
Freescale Semiconductor Document Number: AN4765

Application Note Rev. 1, 08/2013

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 1

MPC57xx: Configuring and
Using the eDMA Controller
by: Martin Vaupel and David McMenamin

The Qorivva MPC57xx family of multicore 32-bit
microcontrollers is initially intended for automotive
applications. It is based on e200 cores built on Power
Architecture®.

1 Introduction

The MPC57xx family of microcontrollers features
Freescale’s enhanced Direct Memory Access (eDMA)
controller.

This application note provides a working knowledge
of the MPC57xx eDMA controller by covering the
following topics: introduction and overview of DMA
controllers, features of the MPC57xx eDMA module,
interaction between the eDMA and DMA multiplexer
(DMAMUX) and configuration advice for
applications. Examples are used throughout this

Table Of Contents

1 Introduction ..1
1.1 DMA Controller Overview...........................2
1.2 MPC57xx eDMA Controller Features2
1.3 eDMA Architectural Integration3

2 Activating eDMA Transfers3
2.1 Activation Sources3
2.2 DMA Multiplexer ...4
2.3 Activation Options6

3 Transfer Process ..7
3.1 Handling Multiple Transfer Requests7
3.2 Major and Minor Transfer Loops8
3.3 Completing a Minor Transfer Loop8
3.4 Completing a Major Transfer Loop9

4 Configuring the eDMA9
4.1 Configuration Steps9
4.2 Transfer Control Descriptors - TCD 10

5 Example eDMA Configurations 13
5.1 Example Configuration 1: Basic Transfer . 13
5.2 Example Configuration 2: Scatter/Gather 15
5.3 Example Configuration 3: Peripheral DMA
transfer .. 17

6 Debugging Tips .. 19
7 Conclusion ... 21

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus:MPC57XX?utm_medium=AN-2021

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

2 Freescale Semiconductor

document to demonstrate increasingly complex DMA configurations.
A ZIP file containing all of the examples used within this document is available for download from
freescale.com.

1.1 DMA controller overview
A DMA controller provides the ability to move data from one memory mapped location to another
without CPU intervention. Once configured and initiated, the DMA controller operates in parallel to the
Central Processing Unit (CPU), performing data transfers that would otherwise have been handled by
the CPU. This results in reduced CPU loading and a corresponding increase in system performance.
Figure 1 illustrates the functionality provided by a DMA controller.

Figure 1. DMA operational overview

1.2 MPC57xx eDMA controller features
All MPC57xx devices feature a 64-channel eDMA controller. Each channel can be independently
configured with the details of the transfer sequence that is to be executed. These details are specified in
the channel Transfer Control Descriptor (TCD) registers.
eDMA transfers can be activated in 3 ways:

1. Events occurring in peripheral modules and off-chip can assert a DMA transfer request

2. Software activation

3. Channel-to-channel linking—on completion of a transfer, one channel activates another

Each channel can generate interrupts to indicate that it has partially completed or fully completed a
transfer. Interrupts can also be generated to indicate that a transfer error has occurred.
Scatter/gather processing is supported by each of the 64 channels. This feature allows a channel to self-
load a new TCD when it has performed the transfer for its current configuration. Using this feature
allows for far greater than 64 transfer sequences to be defined and used.

DMA

Source

0x11112222

0x33334444

0x55556666

0x77778888

0x9999AAAA

0xBBBBCCCC

0xDDDDEEEE

Destination

0x9999AAAA 0x9999AAAA

DMA Transfer Request

DMA reads
source data

DMA writes
source data to

the
destination

e.g. RAM

e.g. DSPI TX
Register

http://www.freescale.com/�

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 3

1.3 eDMA architectural integration
To allow the eDMA, CPUs, and other masters to operate simultaneously, a multi-master bus architecture
is implemented. The MPC57xx chips feature multiple bus masters: for example, cores, Fast Ethernet
Controller, and LFAST.

The crossbar switch (XBAR) forms the heart of this multi-master architecture. It links each master to the
required slave device. Many devices in the MPC57xx family feature a dual-crossbar architechture; in
this case, data passes from one crossbar to the next if a master requires acccess to a slave that is not on
the same crossbar as itself. If two or more masters attempt joint access to the same slave, an arbitration
scheme commences, eliminating the risk of bus contention. Both fixed-priority and round-robin
arbitration schemes are available. Arbitration settings for the crossbar switch can be configured in the
XBAR module registers. Refer to the microcontroller reference manual for more details.

The crossbar switch and interaction between bus masters and slave devices is illustrated in a simplified
version in Figure 2. In this example, the eDMA controller is accessing one of the peripherals on the IP
bus while the CPU is concurrently accessing the SRAM memory. The crossbar switch has formed the
appropriate connections for this situation.

Figure 2. Multi-master bus architecture

2 Activating eDMA Transfers

2.1 Activation sources
• Events occurring within other peripheral modules can be enabled to activate eDMA transfers. In

many modules, event flags can be asserted as either eDMA or interrupt requests. Due to the high

CPU

Peripheral
Bridge

SRAM

Crossbar

eDMA
Controller

Flash

Bus Masters

Bus Slaves

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

4 Freescale Semiconductor

number of sources for those requests, a configurable multiplexer (DMAMUX) is implemented to
route peripheral DMA requests to DMA channels.

• Channels may also be activated by software. The channels’ TCDs provide a START bit that
activates the channel when asserted. This makes it possible to activate each channel in software.
The START bit also provides a useful tool for testing and debugging the TCD, making it
possible to assess if the channel performed the expected transfers each time it is activated.

• Channel linking provides the means for one channel to assert the START bit of another channel.
The linked channel can be activated at stages of the transfer or on completion of the transfer.

2.2 DMA multiplexer
The DMA multiplexer is used to route the numerous peripheral DMA sources to individual DMA
channels. There are six DMA mux instances available, each of which is able to route sources to eight
DMA channels as described in Figure 3 and Table 1.

