
1 Introduction
This document supplies several methods for modifying the
QorIQ USDPAA offloading applications using the DPA
offloading driver API.

The document explores four target use cases providing
detailed and interactive examples. These include:

• USDPAA classifier demo application
• USDPAA IP fragmentation demo application
• USDPAA IP reassembly demo application
• USDPAA IPSec offloading application

Readers should be familiar with either the P4080, B4860 or
B4420 QorIQ Integrated Multicore Communication Processor
Family Reference Manual. Additionally, information
regarding the QorIQ Software Design Kit (SDK) may be
found online at /www.freescale.com/infocenter/

The following table provides a short summary of each
example.

Table 1. Summary of USDPAA offloading applications

Application Description

USDPAA classifier
demo application

Provides an example on how to use
basic frame manager features such as
parse, classify, distribution and header
manipulation.

Table continues on the next page...

Freescale Semiconductor Document Number:AN4785

Application Note Rev 0, 08/2013

Modifying DPAA Offloading
Applications

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Altering the classifier_demo
application...2

3 Adapting the fragmentation_demo
application...7

4 Manipulating the reassembly_demo
application...10

5 Customizing the ipsec_offload
application...15

6 References...20

7 Appendix A – Preparing DPA Offloading
DTB Files..20

8 Revision history..23

Table 1. Summary of USDPAA offloading applications (continued)

Application Description

USDPAA IP
fragmentation
demo application

Illustrates how to configure basic IP
fragmentation provided by the Frame
Manager. For frame manager version 3
devices the reassembly application also
demonstrates the Virtual Storage Profile
configuration and selection for
reassembled flows.

USDPAA IP
reassembly demo
application

Explains how to configure basic IP
reassembly provided by the Frame
Manager. For Frame Manager version 3
devices the reassembly application also
demonstrates the Virtual Storage Profile
configuration and selection for
reassembled flows.

USDPAA IPSec
offloading
application

Reveals how to use standard Linux tools
to configure IPSec offloading using the
DPA offloading driver.

2 Altering the classifier_demo application
This application demonstrates how packet classification can be offloaded to the frame manager by using the DPA offloading
driver. It shows several functionalities of the classifier and stats components.

2.1 Overview
The application performs the following operations on an Exact Match table that has its entries managed by key:

• Create an Exact Match Table
• Flush an Exact Match Table
• Free an Exact Match Table
• Insert entry in an Exact Match Table
• Import header manipulations created by fmclib
• Set up header manipulation on a table entry
• Modify the header manipulation associated with a table entry
• Modify entry by Key in an Exact Match Table
• Delete entry by Key in an Exact Match Table
• Get Statistics by Key in an Exact Match Table using DPA Classifier API
• Create a DPA Stats class counter for the entire Exact Match Table
• Retrieve synchronously and asynchronously the DPA Stats counter

The application has four stages and each stage is meant to validate different functionalities. The user can switch from one
stage to another by typing the command “next_stage” in the USDPAA PPAM command line. When a frame is received, if
the table lookup process results in a HIT condition, the frame is be sent to a specific frame queue. Once the frame is in a
frame queue, the CPU dequeues it, displays information related to its characteristics and information about the queue (fqid)
it was received on, and sends it back to be transmitted on the interface it was received from. The tested Exact Match table is
managed by key, and each operation that is performed on the table uses the lookup key to identify the entry to work on.

Altering the classifier_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

2 Freescale Semiconductor, Inc.

A header manipulation operations chain is attached to each of the entries which are inserted in the table. The header
manipulations are defined in the PCD configuration files provided with the application and are imported by the DPA
Classifier. Each header manipulations chain consists of a forwarding header manipulation (L2 header update) followed by an
L3 header update operation. The values in each header manipulation chain are updated at runtime as the application
progresses through its different stages.

During each stage the user has the possibility of performing a number of actions on the DPA Stats class counter by entering
the following commands in the USDPAA PPAM command line:

Table 2. DPA Stats class counter actions

Command Line Description

get_stats retrieve the statistics for the created counters in an asynchronous mode and print
the returned values.

get_stats_sync retrieve the statistics for the created counters in a synchronous mode and print the
returned values.

reset_stats reset the statistics for the created counters.

In order to have a successful operation, the user must verify that the returned values of the counters statistics matches the
number of sent frames for each stage of the test.

Classifier demo is a USDPAA application that requires the following resources:

• classif_demo_config.xml - config file
• classif_demo_policy.xml - policy file

This user space application initializes the classification schemes using the FMC library, and afterwards it manages the DPA
Classifier table.

The application receives traffic on the configured Ethernet port. Lookups are performed in the DPA Classifier table. If the
result is Hit, the frame is sent to a specific frame queue on a software portal. A CPU dequeues the frame, displays
information about the packet and about the queue it was received on, and sends the packet back to be transmitted on the
interface from which it was received. If the result is Miss, the frame is silently dropped.

NOTE
Classifier demo application does not use the cores or the IP stack for performing
classification (look-up actions) or header manipulation operation (protocol operations). It
uses the frame manager features for traffic classification and header manipulation.

2.2 Running classifier_demo
Classifier_demo application supports the following platforms:

• P4080
• B4860
• B4420

To run the application, you may need to use a specific device tree file that comes with the Linux DPA offloading driver. The
following shows you how to produce this device tree file for your platform.

2.2.1 Application environment specifications
This application uses the setup pictured bellow with the following connections:

Altering the classifier_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 3

Table 3. Port Connections

SoC Traffic Port

P4080 fm1-gb0

B4860 fm0-mac5

B4420 fm0-mac3

SMB 1A

Smartbits 6000C

P4080 / B4860 / B4420

TFTP Server
NFS Server
Console

boot port

traffic port

Figure 1. Use Case Set-up

2.2.2 Application start-up and configuration
Use the steps described later in Compiling the Device Tree for USDPAA Applications to generate a device tree binary file.
Boot the board with the compiled kernel, arch/powerpc/boot/uImage, and the DTB file.

