkit may be downloaded from Freescale website free of charge. The software package is also supplied
on the CD accompanying wireless connectivity development kits. BeeKit provides a simple GUI approach
to configuring network settings, allowing you to concentrate on building the application. BeeKit helps
reduce development time for developers lacking extensive networking experience. You are able to set
configuration parameters that will control the setup and execution behavior of the wireless link within your
application. The configuration parameters are validated inside the BeeKit to ensure all values provided are
within acceptable ranges prior to the generation of a workspace. This functionality provides a mechanism
for you to configure and validate your network parameters without having to navigate through multiple
source files of a complex ZigBee system.

In addition to the GUI, the BeeKit toolkit includes a comprehensive codebase of wireless networking
libraries, application templates, and sample applications. The codebases include Freescale’s RF4CE and
BeeStack (ZigBee/ZigBee Pro) protocol stacks and preconfigured application samples and templates.
After you have completed the configuration of your wireless solution, BeeKit allows you to export the
solution to an integrated development environment (IDE). Within the development tool, you are able to
modify, build, and debug the application code. The project described below also has some additional
features added, to allow starting, joining, and binding to the ZigBee network after generating a BeeKit
solution. After the project is successfully built, you can download it onto two development boards. The
last part of this application note discusses what adaptations are required for the project to work with
FreeMASTER. Basic settings of the FreeMASTER Run-Time tool are also covered.

2 How to Create a Wireless UART Application
Prior to the project generation, you must download and install the BeeKit Wireless Connectivity Toolkit
on a Windows PC, or run an installation file from the BeeKit CD-ROM. The latest version is available
from the link below:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=BEEKIT_WIRELESS_CONNECTI
VITY_TOOLKIT

The BeeKit Wireless Connectivity Toolkit is a comprehensive package of wireless networking libraries,
application templates, and sample applications. The BeeKit GUI, part of the BeeKit Wireless Connectivity
Toolkit, allows you to create, modify, and update various wireless networking implementations. The
provided link also contains a BeeKit Wireless Connectivity Toolkit User’s Guide. The guide describes how
to use and install the Freescale BeeKit Toolkit.

2.1 Generating an Application
After you have successfully installed BeeKit and you’ve read the user’s guide, you can begin generating
a wireless UART application. After starting Freescale BeeKit software, select the appropriate codebase
(File -> Select Codebase). For example, the latest ARM7 BeeStack Codebase is version 3.0.12 for
Freescale MC1322x devices. Select the codebase and press the Set Active button. The active codebase is
ready for use now.
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor2

How to Create a Wireless UART Application
The target project to be generated will act as a wireless bridge between two devices. The PC will form one
side of the bridge and second part will be an embedded electricity meter. The functionality is described in
Figure 1 below.

Figure 1. Block Diagram of Wireless UART FreeMASTER Example

Of course, the application described may be used in a different way as a typical wireless bridge solution.
The example application will able to wirelessly communicate between the PC FreeMASTER and the
embedded FreeMASTER application. The bootloader application may also be used.

Select File -> New Project to create a new solution. The wireless UART application is included inside the
“Other Zigbee Applications” section. Figure 2 is a screen shot of the Project Selection step. Fill in
appropriate project and solution names (mentioning the codebase version used is good practice) with a
location before continuing. The project will consist of two nodes inside the network.

The first screen is just a welcome to the BeeStack configuration wizard. Select “Next” to continue. You
are asked to make a number of parameter settings in the coming configuration screens. Select the MCU
version and the target hardware board. The SRB board could be a good example to choose. (Selecting a
user defined target board is also possible.) The next screen allows for the enabling of different platform
modules on the development board. Select at least LEDs and Keyboard options for development purposes.

Figure 2. New Project Window for Wireless UART Application

USB Dongle MC13226

PC
Freemaster

Bootloader

WirelessUART

Electricity Meter

IPB MC13226

WirelessUART

Photon

Freemaster

Bootloader

SCI

ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 3

How to Create a Wireless UART Application
On the next screen it is very important to enable the UART port on USB (see Figure 3). The Zigbee Test
Client (ZTC) over the UART can be left disabled. The ZTC is a BeeStack UART communication protocol.
The wireless UART application does not use the ZTC functionality.