Figure 3. DMA channel multiplexing

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 5

Table 1. eDMA transfer request sources

DMAMUX instance DMA channel

0 0–7

1 8–15

2 16–23

3 24–31

4 32–47

5 48–63

The DMA multiplexer (DMA_Mux) performs the task of routing the peripheral DMA request sources to
the desired channel. It also provides the ability to gate a transfer request with the Periodic Interrupt
Controller (PIT), on selected MUX implementations. This functionality is discussed further in section
2.3.
The mapping of the peripheral DMA requests to the DMAMUX input sources differs across the
microcontrollers in the MPC57xx family. As an example, Table 2 lists the source mapping for
MPC5746M.

Table 2. Peripheral DMA requests on MPC5746M

Source Peripheral DMA requests
DMAMUX_0 DMAMUX_1 DMAMUX_2 DMAMUX_3 DMAMUX_4 DMAMUX_5

0 Reserved Reserved Reserved Reserved Reserved Reserved
1 ADC_SAR_0 EOC DSPI_12 RX ADC_SAR_2 EOC ADC_SAR_3 EOC ADC_SAR_4 EOC ADC_SAR_7 EOC
2 ADC_SAR_1 EOC DSPI_12 TX ADC_SD_1 EOC DSPI_2 RX ADC_SAR_6 EOC ADC_SD_4 EOC
3 ADC_SAR_B EOC LINFlex_0 RX DSPI_1 RX DSPI_2 TX ADC_SD_2 EOC ADC_SD_5 EOC
4 ADC_SD_0 EOC LINFlex_0 TX DSPI_1 TX LINFlex_2 RX ADC_SD_3 EOC DSPI_5 RX
5 DSPI_0 RX LINFlex_1 RX SENT_1 RX FAST LINFlex_2 TX DSPI_3 RX DSPI_5 TX
6 DSPI_0 TX LINFlex_1 TX SENT_1 RX SLOW I2C_0 RX DSPI_3 TX LINFlex_1 RX
7 DSPI_4 RX LINFlex_14 RX PSI5_0 CH0 RX PSI5 I2C_0 TX LINFlex_0 RX LINFlex_1 TX
8 DSPI_4 TX LINFlex_14 TX PSI5_0 CH0 RX SRX PSI5_1 CH0 RX PSI5 LINFlex_0 TX LINFlex_15 RX
9 Reserved SENT_0 RX FAST SIUL2 REQ2 PSI5_1 CH0 RX SRX LINFlex_14 RX LINFlex_15 TX
10 ADC_SAR_4 EOC SENT_0 RX SLOW SIUL2 REQ4 SIUL2 REQ5 LINFlex_14 TX SENT_0 RX FAST
11 ADC_SD_3 EOC SIPI CH0 GTM_PSM0_IRQ0 GTM_PSM0_IRQ4 PSI5_0 CH1 RX PSI5 SENT_0 RX SLOW
12 M_CAN_1 SIPI CH1 GTM_PSM0_IRQ1 GTM_PSM0_IRQ5 PSI5_0 CH1 RX SRX SIPI CH2
13 M_CAN_2 SIPI CH2 GTM_PSM0_IRQ2 GTM_PSM0_IRQ6 SIPI CH0 SIPI CH3
14 SENT_0 RX FAST SIPI CH3 GTM_PSM0_IRQ3 GTM_PSM0_IRQ7 SIPI CH1 SIUL2 REQ10
15 SENT_0 RX SLOW SIUL2 REQ0 GTM_TIM1_IRQ0 GTM_TIM1_IRQ4 SIUL2 REQ9 GTM_TOM0_IRQ2
16 LINFlex_0 RX SIUL2 REQ1 GTM_TIM1_IRQ1 GTM_TIM1_IRQ5 GTM_TIM0_IRQ0 GTM_TOM0_IRQ3
17 LINFlex_0 TX GTM_TIM0_IRQ0 GTM_TIM1_IRQ2 GTM_TIM1_IRQ6 GTM_TIM0_IRQ1 GTM_TOM0_IRQ4
18 LINFlex_14 RX GTM_TIM0_IRQ1 GTM_TIM1_IRQ3 GTM_TIM1_IRQ7 GTM_TOM0_IRQ0 GTM_TOM0_IRQ5
19 DSPI_0 CMD GTM_TIM0_IRQ2 GTM_TOM1_IRQ0 GTM_TOM1_IRQ4 GTM_TOM0_IRQ1 GTM_PSM0_IRQ4
20 DSPI_4 CMD GTM_TIM0_IRQ3 GTM_TOM1_IRQ1 GTM_TOM1_IRQ5 GTM_PSM0_IRQ0 GTM_PSM0_IRQ5
21 Reserved GTM_TIM0_IRQ4 GTM_TOM1_IRQ2 GTM_TOM1_IRQ6 GTM_PSM0_IRQ1 GTM_PSM0_IRQ6
22 Reserved GTM_TIM0_IRQ5 GTM_TOM1_IRQ3 GTM_TOM1_IRQ7 GTM_PSM0_IRQ2 GTM_PSM0_IRQ7
23 Reserved GTM_TIM0_IRQ6 GTM_ATOM1_IRQ0 GTM_MCS1_IRQ2 GTM_PSM0_IRQ3 GTM_TOM1_IRQ4
24 Reserved GTM_TIM0_IRQ7 GTM_ATOM1_IRQ1 GTM_MCS1_IRQ3 GTM_TOM1_IRQ0 GTM_TOM1_IRQ5
25 Reserved GTM_TOM0_IRQ0 GTM_MCS1_IRQ0 GTM_MCS1_IRQ4 GTM_TOM1_IRQ1 GTM_TIM3_IRQ4
26 Reserved GTM_TOM0_IRQ1 GTM_MCS1_IRQ1 GTM_MCS1_IRQ5 GTM_TIM3_IRQ0 GTM_TIM3_IRQ5

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

6 Freescale Semiconductor

Source Peripheral DMA requests
DMAMUX_0 DMAMUX_1 DMAMUX_2 DMAMUX_3 DMAMUX_4 DMAMUX_5