To reserve memory for USDPAA and enable the scatter-gather support in the DPAA Ethernet driver add the following to the
boot arguments:

setenv othbootargs “usdpaa_mem=256M fsl_fm_max_frm=9600"

The following commands assume that the application runs on a B4860QDS board. When running on a different supported
platform, please use the proper configuration file and the parameters listed in the section above. Run these commands to set
up the USDPAA network configuration and PCD resources used by the application:

 export DEF_CFG_PATH=/usr/etc/classifier_demo_config-b4860.xml
 export DEF_PCD_PATH=/usr/etc/classifier_demo_policy.xml
 export DEF_PDL_PATH=/etc/fmc/config/hxs_pdl_v3.xml

First ensure that the following device files have been created:

• /dev/dpa_classifier
• /dev/dpa_stats

The classifier_demo can be run with the following command:

/usr/bin/classifier_demo -f 0 -t 5

The following arguments specify the frame manager ports used by the application:

Altering the classifier_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

4 Freescale Semiconductor, Inc.

• -f [FMan index]
• -t [Traffic Port index]

The output displayed by the application would be something similar with the following:

Found /fsl,dpaa/dpa-fman0-oh@2, Tx Channel = 80a, FMAN = 0, Port ID = 1
Found /fsl,dpaa/dpa-fman0-oh@3, Tx Channel = 80b, FMAN = 0, Port ID = 2
Found /fsl,dpaa/dpa-fman0-oh@4, Tx Channel = 80c, FMAN = 0, Port ID = 3
Found /fsl,dpaa/ethernet@2, Tx Channel = 804, FMAN = 0, Port ID = 2
Found /fsl,dpaa/ethernet@5, Tx Channel = 807, FMAN = 0, Port ID = 5
Configuring for 1 network interface
Allocated DMA region size 0x1000000
dpa_classifier_demo: using the following config file:
/usr/etc/classifier_demo_config-b4860.xml
dpa_classifier_demo: using the following PCD file:
/usr/etc/classifier_demo_policy.xml
dpa_classifier_demo: using the following PDL file:
/etc/fmc/config/hxs_pdl_v3.xml
dpa_classifier_demo is assuming FMan:0 and port:5
Header manipulations:
 1) Forwarding 0x0x12e50448, IPSA update 0x0x12e50ad8
 2) Forwarding 0x0x12e4f498, IPSA update 0x0x12e4fe78
 3) Forwarding 0x0x12e50190, IPSA update 0x0x12e50148
 4) Forwarding 0x0x12e501e0, IPSA update 0x0x12e501b8
 5) Forwarding 0x0x12e50080, IPSA update 0x0x12e50068
 6) Forwarding 0x0x12e500f0, IPSA update 0x0x12e500c8
 7) Forwarding 0x0x12e4fc08, IPSA update 0x0x12e50118
 8) Forwarding 0x0x12e4fca0, IPSA update 0x0x12e4fc20
 9) Forwarding 0x0x12e4f9c8, IPSA update 0x0x12e4fcc8
 10) Forwarding 0x0x12e50aa0, IPSA update 0x0x12e50a88
 11) Forwarding 0x0x12e4ff90, IPSA update 0x0x12e503b8
 12) Forwarding 0x0x12e50340, IPSA update 0x0x12e50318
 13) Forwarding 0x0x12e50478, IPSA update 0x0x12e50460
 14) Forwarding 0x0x12e502e8, IPSA update 0x0x12e504b0
 15) Forwarding 0x0x12e50250, IPSA update 0x0x12e50300
 16) Forwarding 0x0x12e50208, IPSA update 0x0x12e4ff28
 17) Forwarding 0x0x12e4fe40, IPSA update 0x0x12e4ffe8
 18) Forwarding 0x0x12e4fe90, IPSA update 0x0x12e4fef8
 19) Forwarding 0x0x12e4fec0, IPSA update 0x0x12e4fea8
 20) Forwarding 0x0x12e50130, IPSA update 0x0x12e4f4b0

Successfully CREATED DPA Classifier Exact Match table (td=0).
DPA Stats library successfully initialized

Successfully Initialized DPA Stats instance: 0
Successfully created DPA Stats counter: 0
Successfully populated DPA Classifier table (20 entries)
Stage #1 is ready - Created & populated table.
When ready to go to the next test stage, type "next_stage"
Released 0 bufs to BPID 7
Released 0 bufs to BPID 8
Released 8192 bufs to BPID 9
Thread uid:0 alive (on cpu 1)

2.2.3 Running the application
At this point the user can start sending traffic with the traffic generator.

A DPA Stats class counter is created for the newly DPA Classifier Exact Match Table. The number of class members is
configured to match the number of entries the table is populated with. During creation, the class counter is provided only with
invalid keys, as such the returned values of the counters statistics is 0 for every member of the class. The class counter
provides for every valid key, the following statistics: number of bytes and number of frames.

Altering the classifier_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 5

Stage 1: The application creates a 24 entry Exact Match table managed by key. The table is pre-filled with 4 static entries
(marked with the word static in the table below) directly from the XML file. The application also populates at runtime the
table with 20 more entries. The classification table content is therefore the following:

Table 4. Stage 1 Classification Table

Flow ID IP Source IP Dest. Protocol (Id) Dest FQ Id

0 192.168.1.1 192.168.10.10 TCP (6) 6020

1 192.168.1.1 192.168.10.10 UDP (17) 6021

2 192.168.1.1 192.168.10.11 TCP (6) 6022

3 192.168.1.1 192.168.10.11 UDP (17) 6023

4 192.168.1.2 192.168.10.10 TCP (6) 6024

5 192.168.1.2 192.168.10.10 UDP (17) 6025

6 192.168.1.2 192.168.10.11 TCP (6) 6026

7 192.168.1.2 192.168.10.11 UDP (17) 6027

8 192.168.1.3 192.168.10.10 TCP (6) 6028

9 192.168.1.3 192.168.10.10 UDP (17) 6029

10 192.168.1.3 192.168.10.11 TCP (6) 6030

11 192.168.1.3 192.168.10.11 UDP (17) 6031

12 192.168.1.4 192.168.10.10 TCP (6) 6032

13 192.168.1.4 192.168.10.10 UDP (17) 6033

14 192.168.1.4 192.168.10.11 TCP (6) 6034

15 192.168.1.4 192.168.10.11 UDP (17) 6035

16 192.168.1.5 192.168.10.10 TCP (6) 6036

17 192.168.1.5 192.168.10.10 UDP (17) 6037

18 192.168.1.5 192.168.10.11 TCP (6) 6038

19 192.168.1.5 192.168.10.11 UDP (17) 6039

20 (static) 192.168.1.6 192.168.10.10 TCP (6) 6016

21 (static) 192.168.1.6 192.168.10.10 UDP (17) 6017

22 (static) 192.168.1.6 192.168.10.11 TCP (6) 6018

23 (static) 192.168.1.6 192.168.10.11 UDP (17) 6019

The offload engine is performing forwarding (L2) header manipulation followed by L3 header update (IPSA replace) only on
the traffic that hits the classifier entries added at runtime (flows 5 to 24 in the table above). It replaces the MACSA with
the value (0x00:10:63:88:88:xx), MACDA with the value (0x00:20:63:aa:aa:(xx)) where xx is the flow Id. The IP
source address is replaced with the value 17.34.51.(yy) (0x11, 0x22, 0x33, 0xyy), where the yy is the flow Id.
Additionally, the application is replacing the IPDA of all flows (static flows included) with the value 192.120.(zz.zz),
where zzzz is the destination queue id represented on 16 bits. During all test stages, you can check in the application output
that these are the MAC addresses and IP SA of the frames received in frame queues associated with these flows (i.e. instead
of the original MAC addresses and IP SA of the frames you are generating).

As soon as each key is inserted by the application in the DPA Classifier table, the same key is also added in the class counter
by modifying the corresponding member position and updating the key. The pre-filled entries (i.e. entries marked static) are
not taken into account.

Stage 2: In this stage the application removes table entries 0…9 (first 10 application entries) and also static table entry 20.
Also, IPSA header manipulations are updated and are now replacing the IPSA with the value 172.10.10.(xx), where xx is
the flow Id.

Altering the classifier_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

6 Freescale Semiconductor, Inc.

For each remove of an entry from the range 0…9 from the DPA Classifier Table, the key is also removed from the class
counter by modifying the corresponding member position and invalidating the key. The returned counter statistics needs to
match the number of sent frames and number of sent bytes.

Stage 3: In this stage the application modifies the lookup keys for table entries 15…19, and for the static entries 22…23. The
application modifies the forwarding (L2 replace) header manipulations this time. The offloading engine replaces MACSA with
the value 00:(xx):12:13:14:15, where xx is the flow Id. The new lookup keys for the modified flows in the classification
table are as following:

Table 5. Updated Classification Entries in Stage 3

Flow ID New IP Source New IP Dest. New Protocol (Id) Dest FQ Id

22 (static) 192.168.1.18 192.168.10.11 TCP (6) 6018

23 (static) 192.168.1.18 192.168.10.11 UDP (17) 6019

15 192.168.33.2 192.168.10.10 TCP (6) 6035

16 192.168.33.1 192.168.10.11 UDP (17) 6036

17 192.168.33.1 192.168.10.11 TCP (6) 6037

18 192.168.33.1 192.168.10.10 UDP (17) 6038

19 192.168.33.1 192.168.10.10 TCP (6) 6039

For each update of a key for the entries 15…19, the same key is also updated in the class counter by modifying the
corresponding member position and setting the new key. The returned counter needs to match the number of sent frames and
bytes for flows 10…19.

Stage 4: The application flushes out the Exact Match table and deletes it.

3 Adapting the fragmentation_demo application
The application demonstrates how IP fragmentation can be offloaded to the FMan by using the direct XML configuration and
the DPA offloading driver.

3.1 Overview
The IP fragmentation function works strictly on offline ports and performs fragmentation of IPv4 and IPv6 packets into IP
fragments according to RFC 791 and RFC 2460. The DPA Stats component usage is highlighted in the same application by
creating single and class counters for the IP Fragmentation packet header manipulation.

The application initializes the IP fragmentation and the Parse-Classify-Police-Distribute (PCD) description through the use of
the FMC Library.

Traffic is received on a backhaul Rx port (BP) by USDPAA fragmentation_demo application. IP packets that pass the Parse-
Classify and Distribute descriptor configured on the Rx port are received in the application. The application swaps the
Ethernet MAC addresses and enqueue the traffic in the offline port. This port performs a classification based on VLAN and,
depending on the value, it performs IP fragmentation if the frame size is larger than a pre-configured value. Afterwards it
forwards the obtained fragments back to the Tx queue of the BP port.

The user has the possibility of performing a number of actions on the DPA Stats counters by typing the following commands
in the USDPAA PPAM command line:

Adapting the fragmentation_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 7

Table 6. USDPAA PPAM commands

Command Line Description

get_stats retrieve the statistics for the created counters in an asynchronous mode and print
the returned values.

get_stats_sync retrieve the statistics for the created counters in a synchronous mode and print the
returned values.

reset_stats reset the statistics for the created counters.

To have a successful operation, you should verify that the returned values of the counters statistics matches the number of
sent frames.

NOTE
The fragmentation demo application is different from the fragmentation performed in the
Linux IP stack because the demo does not use the cores or the IP stack for performing
fragmentation operation. It uses the frame manager for fragmentation processing.