Figure 3. UART Communication Settings

The ZigBee device type of the target application must be selected on the following screen, where the
appropriate choice is Coordinator. The ZigBee network can only have one Coordinator. For the second part
of the project, you must select either a “Router” or “End Device” for the other node.

In the next step, the BeeStack network configuration is set (see Figure 4). Select an option without security
because larger ZigBee packet overhead results from the implementation of security keys.

Figure 4. BeeStack Network Configuration Settings

ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor4

How to Create a Wireless UART Application
The next two screens may be left unchanged with the default BeeStack settings. One of the last important
options is the extended address and PAN ID information. The MAC address must be unique for each and
every 802.15.4 node. The PAN ID will be the same for the Coordinator and the Router (and other nodes)
in a ZigBee network. In the last page, selection of the channels for the wireless communication between
the nodes is made. Press “finish” to close the wizard.

The solution explorer window contains a project with some basic settings files. The definition for the
Coordinator has now been completed. The next step will follow the same procedure to configure the
second node. You must add a new project solution into the existing explorer window. Select Solution ->
Add Project. The same project selection pop-up window will appear as shown in Figure 2. The application
template will again be WirelessUART. The second application settings will be mostly the same except for
the ZigBee device type and MAC address settings. Choose “Router” as the 2nd ZigBee device type. A new
unique MAC address is required. When the process settings are finished, the Solution Explorer should
contain two separate projects as seen in Figure 5.

Platform modules of both nodes contain the UART interface settings. The UART1 half hardware flow
control should be disabled. You don’t need to make any other modifications at this stage of the project.
You can choose a different UART port number if needed. The solution can be quickly validated now
(Solution -> Validate Solution) and exported to the IAR (Solution -> Export and Open Solution in IAR
Embedded Work Bench). The BeeKit codebases currently supported are IAR version 5.5.

Figure 5. Freescale BeeKit Project Window
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 5

How to Create a Wireless UART Application
The export settings window is displayed in Figure 6. The project will be exported and immediately open
in the IAR workspace after you press OK. If the project is not immediately opened in the IAR tool, you
must open the project manually. The IAR project workspace file is saved with *.eww extension. Open the
workspace manually by File->Open->Workspace. Or, you can drag and drop the IAR workspace file to get
the same result.

Figure 6. Export Settings Window

The BeeKit solution generation part of the project is complete and further modifications will now be made
directly in the source code of the ZigBee application project.

2.2 Modification of the Application
In the previous section, the basic ZigBee project was created and imported into IAR tools. Some adaptation
and additional features should now be included to improve the functionality. Modification of the
Coordinator project will be addressed first.
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor6

How to Create a Wireless UART Application
Figure 7. IAR Program Window

Figure 7 shows the main IAR window. Exported projects (coordinator or router) can be chosen in
workspace. Currently, the figure displays the coordinator for wireless UART available in the released
version of building code. Press the MAKE or COMPILE button to start the compilation process. After the
compilation is done, it can be downloaded into the development kit. Press the DOWNLOAD and DEBUG
button to do this. Important buttons are marked red in the Figure 7. The debug interface is needed for
downloading a created project into the development platform.

2.2.1 Modification of Coordinator Source Code

To begin, create a ZigBee network automatically. This is handled in the initialization function. Open the
source file BeeApp.c (located in the workspace project directory structure as follows:
//W_UART_MC13226_CB_3_0_12\Zc_WirelessUART\BeeApps\). The Initialization function of the
Zigbee application is called BeeAppInit() by adding the following call at the end of BeeAppInit() function.