27 Reserved GTM_TOM0_IRQ2 GTM_MCS1_IRQ2 GTM_MCS1_IRQ6 GTM_TIM3_IRQ1 GTM_TIM3_IRQ6
28 Reserved GTM_TOM0_IRQ3 GTM_MCS1_IRQ3 GTM_MCS1_IRQ7 GTM_TIM3_IRQ2 GTM_TIM3_IRQ7
29 Reserved GTM_TOM0_IRQ4 GTM_TIM2_IRQ0 GTM_TIM2_IRQ4 GTM_TIM3_IRQ3 GTM_MCS3_IRQ4
30 Reserved GTM_TOM0_IRQ5 GTM_TIM2_IRQ1 GTM_TIM2_IRQ5 GTM_MCS3_IRQ0 GTM_MCS3_IRQ5
31 Reserved GTM_TOM0_IRQ6 GTM_TIM2_IRQ2 GTM_TIM2_IRQ6 GTM_MCS3_IRQ1 GTM_MCS3_IRQ6
32 Reserved GTM_TOM0_IRQ7 GTM_TIM2_IRQ3 GTM_TIM2_IRQ7 GTM_MCS3_IRQ2 GTM_MCS3_IRQ7
33 Reserved GTM_ATOM0_IRQ0 GTM_ATOM2_IRQ0 GTM_ATOM2_IRQ2 GTM_MCS3_IRQ3 DSPI_5 CMD
34 Reserved GTM_ATOM0_IRQ1 GTM_ATOM2_IRQ1 GTM_ATOM2_IRQ3 DSPI_3 CMD M_CAN_1
35 Reserved GTM_ATOM0_IRQ2 GTM_MCS2_IRQ0 GTM_ATOM2_IRQ4 ADC_SD_1 EOC M_CAN_2
36 Reserved GTM_ATOM0_IRQ3 GTM_MCS2_IRQ1 GTM_ATOM2_IRQ5 ADC_SD_4 EOC DSPI_3 RX
37 Reserved GTM_MCS0_IRQ0 GTM_MCS2_IRQ2 GTM_ATOM2_IRQ6 ADC_SD_5 EOC DSPI_3 TX
38 Reserved GTM_MCS0_IRQ1 GTM_MCS2_IRQ3 GTM_ATOM2_IRQ7 ADC_SAR_0 EOC ADC_SAR_3 EOC
39 Reserved GTM_MCS0_IRQ2 GTM_ATOM3_IRQ0 GTM_ATOM3_IRQ2 DSPI_0 CMD LINFlex_2 RX
40 Reserved GTM_MCS0_IRQ3 GTM_ATOM3_IRQ1 GTM_ATOM3_IRQ3 DSPI_0 RX LINFlex_2 TX
41 Reserved GTM_MCS0_IRQ4 ADC_SD_2 EOC SIUL2 REQ8 DSPI_0 TX ADC_SAR_1 EOC
42 Reserved GTM_MCS0_IRQ5 DSPI_1 CMD Reserved Reserved Reserved
43 Reserved GTM_MCS0_IRQ6 DSPI_2 RX ADC_SD_3 EOC Reserved Reserved
44 Reserved GTM_MCS0_IRQ7 DSPI_2 TX ADC_SAR_6 EOC Reserved Reserved
45 Reserved LINFlex_15 RX LINFlex_2 RX DSPI_2 CMD Reserved Reserved
46 Reserved LINFlex_15 TX LINFlex_2 TX DSPI_1 RX Reserved Reserved
47 Reserved DSPI_5 RX GTM_SPE0 DSPI_1 TX Reserved Reserved
48 Reserved DSPI_5 TX GTM_SPE1 ADC_SAR_2 EOC Reserved Reserved
49 Reserved DSPI_5 CMD PSI5-S ADC_SD_2 EOC Reserved Reserved
50 Reserved DSPI_12 CMD Reserved PSI5-S Reserved Reserved
51 Reserved Reserved Reserved Reserved Reserved Reserved
52 Reserved Reserved Reserved Reserved Reserved Reserved
53 Reserved DSPI_0 RX Reserved Reserved Reserved Reserved
54 Reserved DSPI_0 TX Reserved Reserved Reserved Reserved
55 Reserved ADC_SAR_0 EOC Reserved Reserved Reserved Reserved
56 Reserved ADC_SAR_3 EOC Reserved Reserved Reserved Reserved
57 Reserved ADC_SAR_4 EOC Reserved Reserved Reserved Reserved
58 Reserved Reserved Reserved Reserved Reserved Reserved
59 Reserved Always on Reserved Reserved Reserved Reserved
60 Reserved Always on Reserved Reserved Reserved Reserved
61 Reserved Always on Reserved Reserved Reserved Reserved
62 Reserved Always on Reserved Reserved Reserved Reserved
63 Always on Always on Always on Always on Always on Always on

Example 3 in section 5.3 shows how peripheral eDMA sources are enabled for DMA transfers through
the DMAMUX.

2.3 Activation options
The DMAMUX supports three different options for asserting transfer requests to the DMA.

• Disabled mode: In this mode, the DMA channel is disabled. Since DMA channels are
disabled and enabled primarily via the DMA configuration registers, this mode is used
mainly as the reset state for a DMA channel in the DMA Channel Mux. It may also be used
to temporarily suspend a DMA channel while reconfiguration of the system takes place (for
example, changing the period of a DMA trigger).

• Normal mode: In this mode, a DMA source (compare to Table 2) is routed directly to the
specified DMA channel. The operation of the DMA Mux in this mode is completely

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 7

transparent to the system. A DMA source as well as a destination (such as a peripheral result
or transmit buffer) requests/triggers the start of a DMA transfer when it is ready to receive or
transfer data.

• Periodic Trigger mode: In this mode, a DMA source may only request a DMA transfer (such as
when a transmit buffer becomes empty or a receive buffer becomes full) periodically. The period
is configured in the registers of the Periodic Interrupt Timer (PIT). Figure 4 shows the
relationship between the periodic interrupt, transfer request, and the transfer activation.

Figure 4. PIT gated transfer activation

The DMAMUX also provides a number of “always enabled” request sources that can be used in periodic
trigger mode. These permit transfers to be initiated based only on the PIT. This is shown in Figure 5.