3.2 Running fragmentation_demo
fragmentation_demo application supports the following platforms:

• P4080
• B4860
• B4420

In order to run it you may need to use a specific device tree file that comes with the DPA offloading driver. Please read
below about how to produce this device tree file for your platform.

3.2.1 Application environment specifications
The environment is the same as described for the classifier_demo application. Please see Classifier_demo: Application
environment specifications.

3.2.2 Application start-up and configuration
Use the steps described later in Appendix A: Compiling the Device Tree for IP Offloading to generate a device tree binary
file. Boot the board with the compiled kernel, arch/powerpc/boot/uImage, and the DTB file.

To reserve memory for USDPAA and enable the scatter-gather support in the DPAA Ethernet driver add the following to the
boot arguments:

setenv othbootargs “usdpaa_mem=256M fsl_fm_max_frm=9600"

The following commands assume that the application runs on a B4860QDS board. When running on a different supported
platform, please use the proper parameters listed in Running Classifier_demo: Application environment specifications.
For setting up the USDPAA network configuration and PCD resources used by the application run the following commands:

 export DEF_CFG_PATH=/usr/etc/fragmentation_demo_config-b4860.xml
 export DEF_PCD_PATH=/usr/etc/fragmentation_demo_policy.xml
 export DEF_PDL_PATH=/etc/fmc/config/hxs_pdl_v3.xml

Adapting the fragmentation_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

8 Freescale Semiconductor, Inc.

First ensure that the following device files have been created:

• /dev/dpa_stats

The fragmentation_demo can be run with the following command:

/usr/bin/fragmentation_demo –f 0 –t 5 –o 2

The following arguments specify the FMan ports used by the application:

• -f [FMan index]
• -o [Offline Port index]
• -t [BP Rx port index]

The output displayed by the application would be something similar with the following:

Found /fsl,dpaa/dpa-fman0-oh@2, Tx Channel = 80a, FMAN = 0, Port ID = 1
Found /fsl,dpaa/ethernet@0, Tx Channel = 802, FMAN = 0, Port ID = 0
Found /fsl,dpaa/ethernet@1, Tx Channel = 803, FMAN = 0, Port ID = 1
Found /fsl,dpaa/ethernet@2, Tx Channel = 804, FMAN = 0, Port ID = 2
Found /fsl,dpaa/ethernet@5, Tx Channel = 807, FMAN = 0, Port ID = 5
Configuring for 2 network interfaces
Allocated DMA region size 0x1000000
Released 0 bufs to BPID 4
fragmentation_demo is assuming FMan:0 and eth:5 and offline port:1
Released 0 bufs to BPID 7
Released 0 bufs to BPID 8
Warn: drained 8192 bufs from BPID 9
Released 8192 bufs to BPID 9
Thread uid:0 alive (on cpu 1)
fragmentation_demo >

3.2.3 Running the application
The user should send IPv4 or IPv6 frames generated by an external traffic generator. The following example of IPv4 frames
was used to validate the IPv4 Fragmentation:

Table 7. fragmentation_demo IPv4 Input Traffic

MAC SA VLAN TCI IP Source Protocol Size IP Fragment Offset

00:00:00:00:00:29 0x2614 192.168.1.1 UDP 1280 0

00:00:00:00:00:2a 0x2615 192.168.1.2 UDP 1280 0

00:00:00:00:00:2b 0x2616 192.168.1.3 UDP 1280 0

00:00:00:00:00:2c 0x2617 192.168.1.4 UDP 1280 0

IPv4 frames that have the VLAN TCI value equal to 0x2614 or 0x2616 are fragmented into fragments of maximum 256
bytes in size, while frames that have the VLAN TCI value equal to 0x2615 or 0x2617 are fragmented into fragments of
maximum 512 bytes in size.

IPv6 frames that have the VLAN TCI value equal to 0x6800 or 0x6802 are fragmented into fragments of maximum 256
bytes in size, while frames that have the VLAN TCI value equal to 0x6801 or 0x6803 are fragmented into fragments of
maximum 512 bytes in size.

The following example of IPv6 frames was used to validate the IPv6 fragmentation:

Adapting the fragmentation_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 9

Table 8. fragmentation_demo IPv6 input traffic

MAC SA VLAN TCI IP Source Protocol Size

00:00:00:00
:00:2d

0x6800 3FFE:
1944:0400:000A:
0000:00BC:2500:0D01

UDP 1024

00:00:00:00
:00:2e

0x6801 3FFE:
1944:0400:000A:
0000:00BC:2500:0D02

UDP 1024

00:00:00:00
:00:2f

0x6802 3FFE:
1944:0400:000A:
0000:00BC:2500:0D03

UDP 1024

00:00:00:00
:00:30

0x6803 3FFE:
1944:0400:000A:
0000:00BC:2500:0D04

UDP 1024

After sending the traffic, the user can see the statistics values for the IP fragmentation process. The counter “OH_FRAG1”
stands for a single counter of type Fragmentation with MTU of 256 bytes, the counter “OH_FRAG2” stands for single
counter of type Fragmentation with MTU of 512 bytes and both objects are also grouped in a class counter of type
Fragmentation.

STATISTICS: FRAG_TOTAL_FRAMES FRAG_FRAMES FRAG_GEN_FRAGS
OH_FRAG1 : 0 0 0
OH_FRAG2 : 0 0 0
CLS_MBR_OH_FRAG1: 0 0 0
CLS_MBR_OH_FRAG1: 0 0 0

4 Manipulating the reassembly_demo application
This application demonstrates how IP reassembly can be offloaded to the FMan by using the direct XML configuration and
the DPA offloading driver.

4.1 Overview
This application demonstrates how IP reassembly can be offloaded to the FMan by using the direct XML configuration and
the DPA offloading driver. The IP Reassembly feature can be configured on an RX port or an Offline port and performs
reassembly on detected IPv4 and IPv6 protocol fragments. For B4 platforms, the application also provides Virtual Storage
Profile support. The DPA Stats component usage is highlighted in the same application by creating single counters for
Ethernet and Reassembly, and both single and class counters for Classification Nodes.