BeeAppHandleKeys(gKBD_EventSW1_c); // Create the network after the startup

The same modification will also be needed in the router device. The stand-alone application of Wireless
UART is also included in BeeApp.c file. A few settings must be modified to work correctly with the
FreeMASTER software and bootloader applications. The changes mainly concern the maximal length of
data packet, UART timeouts, and transmission modes. The important changes in BeeApp.c are
summarized below.

#define mMaxDatagramLen_c 90
#define mUartRxTimeout_c TmrMilliseconds(10)
#define mTxZigBeeThrottleDuration_c TmrMilliseconds(5)
static bool_t mInCharMode = FALSE; /* T = char mode, F = block mode. */
static bool_t mInReliableMode = FALSE; /* T = reliable, F = unreliable. */
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 7

Use of Wireless UART Application
Some further changes are important to include, as outlined in the accompanying source file BeeApp.c in
AN4730SW.zip. The best way is to compare the original file with the modified one.

2.2.2 Modification of Router Source Code

The same modifications of the application file BeeApp.c are required for the router, as already described
above for the coordinator.

In addition the router device has to send bind request commands to the coordinator after it has joined the
Zigbee network. All of this modification is done in

//Zr_WirelessUART\BeeApps\ASL\ASL_Userinterface.c. Reference is made to the accompanying source
file in AN4730SW.zip for a detailed description of the ASL_Userinterface.c modifications. There is a new
call back function (BindDeviceTimerCallBack) that manages the binding requests.

The best way of highlighting the changes in the attached files is to compare the original source files with
the included ones and apply the changes. There are also a few sections that were commented out. These
changes mainly touch the settings using the buttons and LEDs. All of these settings can be done without
external inputs. Namely the changes are related to the baud rate settings, mode of transmission, and LED
states.

When the modification process of the source files is done, you can compile and download the code to the
development boards.

3 Use of Wireless UART Application
After the wireless UART application is created and modified according to the previous steps, it can be used
and connected as shown in Figure 1 for the FreeMASTER application or more general solution as
displayed in Figure 10. Thus both devices (coordinator and router) communicate over the serial port,
which can be used according to the designer’s needs. In effect, wherever a wired serial communication link
is currently used, it could be replaced with a two node wireless communication link such as this. The
default settings are defined in Table 1.

The project was created for two development sensor boards for simplicity. However, the same solution can
be used for other development or customer defined boards that employ MC1322x integrated circuits.
Solutions based on other than MC1322x wireless microcontroller platforms must be created with different
BeeStack libraries.

Table 1. Default Wireless UART Port Settings

Communication port on MC1322x UART1

Bitrate 34800 bps

Hardware flow control Disabled
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor8

Use of Wireless UART Application
After the development boards are successfully connected with serial port (TX/RX) pins and powered on,
the coordinator will create a ZigBee network automatically. Also the router node will join the network and
bind with appropriate communication clusters. The joining procedure takes approximately 5 seconds and
after that, the wireless serial link is ready for half-duplex serial communication. The wireless UART
example is now ready for use as a replacement for wired communications.

3.1 Basic FreeMASTER Settings
To implement a wireless UART with the FreeMASTER run time debugging tool, you must run a
FreeMASTER driver on the embedded side. In addition, the FreeMASTER software must be installed on
the computer. The driver description and explanation is covered by the FreeMASTER Serial
Communication Driver User’s Guide [4] included in the installation of FreeMASTER. The installation
also contains a few examples for different microcontrollers. A detailed description of how to run a
FreeMASTER application is outside the scope of this document.

After the project with FreeMASTER driver is ready to use, the FreeMASTER application can be started
on the PC. You may add and watch variables and put them into the window as needed.

Figure 8. FreeMASTER Options Windows

The main setting for the project is under the Project -> Options. The setting window is displayed in
Figure 8. The communication port has to be selected with the appropriate speed. The same value is setup
on the PC side, embedded coordinator, and also on the embedded router. Timeouts may be kept the same
as the default values (100 ms). The second list sets up the map file of the embedded application. The path
to the map file has to be specified in Default symbol file field. All the changes are confirmed by pressing
OK.
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 9

Use of Wireless UART Application
Figure 9. Example of FreeMASTER Application Window

The STOP button controls the start and stop of the communication. When the COM port is opened, the
data are retrieved and displayed in the window. The basic example can be seen in Figure 9. Updated
variables are displayed in the FreeMASTER window.