Figure 5. PIT only transfer activation

3 Transfer Process
Prior to configuring the eDMA, it is useful to understand how the eDMA performs a transfer.

3.1 Handling multiple transfer requests
Only one channel can actively perform a transfer at a given time. Therefore, to handle multiple pending
transfer requests the eDMA controller offers channel prioritization. Fixed-priority or round-robin
prioritization can be selected.

In the fixed-priority scheme, each channel is assigned a priority level. When multiple requests are
pending, the channel with the highest priority level performs its transfer first. By default, fixed priority
arbitration is implemented, with each channel being assigned a priority level equal to its channel

Periodic Interrupt

Transfer Request
(Always Enabled)

Transfer Activated

Periodic Interrupt

Transfer Request

Transfer Activated

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

8 Freescale Semiconductor

number. Other priority levels can be assigned if required. Higher priority channels can preempt lower
priority channels. Preemption occurs when a channel is performing a transfer while a transfer request is
asserted to a channel of a higher priority. In this case, the lower priority channel halts its transfer and
allows the channel of higher priority to carry out its transfer. The lower priority channel then resumes its
transfer when the higher priority channel has completed its transfer. One level of preemption is
supported. Preemption is an option and must be enabled on a per-channel basis if required.
In round-robin mode, the eDMA cycles through the channels in order, checking for a pending request.
When a channel with a pending request is reached, it is allowed to perform its transfer. When the
transfer has been completed, the eDMA continues to cycle through the channels looking for the next
pending request.

3.2 Major and minor transfer loops
Each time a channel is activated and executes, a number of bytes, “NBYTES,” are transferred from the
source to the destination. This is referred to as a minor transfer loop. A major transfer loop consists of a
number of minor transfer loops. This number is specified within the TCD. As iterations of the minor
loop are completed, the current iteration (CITER) TCD field is decremented. When the current iteration
field has been exhausted, the channel has completed a major transfer loop.

Figure 6 shows the relationship between major and minor loops. In this example, a channel is configured
so that a major loop consists of three iterations of a minor loop. The minor loop is configured to be a
transfer of 4 bytes.

Figure 6. Major and minor transfer loops

The channel performs a selection of tasks upon completion of each minor and major transfer loop.

3.3 Completing a minor transfer loop
On completion of the minor loop, excluding the final minor loop, the eDMA carries out the following
tasks:

1
2
3
4

1
 2

3
4

1
2
3
4

DMA Request

DMA Request

DMA Request

CITER
3

CITER
2

CITER
1

M

ajo
r L

o
o

p

Minor
loop

Source Data
transferred

(bytes – n=4)

T
im

e

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 9

• Decrementing the current iteration (CITER) counter

• Updating the source address by adding the current source address to the signed source offset:
SADDR = SADDR + SOFF (source address is updated automatically as transfers are
performed. On completion of the minor loop, the source address contains source address for
the last piece of data that was read in the minor loop; offset is added to this value)

• Updating the destination address by adding the current destination address to the signed
destination offset: DADDR = DADDR + DOFF

• Updating channel status bits and requesting (enabled) interrupts

• Asserting the start bit of the linked channel upon completion of minor loop, if channel
linking is enabled

3.4 Completing a major transfer loop
On completion of the major/final minor loop, the eDMA performs the following:

• Updating source address by adding the current source address to the last source address
adjustment: SADDR = SADDR + SLAST

• Updating destination address by adding the current destination address to the last destination
address adjustment: DADDR = DADDR + DLAST

• Updating the channel status bits and requesting (enabled) interrupts

• Asserting the start bit of the linked channel upon completion of minor loop, if channel
linking is enabled

• Reloading current iteration (CITER) from the beginning major iteration count (BITER) field

4 Configuring the eDMA
This section covers some of the important configuration steps and register fields. For full details of all
the register fields, consult the microcontroller’s reference manual.

4.1 Configuration steps
To configure the eDMA, perform the following initialization steps:

1. Program the Control Register (eDMA_CR). This step is necessary only if a configuration other
than the default is required.

2. Configure Channel Priority Registers (eDMA_DCHPRIx) This step is necessary only if a
configuration other than the default is required.

3. Enable error interrupts using either the DMAEEI or DMASEEI register. This step is necessary
only if a configuration other than the default is required.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

10 Freescale Semiconductor

4. Write the Transfer Control Descriptors (eDMA_TCDn) for all channels that will be used.
Configure TCDs for the scatter/gather mechanism if required.

5. Configure the appropriate peripheral module and configure the DMAMUX to route the
activation signal to the appropriate channel

4.2 Transfer Control Descriptors (TCD)
All transfer attributes for a channel are defined in the channel’s unique TCD. Each TCD is stored in the
eDMA controller’s local SRAM. Only the DONE, ACTIVE, and STATUS fields are initialized at reset.
All other TCD fields are undefined at reset and must be written to by software before the channel is
activated. Failure to do this will result in unpredictable behavior of the channel. Figure 7 shows the TCD
memory map.

Figure 7. TCD memory map

The following table describes the TCD’s elements and their functions.
Table 3. TCD field descriptions

Field Description

SADDR[31:0] Source Address. Memory address of the transfer source data. Allows any area of the memory map
to be selected. As the eDMA performs transfers, this field is automatically updated for the next
transfer.

SMOD[4:0] Source Address Modulo. Simplifies the implementation of a circular data queue. A circular buffer is
created as the lower address fields wrap to their original value while the upper fields remain fixed.

00000 Source address modulo feature is disabled
xxxxx The number of lower source address bits that are allowed to increment.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 11

Field Description

SSIZE[2:0] Source Data Transfer Size. Defines the read data size for the eDMA engine. It does not define the
amount of data transferred per channel activation.

000 8-bit
001 16-bit
010 32-bit
011 Reserved
100 16-byte burst
101 Reserved
110 Reserved
111 Reserved

Example: For a transfer of 8 bytes per channel activation and SSIZE = 16 bits, the eDMA will
perform four 16-bit reads. If SSIZE were 32 bits, then the eDMA would perform two reads for this
transfer.

DMOD[4:0] Destination Address Modulo. Can be used to implement a circular data destination. As per SMOD
but for the destination address.