The application initializes the Reassembly functionality and the Parse-Classify-Police-Distribute (PCD) description through
the use of the FMC Library.

Traffic is received on a backhaul Rx port (BP) by USDPAA reassembly_demo application. IP fragments are detected and
reassembled before arriving into the application. The application swaps Ethernet MAC addresses and enqueues the traffic
back to the Tx queue of the same port.

The user has the possibility of performing a number of actions on the DPA Stats counters by typing the following commands
in the USDPAA PPAM command line:

Manipulating the reassembly_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

10 Freescale Semiconductor, Inc.

Table 9. DPA Stats class counter actions

Command Line Description

get_stats retrieve the statistics for the created counters in an asynchronous mode and print
the returned values.

get_stats_sync retrieve the statistics for the created counters in a synchronous mode and print the
returned values.

reset_stats reset the statistics for the created counters.

To have a successful operation, the user must verify that the returned values of the counters statistics matches the number of
sent frames for each stage of the test.

4.1.1 Virtual storage profiles
The virtual storage profile is only available on frame manager v3. The configuration is transparent to the user. Three storage
profiles are defined in the policy file reassembly_demo_policy-v3.xml:

 <vsp name="Default_VSP" base="0"/>
 <vsp name="IPv4_Reass_VSP" base="1"/>
 <vsp name="IPv6_Reass_VSP" base="2"/>

The first storage profile, Default_VSP is also the default storage profile of the port. The second and the third storage profiles
are used for IPv4 and IPv6 flows. Each of the storage profiles described above has a set buffer pool associated with it (up to
four buffer pools can be defined per vsp)

The buffer pools are dynamically allocated and initialized by reassembly_demo.

When an IPv4 flow is reassembled / classified on inbound port, the IPv4_Reass_VSP is used and the buffers are selected
from one of the buffer pools available for this VSP. When an IPv6 flow is reassembled/classified on inbound port, the
IPv6_Reass_VSP with buffers from one of the buffer pools available for this VSP is used. For any other flows the
Default_VSP is selected.

The VSP selection mechanism described in this paragraph is totally transparent to the user and doesn’t affect the use case
behavior in any way.

In order to test the non-consistent storage profile functionality the user needs to take into consideration that if a fragment that
enters the reassembly distribution is not the first fragment, de default VSP of the port is selected. Otherwise according to the
classification, if the fist fragment has the L4 destination port equal to a specific value, the IPv4 VSP is selected. If the
reassembled frame has fragments in buffers from different buffer pools, then there is a NCSP event triggered and the frame is
enqueued to the NCSP queue. For testing this particular case the user has to take care sending the first fragment of the IPv4
frame (the one with the Fragment Offset flag with value 0) after any other fragment (Ex: fragment3, fragment2, fragment1,
fragment4). For the moment the NCSP could be tested only with IPv4 frames.

4.1.2 Differences from Linux IP stack
Reassembly_demo application does not use the cores or the IP stack for performing reassembly operation. It uses the frame
manager for processing the reassembly.

Manipulating the reassembly_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 11

4.2 Running reasembly_demo
reasembly_demo application supports the following platforms:

• P4080
• B4860
• B4420

In order to run it you may need to use a specific device tree file that comes with the DPA offloading driver. Please read
below about how to produce this device tree file for your platform.

4.2.1 Application environment specifications
The environment is the same as described for the classifier_demo application. Please see Classifier_demo: Application
environment specifications.

4.2.2 Application start-up and configuration
Use the steps described later in Appendix A: Compiling the Device Tree for IP Reassembly to generate a device tree
binary file. Boot the board with the compiled kernel, arch/powerpc/boot/uImage, and the DTB file.

To reserve memory for USDPAA and enable the scatter-gather support in the DPAA Ethernet driver add the following to the
boot arguments:

setenv othbootargs “usdpaa_mem=256M fsl_fm_max_frm=9600"

The following commands assume that the application runs on a B4860QDS board. When running on a different supported
platform, please use the proper parameters listed in Running Classifier_demo: Application environment specifications.
For setting up the USDPAA network configuration and PCD resources used by the application run the following commands:

 export DEF_CFG_PATH=/usr/etc/reassembly_demo_config-b4860.xml
 export DEF_PCD_PATH=/usr/etc/reassembly_demo_policy.xml
 export DEF_PDL_PATH=/etc/fmc/config/hxs_pdl_v3.xml

First ensure that the following device files have been created:

• /dev/dpa_stats

The reassembly_demo can be run with the following command:

/usr/bin/reassembly_demo –f 0 –t 5

The following arguments specify the FMan ports used by the application:

• -f [FMan index]
• -t [Traffic Port index]

The output displayed by the application would be something similar with the following:

Loading configuration
Found /fsl,dpaa/dpa-fman0-oh@2, Tx Channel = 80a, FMAN = 0, Port ID = 1
Found /fsl,dpaa/dpa-fman0-oh@3, Tx Channel = 80b, FMAN = 0, Port ID = 2
Found /fsl,dpaa/dpa-fman0-oh@4, Tx Channel = 80c, FMAN = 0, Port ID = 3
Found /fsl,dpaa/ethernet@0, Tx Channel = 802, FMAN = 0, Port ID = 0
Found /fsl,dpaa/ethernet@1, Tx Channel = 803, FMAN = 0, Port ID = 1
Found /fsl,dpaa/ethernet@2, Tx Channel = 804, FMAN = 0, Port ID = 2
Found /fsl,dpaa/ethernet@5, Tx Channel = 807, FMAN = 0, Port ID = 5
Configuring for 1 network interface

Manipulating the reassembly_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