3.2 General Wireless UART Example
The general wireless UART example uses three ZigBee development boards. The example shows
possibilities of PC communication over the wireless UART with embedded devices. Two nodes cover the
wireless UART link and the third node works as ZTC enabled client. The scenario shows the Figure 10.
Freescale TestTool is used as simple a demonstration of the wireless UART communication. The software
is included in BeeKit installation and easy to use.

Figure 10. General Wireless UART Example

SRB MC13226

PC TestTool

WirelessUART

SRB MC13226

WirelessUART

SRB MC13226

ZTC Enabled

SCI
USB GPIO UART2 GPIO UART2
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor10

Use of Wireless UART Application
The Command Console can display ZTC data packets on UART port. The port setup must be done in
advance (port number, baudrate). Each ZTC command is shown in the right hand side window (See
Figure 11). Transmitted and received data packets prove successful communication over the wireless
UART.

Figure 11. Freescale TestTool Program

The third node can be generated as an arbitrary solution from BeeKit. The node must have enabled ZTC
communication over the UART. The ZTC can be enabled during the BeeKit project creation or can be
found in BeeKit project under the Software Support Modules (ZTC Enabled - TRUE). The sensor node as
a Freescale development kit has the UART2 port directly connected on GPIO pins, which are easily
accessible. The GPIO uses second UART port that can be enabled in the UART_Interface.h file.
Recommended settings are shown below.

#define gUart1_Enabled_d FALSE
#define gUart2_Enabled_d TRUE

The modification must be accepted also on the wireless UART node that will be connected with embedded
client over the GPIO pins. The situation is shown in Figure 10.
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 11

Conclusion
4 Conclusion
This application note describes the step-by-step process of building a wireless UART application for
point-to-point transmission usage. This project will be particularly useful in situations requiring serial
communication between two devices that require galvanic isolation (for instance, electricity meters). This
application note has shown how to generate a template project in BeeKit, consisting of a ZigBee
Coordinator and Router. It then showed how to adapt the generated project source code to operate with the
FreeMASTER application or to make a quick test with the Freescale TestTool. Modified source files for
the embedded application are described and included to accompany the application note in the download
AN4730SW.zip available from Freescale.com.

5 References
[1] FreeMASTER - Real-time debug monitor and data visualization tool. Freescale fact sheet available
online.

[2] Developer’s Serial Bootloader for M68HC08, HCS08, ColdFire and Kinetis MCUs, AN2295.
Freescale application note available online.

[3] BeeKit Wireless Connectivity Toolkit User’s Guide. Freescale document available online. Document
Number: BKWCTKUG.

[4] FreeMASTER Serial Communication Driver User’s Guide. Freescale document.
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor12

THIS PAGE IS INTENTIONALLY BLANK
ZigBee Wireless UART Used with the FreeMASTER Application, Rev. 0

Freescale Semiconductor 13

Document Number: AN4730
Rev. 0

5/2013

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,Energy

Efficient Solutions logo, PowerQUICC, QorIQ, StarCore, Symphony, and VortiQa are

trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet,

Layerscape, QorIQ Qonverge, QUICC Engine, Tower, and Xtrinsic are trademarks of

Freescale Semiconductor, Inc. All other product or service names are the property of

their respective owners.

© 2013 Freescale Semiconductor, Inc.

	1 Introduction
	1.1 General Description

	2 How to Create a Wireless UART Application
	2.1 Generating an Application
	2.2 Modification of the Application
	2.2.1 Modification of Coordinator Source Code
	2.2.2 Modification of Router Source Code

	3 Use of Wireless UART Application
	3.1 Basic FreeMASTER Settings
	3.2 General Wireless UART Example

	4 Conclusion
	5 References