DSIZE[2:0] Destination Data Transfer Size. Defines the data write size for the eDMA engine. As per SSIZE.

SOFF[15:0] Source Address Signed Offset. Signed offset that is added to the current source address, upon
completion of a minor loop, to calculate the new source address value.

NBYTES[31:0]/

[31:2]/[31/22]

Minor Byte Transfer Count. Number of bytes to be transferred upon each activation of the channel.
Length of the field varies depending on enabling/disabling minor offset.

SMLOE[1:0] Source Minor Loop Offset Enable

0 The minor loop offset is not applied to the SADDR.
1 The minor loop offset is applied to the SADDR.

DMLOE[2:1] Destination Minor Loop Offset Enable

0 The minor loop offset is not applied to the DADDR
1 The minor loop offset is applied to the DADDR

MLOFF[21:2] If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source or
destination address to form the next-state value after the minor loop completes.

SLAST[31:0] Last Source Address Adjustment. Signed offset that is added to the source address upon
completion of the major loop, to calculate the new source address value. It can be used to restore
the source address to the original value or to adjust the source address to the next data structure.

DADDR[31:0] Destination Address. Memory address of the transfer destination. Allows any area of the memory
map to be selected. As the eDMA performs transfers, this field is automatically updated for the next
transfer.

CITER_E_LINK Enable Channel Linking on Completion of a minor loop

0 Channel Linking on completion of a minor loop is disabled
1 Channel Linking on completion of a minor loop is enabled

NOTE: This field must be equal to the BITER_E_LINK field or a configuration error will be reported.

CITER_LINKCH[5:0] Minor Loop Complete Link Channel. As the channel completes a minor loop, it asserts the START
bit of the channel defined in CITER_LINKCH[5:0].

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

12 Freescale Semiconductor

Field Description

CITER[14:0] or
CITER[8:0]

Current Iteration Count. Represents the current number of minor loops that are to be executed to
complete the major loop. As minor loops are completed, this field is decremented until it is
exhausted. When it is exhausted, a major loop is complete. Upon completion of a major loop, the
field is reloaded with the value contained in the BITER field. When this field is initially loaded, it
must be set to the same value as the BITER field since the eDMA will not copy BITER into CITER
until the first major loop has been completed.

NOTE: If channel linking is disabled, a 15-bit iteration count is used instead of a 6-bit link channel
number and 9-bit iteration count.

DOFF[15:0] Destination Address Signed Offset. Signed offset that is added to the current destination address
upon completion of a minor loop to calculate the next destination address.

DLASTSGA[31:0] Last Destination Address Adjustment or Memory Address for the Next TCD. If Scatter/Gather is
disabled (ESG = 0), then the value contained in this field performs the same task as the SLAST
field for the destination address.

When Scatter/Gather is enabled (ESG = 1), this field is used as a pointer to a 0-modulo-32 region
that contains the next TCD for this channel.

BITER_E_LINK Beginning Enable Channel Linking on Minor Loop Complete. When a major loop is completed, this
field is used to reload the CITER_E_LINK field. Hence, when writing the BITER_E_LINK and
CITER_E_LINK they must be configured to the same value.

BITER_LINKCH[5:0] Beginning Minor Loop Complete Link Channel. When a major loop is completed, this field is used
to reload the CITER_LINKCH field. Hence, when configuring the BITER_LINKCH and
CITER_LINKCH they must be configured to the same value.

BITER[14:0] or
BITER[8:0]

Beginning Major Iteration Count. When a major loop is completed, this field is used to reload the
CITER field in preparation for the next channel activation. When configuring the BITER and CITER
fields, they should be configured to the same value.

BWC[1:0] Bandwidth Control. Provides a means of controlling the amount of bus bandwidth the eDMA uses.

00 No stalls–consume 100% bandwidth
01 Reserved
10 eDMA stalls for 4 cycles after each read/write
11 eDMA stalls for 8 cycles after each read/write

MAJORLINKCH[5:0] Major Loop Complete Link Channel. As the channel completes a major loop—and channel linking
on completion of a major loop is enabled (MAJORELINK = 1)—the START bit of the channel
defined in MAJORLINKCH[5:0] is asserted.

DONE Channel Done. This bit is set when the channel completes a major loop. It remains set until the
channel is reactivated by a transfer request or it is cleared by software.

ACTIVE Channel Active. This bit is set if the channel is performing a transfer. It is set when a minor loop
transfer is started and it is cleared, by the hardware, when that minor loop is complete.

MAJORELINK Enable Channel Linking on Completion of a Major Loop

0 Channel linking on completion of a major loop is disabled
1 Channel linking on completion of a major loop is enabled

ESG Enable Scatter/Gather Processing

0 Scatter/Gather processing is disabled
1 Scatter/Gather processing is enabled

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 13

Field Description

DREQ Disable Request. If set when the channel completes a major loop, the eDMA clears the
corresponding DMAERQ, disabling the transfer request.

0 The channel’s DMAERQ bit is not affected
1 The channel’s DMAERQ bit is cleared upon completion of a major loop

INTHALF Generate Interrupt when Major Loop is Half-Complete. When CITER = BITER ÷ 2, the eDMA
asserts an interrupt request in the DMAINT register.

0 The major loop half complete interrupt is disabled
1 The major loop half complete interrupt is enabled

INTMAJOR Generate an Interrupt on Completion of a Major Loop. When CITER = 0, the eDMA asserts an
interrupt request in the DMAINT register.

0 The major loop complete interrupt is disabled
1 The major loop complete interrupt is enabled

START Channel Start. Writing this bit as a 1 explicitly activates the channel and a minor loop transfer is
performed.

If a channel’s TCD descriptor is configured with an illegal value or an illegal combination of values, a
channel error will be reported in the DMAERR register.

5 Example eDMA Configurations
This section details three example eDMA configurations, starting with a simple configuration and
progressing to the more advanced features and functions of the eDMA at an application level:

1. Basic transfer (including channel linking)
2. Scatter/gather
3. Peripheral DMA request (using the SDADC EOC DMA request)

5.1 Example configuration 1: basic transfer
This example configures the eDMA for a basic software-triggered eDMA transfer and channel linking
on completion of the first channel’s major loop.