12 Freescale Semiconductor, Inc.

Allocated DMA region size 0x1000000
Released 4096 bufs to BPID 1
Released 4096 bufs to BPID 2
Released 8192 bufs to BPID 3
reassembly_demo is assuming FMan:0 and port:5
Released 0 bufs to BPID 7
Released 0 bufs to BPID 8
Released 8192 bufs to BPID 9
Thread uid:0 alive (on cpu 1)
reassembly_demo >

4.2.3 Running the application
The user should send IPv4 or IPv6 frames generated by an external traffic generator. The following example of IPv4 and
IPv6 frames can be used to validate the IP reassembly:

Table 10. reassembly_demo IPv4 & IPv6 Input Traffic

VLAN TCI IP Source Protocol Size (w/
CRC)

ID field Flags Fragment
Offset

0x0001 192.168.0.1 UDP 298 5 MF 0

0x0001 192.168.0.1 IPv4 298 5 MF 256 (32 x 8)

0x0001 192.168.0.1 IPv4 298 5 MF 512 (64 x 8)

0x0001 192.168.0.1 IPv4 298 5 0 768 (96 x 8)

0x0002 192.168.0.2 UDP 298 5 MF 0

0x0002 192.168.0.2 IPv4 298 5 MF 256 (32 x 8)

0x0002 192.168.0.2 IPv4 298 5 MF 512 (64 x 8)

0x0002 192.168.0.2 IPv4 298 5 0 768 (96 x 8)

0x0003 192.168.0.3 UDP 298 5 MF 0

0x0003 192.168.0.3 IPv4 298 5 MF 256 (32 x 8)

0x0003 192.168.0.3 IPv4 298 5 MF 512 (64 x 8)

0x0003 192.168.0.3 IPv4 298 5 0 768 (96 x 8)

0x0004 192.168.0.4 UDP 298 5 MF 0

0x0004 192.168.0.4 IPv4 298 5 MF 256 (32 x 8)

0x0004 192.168.0.4 IPv4 298 5 MF 512 (64 x 8)

0x0004 192.168.0.4 IPv4 298 5 0 768 (96 x 8)

0x0001 3FFE:1944:0100:000A:
0000:00BC:2500:0D0B

UDP 414 5 MF 0

0x0001 3FFE:1944:0100:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 344

0x0001 3FFE:1944:0100:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 688

0x0001 3FFE:1944:0100:000A:
0000:00BC:2500:0D0B

IPv6 414 5 0 1032

0x0002 3FFE:1944:0200:000A:
0000:00BC:2500:0D0B

UDP 414 5 MF 0

0x0002 3FFE:1944:0200:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 344

Table continues on the next page...

Manipulating the reassembly_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 13

Table 10. reassembly_demo IPv4 & IPv6 Input Traffic (continued)

VLAN TCI IP Source Protocol Size (w/
CRC)

ID field Flags Fragment
Offset

0x0002 3FFE:1944:0200:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 688

0x0002 3FFE:1944:0200:000A:
0000:00BC:2500:0D0B

IPv6 414 5 0 1032

0x0003 3FFE:1944:0300:000A:
0000:00BC:2500:0D0B

UDP 414 5 MF 0

0x0003 3FFE:1944:0300:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 344

0x0003 3FFE:1944:0300:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 688

0x0003 3FFE:1944:0300:000A:
0000:00BC:2500:0D0B

IPv6 414 5 0 1032

0x0004 3FFE:1944:0400:000A:
0000:00BC:2500:0D0B

UDP 414 5 MF 0

0x0004 3FFE:1944:0400:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 344

0x0004 3FFE:1944:0400:000A:
0000:00BC:2500:0D0B

IPv6 414 5 MF 688

0x0004 3FFE:1944:0400:000A:
0000:00BC:2500:0D0B

IPv6 414 5 0 1032

The IP Reassembly feature is considered to be working properly if for the provided example of IP fragments are reassembled
in the following frames:

Table 11. Expected Reassembled Frames

IP Source Protocol Size Flags Fragment Offset

192.168.0.1 IPv4/UDP 1066 0 0

192.168.0.2 IPv4/UDP 1066 0 0

192.168.0.3 IPv4/UDP 1066 0 0

192.168.0.4 IPv4/UDP 1066 0 0

3FFE:
1944:0100:0
00A:
0000:00BC:
2500:0D0B

IPv6/UDP 1438 0 0

3FFE:
1944:0100:0
00A:
0000:00BC:
2500:0D0B

IPv6/UDP 1438 0 0

3FFE:
1944:0100:0
00A:
0000:00BC:
2500:0D0Bf

IPv6/UDP 1438 0 0

Table continues on the next page...

Manipulating the reassembly_demo application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

14 Freescale Semiconductor, Inc.

Table 11. Expected Reassembled Frames (continued)

IP Source Protocol Size Flags Fragment Offset

3FFE:
1944:0100:0
00A:
0000:00BC:
2500:0D0B

IPv6/UDP 1438 0 0

After sending the traffic, the user can validate the statistics values for the IP reassembly process on the Ethernet interface
used to send and receive the traffic and the Classification Node:

reassembly_demo > get_stats_sync

REASS : TIMEOUT RFD_POOL_BUSY INT_BUFF_BUSY EXT_BUFF_BUSY SG_FRAGS DMA_SEM NCSP
 0 0 0 0 0 0 0
REASS_IPV4 : FRAMES FRAGS_VALID FRAGS_TOTAL FRAGS_MALFORMED FRAGS_DISCARDED AUTOLEARN_BUSY
EXCEED_16FRAGS
 0 0 0 0 0
0 0
REASS_IPV6 : FRAMES FRAGS_VALID FRAGS_TOTAL FRAGS_MALFORMED FRAGS_DISCARDED AUTOLEARN_BUSY
EXCEED_16FRAGS
 0 0 0 0 0
0 0
ETH : DROP_PKTS BYTES PKTS BC_PKTS MC_PKTS CRC_ALIGN_ERR UNDERSIZE_PKTS
OVERSIZE_PKTS
 0 0 0 0 0 0 0 0
ETH : FRAGMENTS JABBERS 64BYTE_PKTS 65_127BYTE_PKTS 128_255BYTE_PKTS 256_511BYTE_PKTS
512_1023BYTE_PKTS 1024_1518BYTE_PKTS
 0 0 0 0 0
0 0 0
ETH : OUT_PKTS OUT_DROP_PKTS OUT_BYTES IN_ERRORS OUT_ERRORS IN_UNICAST_PKTS
OUT_UNICAST_PKTS
 0 0 0 0 0 0 0
CNT_CLASSIF: IPv6_KEY0 IPv6_KEY1 IPv6_KEY2 IPv6_KEY3 MISS
 0 0 0 0 0
CLS_CLASSIF: IPv6_KEY0 IPv6_KEY1 IPv6_KEY2 IPv6_KEY3 MISS
 0 0 0 0 0
CNT_CLASSIF: IPv4_KEY0 IPv4_KEY1 IPv4_KEY2 IPv4_KEY3 MISS
 0 0 0 0 0
CLS_CLASSIF: IPv4_KEY0 IPv4_KEY1 IPv4_KEY2 IPv4_KEY3 MISS
 0 0 0 0 0

5 Customizing the ipsec_offload application
USDPAA ipsec_offload is a multi-threaded application which applies a subset of IPsec transformations to the IPv4/IPv6
traffic.

5.1 IPSec_offload application overview
The IPv4/IPv6 traffic is received on two 1G ports designated as inbound port, where encrypted/tunneled traffic is expected
and outbound port, where clear-text traffic is expected. This task is accomplished using the DPA offload driver which
connects and configures DPAA traffic processing accelerators (Fman, SEC) to completely offload IPSec processing based on
common Linux configuration tools (setkey, ip xfrm, arp, ip neigh). The following features are currently supported:

• ESP tunnel mode.
• TOS/ECN/DSCP propagation.

Customizing the ipsec_offload application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 15

5.1.1 IPSec_offload outbound flows

Tx

Inbound

OH-post-enc

Fwd

SEC

Non-IPSec traffic

USDPAA
threads

Rx

Outbound
Frag

UDP dport 2152

OH-pre-enc

Figure 2. Outbound processing

The clear text traffic is received on the outbound Rx and classified based on UDP destination port. Frames matching UDP
destination port 2152 are received by USDPAA frame processing threads.The rest of the frames are sent directly to pre-
encryption OH port. On this port the traffic is classified according to configured IPSec traffic selectors. Frames for which
IPsec policy is applicable are sent to SEC for security processing. Optionally, this port performs IP fragmentation for frames
matching IPsec policy if frame size is larger than a configured value (mtu_pre_enc). Traffic not matching IPsec policy
bypass security processing and are enqueued directly to post-encryption OH port. The SEC output frames are enqueued to
post-encryption OH port. On this port the Ethernet source and destination addresses are updated with Tx port MAC address
and next hop MAC address respectively.

5.1.2 IPSec_offload inbound flows

Rx

Inbound
SEC

Non-IPSec traffic

USDPAA
threads

Tx

Outbound

Reass/Fwd

UDP dport 2152

OH-post-dec

Figure 3. Inbound processing

IPsec traffic (IPv4/IPv6 ESP and UDP-encap ESP) received on the inbound port is classified according to offloaded security
associations. Frames for which a security association is found are sent to the appropriate SEC engine input queues for
decryption/decapsulation; traffic for which a security association is not found is dropped. Non-IPsec traffic is directly sent to
inbound OH port. Decrypted and non-IPsec traffic is reassembled if fragmented, optionally passes inbound policy
verification and further a post IPsec classification which sends frames matching UDP destination port 2152 to USDPAA
frame processing threads. Frames not matching UDP destination port 2152 have their Ethernet source and destination MAC
addresses updated with Tx port MAC address and next hop MAC address respectively.

Customizing the ipsec_offload application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

16 Freescale Semiconductor, Inc.

5.1.3 Differences from existing ipsecfwd application
This USDPAA application allows complete offload of IPSec data paths, thus relieving the cores from the tasks of submitting/
receiving frames to/from the SEC engine prior or after tunnel payload processing nd from frame forwarding after IPsec
processing. Core intervention is performed only for tasks related to application specific processing. Also, the application
supports standard Linux tools for configuration.

5.2 Running the Application
The procedures for configuring the environment, starting up and configuring the Ipsec_offload application are discussed.

5.2.1 Application environment specifications
The application can run in a real network setup configuration and inter-operate with other IPSec gateways. There is also an
option to put the inbound port in loopback mode and return IPSec traffic to the inbound port. The details on how to run the
application refers to this mode.

P4080 / B4860 / B4420

outbound port

Terminal S/W traffic
generation tool

Serial
connection

inbound port
(internal loopback)

Figure 4. Use case set-up in loopback mode

Table 12. Port connections

SoC Inbound Port Outbound Port

P4080 fm1-gb1 fm1-gb0

B4860 fm0-mac4 fm0-mac5

B4420 fm0-mac2 fm0-mac3

5.2.2 Application Start-up and Configuration

5.2.2.1 Application Start-up
Use the steps described in Appendix A Compiling the Device Tree for IP Offloading to generate a device tree binary file.
Boot the board with the compiled kernel (arch/powerpc/boot/uImage) and the DTB file.