5.1.1 Requirements
Two data arrays are created in internal SRAM. The first, data_array0[] is of 64-byte size while
data_array1[] is 16-byte to demonstrate different setups for the TCDs.

These arrays will be placed at the beginning of the dedicated data SRAM at address 0x40001000 and are
to be moved to 0x4001F000 (data_array0) and 0x4001FF00 (data_array1).

When the channel performing the transfer is activated by software, the first 32-bit piece of data in the
sequence is moved from the source to the destination.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

14 Freescale Semiconductor

On completion of the major loop, the next channel is triggered automatically by means of channel
linking and 64 bits are moved by the second channel.
When this transfer has completed, the channel is not used again, making it unnecessary to restore or
prepare the channel for future transfers.

Figure 8. Example 1 requirements

5.1.2 Module configuration
This example uses software channel activation for the first TCD and activation by channel linking for
the second TCD. Configuring the DMAMUX or the eDMA module registers is not required. It is only
necessary to load the source data before configuring and activating the channel via the TCDs.

The code to configure the TCDs on channel 0 and 1 is given below (includes enabling channel linking
on channel 1):

 /* Configure CH0 */
 DMA_0.TCD[0].SADDR = (int)&data_array0[0];
 DMA_0.TCD[0].SMOD = 0;
 DMA_0.TCD[0].SSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[0].DMOD = 0;
 DMA_0.TCD[0].DSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[0].SOFF = 0x4;
 DMA_0.TCD[0].NBYTES = 64; /* 16x32-bits */
 DMA_0.TCD[0].SLAST = -64;
 DMA_0.TCD[0].DADDR = 0x4001F000;
 DMA_0.TCD[0].CITER_ELINK = 0;
 //DMA_0.TCD[0].CITER_LINKCH = 0;
 DMA_0.TCD[0].CITER = 1;
 DMA_0.TCD[0].DOFF = 0x4;
 DMA_0.TCD[0].DLAST_SGA = -64;
 DMA_0.TCD[0].BITER = 1;
 DMA_0.TCD[0].BITER_ELINK = 0;
 //DMA_0.TCD[0].BITER_LINKCH = 0;
 DMA_0.TCD[0].BWC = 0;
 DMA_0.TCD[0].MAJORLINKCH = 1; /* Link to channel 1 */
 DMA_0.TCD[0].MAJORELINK = 1; /* Enable channel linking */
 DMA_0.TCD[0].ESG = 0;
 DMA_0.TCD[0].DREQ = 0;
 DMA_0.TCD[0].INTHALF = 0;
 DMA_0.TCD[0].INTMAJ = 0;

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 15

 /* Configure CH1 */
 DMA_0.TCD[1].SADDR = (int)&data_array1[0];
 DMA_0.TCD[1].SMOD = 0;
 DMA_0.TCD[1].SSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[1].DMOD = 0;
 DMA_0.TCD[1].DSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[1].SOFF = 0x4;
 DMA_0.TCD[1].NBYTES = 16; /* 4x32-bits */
 DMA_0.TCD[1].SLAST = -16;
 DMA_0.TCD[1].DADDR = 0x4001FF00;
 DMA_0.TCD[1].CITER_ELINK = 0;
 //DMA_0.TCD[1].CITER_LINKCH = 0;
 DMA_0.TCD[1].CITER = 1;
 DMA_0.TCD[1].DOFF = 0x4;
 DMA_0.TCD[1].DLAST_SGA = -16;
 DMA_0.TCD[1].BITER = 1;
 DMA_0.TCD[1].BWC = 0;
 //DMA_0.TCD[1].MAJORLINKCH = 2; /* Link to channel 2 */
 DMA_0.TCD[1].MAJORELINK = 0; /* Enable channel linking */
 DMA_0.TCD[1].ESG = 0;
 DMA_0.TCD[1].DREQ = 0;
 DMA_0.TCD[1].INTHALF = 0;
 DMA_0.TCD[1].INTMAJ = 0;

NOTE
Bit fields that are commented out are shown so that all of the TCD fields
can be viewed. If a bit field is commented out, its value is set to 0.

Channel linking is enabled by setting MAJORELINK = 1 and it is linked to channel 1 by setting
MAJORLINKCH = 1.
The first DMA transfer is initiated by setting the TCD’s start bit:

DMA_0.TCD[0].START = 1; /* Start transfer on channel 0 */
Channel 1 starts automatically via channel linking.

If possible, step through the code in a debugging environment and monitor the source and destination
memory address as the channels are activated and the transfers performed. On completion of the major
loop, the source and destination addresses are restored. Further activations of channel 0 will therefore
result in the transfer process being repeated.
With this configuration, each time one of the 32-bit values is transferred, a minor loop is completed.
When transfers have completed, the major loop is complete.

5.2 Example configuration 2: scatter/gather
This example configures the eDMA for a software-triggered eDMA transfer with subsequent
scatter/gather mechanism at completion of the first major loop.

5.2.1 Requirements
Two data arrays and one TCD array are created in internal SRAM. The first, data_array0[] is of a 56-
byte size while data_array1[] is 8 bytes to demonstrate different set-ups for the TCDs.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

16 Freescale Semiconductor

These arrays will be placed at the beginning of the dedicated data SRAM at address 0x40001000 and are
to be moved to 0x4001F000 (data_array0) and 0x4001FF00 (data_array1).
The TCD_SG structure contains the new TCD content that has to be loaded into the channels TCD on
completion of the first major loop.
When the channel performing the transfer is activated, by software, the first 32-bit piece of data in the
sequence is moved from the source to the destination.
On completion of the first major loop, scatter/gather is performed and the data contained in the structure
TCD_SG is loaded into the channel’s TCD. The next transfer is triggered automatically as the START
bit is set when the new TCD is loaded. When this second transfer has completed, the channel is not used
again, making it unnecessary to restore or prepare the channel for future transfers.

Figure 9. Example 2 requirements

5.2.2 Module configuration
This example uses software channel activation for the first transfer. The second transfer is started
automatically as soon as the new TCD is loaded as the START bit is set. Configuring the DMA_Mux or
the eDMA module registers is not required. It is only necessary to load the source data before
configuring and activating the channel via the TCDs.
The code to perform the transfer on channel 0 (includes enabling scatter/gather) is given below:

 /* Configure CH0 */
 DMA_0.TCD[0].SADDR = (int)&data_array0[0];
 DMA_0.TCD[0].SMOD = 0;
 DMA_0.TCD[0].SSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[0].DMOD = 0;
 DMA_0.TCD[0].DSIZE = 0x2; /* 32-bit */
 DMA_0.TCD[0].SOFF = 0x4;
 DMA_0.TCD[0].NBYTES = 56; /* 14x32-bits */
 DMA_0.TCD[0].SLAST = -56;
 DMA_0.TCD[0].DADDR = 0x4001F000;

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 17

 DMA_0.TCD[0].CITER_ELINK = 0;
 //DMA_0.TCD[0].CITER_LINKCH = 0;
 DMA_0.TCD[0].CITER = 1;
 DMA_0.TCD[0].DOFF = 0x4;
 DMA_0.TCD[0].DLAST_SGA = (int)&TCD_SG[0];
 DMA_0.TCD[0].BITER = 1;
 DMA_0.TCD[0].BITER_ELINK = 0;
 //DMA_0.TCD[0].BITER_LINKCH = 0;
 DMA_0.TCD[0].BWC = 0;
 //DMA_0.TCD[0].MAJORLINKCH = 1; /* Link to channel 1 */
 DMA_0.TCD[0].MAJORELINK = 0; /* Disable channel linking */
 DMA_0.TCD[0].ESG = 1; /* Enable Sgatter/gather */
 DMA_0.TCD[0].DREQ = 0;
 DMA_0.TCD[0].INTHALF = 0;
 DMA_0.TCD[0].INTMAJ = 0;

NOTE
Bit fields that are commented out are shown so that all of the TCD fields
can be viewed and differences are made more obvious.

The code to perform the transfer on channel 0 (includes enabling sgatter/gather) is given below:

 vuint32_t TCD_SG[] = {
 (int)&data_array1[0],0x02020004,
 0x00000008,0xfffffff8,
 0x4001ff00,0x00010004,
 0xfffffff8,0x00010001,
 };

NOTE
The 32 bytes of the TCD array used for scatter/gather has to be 32-byte
aligned. The channel reload is performed as the major iteration count
completes. The scatter/gather address must be 0-modulo-32-byte;
otherwise, a configuration error is reported.

The TCD_SG structure is configured according to the TCD memory map (compare Figure 7). Note that
the first element of the array contains the source address (SADDR) and hence points to the data array
that is to be transferred. The last word is configured to set the START bit so that a transfer starts as soon
as the new TCD is loaded.

If possible, step through the code in a debugging environment and monitor the source and destination
memory address as the channels are activated and the transfers performed. On completion of the first
major loop, the values defined in the array TCD_SG are loaded into TCD[0].

5.3 Example configuration 3: peripheral DMA transfer
This example configures the eDMA for a peripheral DMA transfer using the Sigma-Delta Analog-to-
Digital Converter (SDADC) as the peripheral DMA source, demonstrating the use of the DMA
multiplexer (DMAMUX).

NOTE
This example was developed on MPC5746M, using this microcontroller’s
SDADC. This module may not be part of other products in the MPC57xx

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

18 Freescale Semiconductor

family. Although the SDADC may not be present on all devices, it serves
as a good example for transferring data to any peripheral module.

5.3.1 Requirements
SDADC_0 is configured for continuous conversion and FIFO full (end-of-conversion/EOC) DMA
requests. The SDADC is continuously converting inputs and storing the results in the FIFO. When the
FIFO is full, a DMA transfer requests to transfer the data to SRAM where a table of 10 × 16 results is
built up. Upon completion of this table, an interrupt is generated.
In this application-typical scenario the DMA is transferring the data from the SDADC’s buffer to a
location in SRAM in ten minor loops to create a result table with a total of 160 conversion results. After
ten minor loops, the major loop is completed. Further DMA requests are disabled and an interrupt
request is issued to the core.
The DMA_Mux is configured to route the peripheral DMA request to an eDMA channel and this
channel’s TCD is programmed to transfer the data upon receiving the request.
When the channel performing the transfer is activated by the peripheral request, the first 16-bit piece of
data in the sequence is moved from the source to the destination. After fifteen more transfers, the minor
loop is complete and the DMA waits for the next transfer request. After a total of 10 minor loops, the
major loop is completed, further DMA requests are disabled, and an interrupt is issued to the core.

Figure 10. Example 3 requirements

5.3.2 Module configuration
According to the peripheral DMA request table (Table 2), DMAMUX_0 is configured to route source 4,
the SDADC_0 EOC DMA request, to channel 7 of the eDMA.

The eDMA’s ERQL register has to be configured to enable SDADC DMA requests on channel 7.
Configuring the eDMA module registers is not required. It is only necessary to load the source data
before configuring and activating the channel via the TCDs.

The code to configure the eDMA and DMA_Mux to perform the transfer on channel 7 is given below:

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 19

 /* Configure CH7 */

DMA_0.TCD[7].SADDR = (vuint32_t)&SDADC_0.CDR.R + 2; /* Lower half-word from CDR
 DMA_0.TCD[7].SMOD = 0;
 DMA_0.TCD[7].SSIZE = 0x1; /* 16-bit */
 DMA_0.TCD[7].DMOD = 0;
 DMA_0.TCD[7].DSIZE = 0x1; /* 16-bit */
 DMA_0.TCD[7].SOFF = 0;
 DMA_0.TCD[7].NBYTES = 32; /* 16x16-bits -> 16 results from the FIFO */
 DMA_0.TCD[7].SLAST = 0;
 DMA_0.TCD[7].DADDR = 0x4001E000;
 DMA_0.TCD[7].CITER_ELINK = 0;
 //DMA_0.TCD[7].CITER_LINKCH = 0;
 DMA_0.TCD[7].CITER = 10; /* 10 Minor loops to build up the result table */
 DMA_0.TCD[7].DOFF = 0x2;
 DMA_0.TCD[7].DLAST_SGA = -320;
 DMA_0.TCD[7].BITER = 10; /* 10 Minor loops to build up the result table */
 DMA_0.TCD[7].BITER_ELINK = 0;
 //DMA_0.TCD[7].BITER_LINKCH = 0;
 DMA_0.TCD[7].BWC = 0;
 DMA_0.TCD[7].MAJORLINKCH = 0; /* No Linking */
 DMA_0.TCD[7].MAJORELINK = 0;
 DMA_0.TCD[7].ESG = 0;
 DMA_0.TCD[7].DREQ = 1; /* Clear channel's DMA request bit upon completion of
 DMA_0.TCD[7].INTHALF = 0;
 DMA_0.TCD[7].INTMAJ = 1; /* The end-of-major loop interrupt is enabled */

 /* Configure SDADC Mux channels */
 DMACHMUX_0.CHCONFIG[7].R= 0x84; /* DMA MUX 0 to set SDADC0 EOC on DMA channel 7 */

 /* Enable channels */
 DMA_0.ERQL.R = 0x00000080; /* Enable channels 7 for SDADC eDMA requests */

NOTE
Bit fields that are commented out are shown so that all of the TCD fields
can be viewed and differences are made more obvious.

With this configuration, sixteen 16-bit values are transferred from the SDADC’s Converted Data
Register (CDR) into SRAM per minor loop. There are ten minor loops: Citer/Biter = 10. The source
address (SADDR) is configured to start at the lower half of the 32-bit register because the result is only
16-bit. The source offset (SOFF) is set to 0 because the FIFO automatically puts the new result into the
CDR when the previous one has been read, until all 16 results have of the full FIFO have been read. The
destination address offset (DOFF) is 2 bytes, to store the sixteen results in a total of 32 bytes of SRAM.
DREQ is set to 1 to disable further DMA requests from the DMA_Mux. INTMAJ is set to 1 to request
an interrupt at completion of a major loop. The code is configured in a way that it will get stuck in an
infinite loop in the interrupt service routine to show that an interrupt occurred and had been serviced.

6 Debugging Tips
While this application note gives a solid grounding in using the eDMA, it is such a powerful module that
there are many possible use case scenarios that cannot all be covered in this application note. To aid in
debugging problems that may arise when developing applications, the eDMA includes the Error Status
Register (ES), which can be a powerful tool for diagnosing problems with DMA transfers. Some hints
for using the ES to debug errors when developing code are given below.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

20 Freescale Semiconductor

The structure of the ES is shown in Figure 11.

Figure 11. Error Status Register

When an error occurs in a DMA transaction it will be flagged in this ES register, depending on the type
of error. The following table describes the errors indicated by the ES.

Table 4. Error Status Register field descriptions

Field Description

VLD ERRH and ERRL status bits, indicating an error in one of the channels. The exact channel
number can be determined by checking the ERRH and ERRL registers.

UCE Indicates that the last error was an uncorrectable ECC error in the TCD RAM. This error may be
resolved by initializing the TCD RAM.

ECX Transfer cancelled via the error cancel transfer bit DMA_CR[ECX].

CPE Channel priority error. This error occurs when two or more channels have the same priority.
Channel priorities have to be unique.

ERRCHN Error channel number.

SAE Configuration error in the TCD_SADDR field (inconsistent with TCD_ATTR[SSIZE]).

SOE Configuration error in the TCD_SOFF field (inconsistent with TCD_ATTR[SSIZE])

DAE Configuration error in the TCD_DADDR field (inconsistent with TCD_ATTR[DSIZE])

DOE Configuration error in the TCD_DOFF field (inconsistent with TCD_ATTR[DSIZE])

NCE Configuration error in the TCD_NBYTES or TCD_CITER field. Initially TCD_CITER has to be
programmed to be the same value as TCD_BITER.

SGE Sgatter/gather error, this indicates a configuration error in the TCD_DLASTSGA field which has to
be on a 32-byte boundary when sgatter/gather is enabled (TCD_CSR[ESG] = 1).

SBE Bus error on source read.

DBE Bus error on a destination write.

MPC57xx: Configuring and Using the eDMA Controller, Rev. 1

Freescale Semiconductor 21

Another useful tool when debugging is the soft start bit, TCD_CSR[START]. It can be used to start any
configuration in software and is a good method to check if the configuration is behaving as expected.

7 Conclusion
This application note provides a good understanding and working knowledge of the MPC57xx eDMA
controller, enabling the user to create eDMA configurations suitable for applications. The source code
provided along with this application note can be used as a basis for configurations.
For more information on the Freescale MPC57xx family, visit: freescale.com

http://www.freescale.com/�

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions

Freescale, the Freescale logo, Qorivva, SafeAssure, and the SafeAssure
logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &
Tm. Off. All other product or service names are the property of their
respective owners. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

Document Number AN4765
Rev 1, 08/2013

	MPC57xx: Configuring and Using the eDMA Controller
	1 Introduction
	1.1 DMA controller overview
	1.2 MPC57xx eDMA controller features
	1.3 eDMA architectural integration

	2 Activating eDMA Transfers
	2.1 Activation sources
	2.2 DMA multiplexer
	2.3 Activation options

	3 Transfer Process
	3.1 Handling multiple transfer requests
	1.1
	3.2 Major and minor transfer loops
	3.3 Completing a minor transfer loop
	3.4 Completing a major transfer loop

	4 Configuring the eDMA
	4.1 Configuration steps
	4.2 Transfer Control Descriptors (TCD)

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	5 Example eDMA Configurations
	5.1 Example configuration 1: basic transfer
	5.1.1 Requirements
	5.1.2 Module configuration
	5.2 Example configuration 2: scatter/gather
	5.2.1 Requirements
	5.2.2 Module configuration
	5.3 Example configuration 3: peripheral DMA transfer
	5.3.1 Requirements
	5.3.2 Module configuration

	6 Debugging Tips
	7 Conclusion