To reserve memory for USDPAA and enable the scatter-gather support in the DPAA Ethernet driver add the following to the
boot arguments:

setenv othbootargs “usdpaa_mem=256M fsl_fm_max_frm=9600"

Customizing the ipsec_offload application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 17

The following commands assume that the application runs on a B4860QDS board. When running on a different supported
platform, please use the proper parameters listed above in Application Environment Specifications. For setting up the
USDPAA network configuration and PCD resources used by the application run the following commands:

 export DEF_CFG_PATH="/usr/etc/ipsec_offload_config_b4860.xml"
 export DEF_PCD_PATH="/usr/etc/ipsec_offload_pcd_b4860.xml"
 export DEF_SWP_PATH="/usr/etc/ipsec_offload_swp.xml"
 export DEF_PDL_PATH="/etc/fmc/config/hxs_pdl_v3.xml"

Start the application with the following commands:

 /usr/bin/ipsec_offload \
 -c /usr/etc/ipsec_offload_config_b4860.xml \
 -p /usr/etc/ipsec_offload_policy.xml \
 -s /usr/etc/ipsec_offload_swp.xml \
 --fm 0 \
 --ob_eth 5 --ib_eth 4 \
 --ib-oh 1 --ob-oh-pre 2 --ob-oh-post 3 \
 --max-sa 32 --vif eth2 --vof eth3 --mtu-pre-enc 500 --ib-loop -n &

The following arguments specify the FMan ports used by the application:

• --fm – Fman index
• --ob_eth – outbound Ethernet port index
• --ib_eth – inbound Ethernet port index
• --ib-oh – inbound Offline port index (post decryption)
• --ob-oh-pre – outbound pre encryption Offline port index
• --ob-oh-post – outbound post encryption Offline port index

The following arguments specify two Linux virtual interfaces associated with inbound and outbound Ethernet ports. These
interfaces are used by Linux to receive and send local traffic - IP traffic matching Linux IP addresses and non-IP traffic like
ARP:

• --vif – virtual inbound interface index
• --vof – virtual outbound interface index

The following argument configures MTU for pre encryption fragmentation. Frames larger than this value will be fragmented
prior encryption:

• --mtu-pre-enc – pre encryption MTU

The following argument configures the inbound port in loop mode:

• --ib-loop.

5.2.2.2 Application configuration for IPsec
IPSec can be configured for offloading using setkey tool. To add an SA and two corresponding SPs add the following lines in
a setkey.conf file:

flush;
spdflush;
add 192.168.0.100 192.168.0.200 esp 0x201
 -E 3des-cbc "abcdefghipqrstuvwxyabcde"
 -A hmac-sha1 "abcdefghipqrstuvwxya";
spdadd 172.16.0.1/32[any] 172.17.0.1/32[any] udp
 -P out ipsec esp/tunnel/192.168.0.100-192.168.0.200/require;

Customizing the ipsec_offload application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

18 Freescale Semiconductor, Inc.

spdadd 172.17.0.1/32[any] 172.16.0.1/32[any] udp
 -P in ipsec esp/tunnel/192.168.0.100-192.168.0.200/require;

Now run the command:

setkey –f setkey.conf

These commands create an ESP tunnel with the following endpoints: IP src 192.168.0.100 – IP dst 192.168.0.200, SPI 0x201,
3DES-CBC encryption and HMAC-SHA1 authentication. The UDP traffic coming from 172.16.0.1 going to 172.17.0.1 will
be tunneled using the defined tunnel.

To configure Linux interfaces, neighboring and routing for the loopback setup run the following commands:

#enable IP forwarding
echo "1" > /proc/sys/net/ipv4/ip_forward
#inbound interface
ifconfig eth2 192.168.100.1 netmask 255.255.255.0 up
echo "1" > /proc/sys/net/ipv4/conf/eth2/disable_policy
echo "1" > /proc/sys/net/ipv4/conf/eth2/disable_xfrm
echo "1" > /proc/sys/net/ipv4/conf/eth2/accept_local
#outbound interface
ifconfig eth3 172.16.0.254 netmask 255.255.0.0 up
echo "1" > /proc/sys/net/ipv4/conf/eth3/disable_policy
echo "1" > /proc/sys/net/ipv4/conf/eth3/disable_xfrm
echo "1" > /proc/sys/net/ipv4/conf/eth3/accept_local
#route to tunnel destination
route add -net 192.168.200.0/24 gw 192.168.100.254 dev eth2
#route to tunneled traffic destination - outbound interface in loop mode
route add -net 172.17.0.0/16 gw 172.16.0.1 dev eth3
#static neigh entry for loopback mode
ip neigh add 192.168.100.254 lladdr <inbound_port_mac_addres> dev eth2

5.2.3 Running Traffic
Assuming that the traffic is generated with a directly connected Linux box, you need to configure the Linux box to output
frames for 172.16.0.1 on the connected interface (ethX):

 ifconfig <ethX> 172.16.0.2 netmask 255.255.0.0 up

You can use the hping tool to generate UDP packets and tcpdump to capture traffic on interface ethX. Each sent frame should
be returned by the application.

 hping -2 –s 2152 –p 2152 –c 1 172.17.0.1

5.3 ipsec_offload application flow
The application follows PPAC/PPAM design. PPAM is responsible for initialization and for forwarding received frames
(UDP destination port 2152) between outbound port and outbound/inbound offline ports. The following tasks are part of the
initialization:

• Get command line configuration parameters
• Allocate memory and create buffer pools for additional required buffer pools (i.e – IP fragmentation, IP reassembly)
• Compile and apply PCD model for the application

Customizing the ipsec_offload application

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 19

• Init IPsec offloading component
• Start XFRM and neighbouring notification processing
• Mappings required by USDPAA to forward frames between ports

Offloading work is performed by XFRM and neighbour notifications processing threads. Each thread listens on a specific
Netlink socket and receives messages containing the event and associated information. This information is used to configure
IPsec offloading datapath.

6 References
1. [P4080/B4860/B4420] Integrated Multicore Communication Processor Family Reference Manual (pdf)
2. USDPAA PPAC User Guide (infocenter)
3. QMan/BMan API Reference (infocenter)

7 Appendix A – Preparing DPA Offloading DTB Files
Detail reference for compiling the device tree for these three applications:

1. USDPAA
2. IP Offloading
3. IP Reassembly

For these three SoC products:

1. P4080
2. P4860
3. P4420

7.1 Compiling the device tree for USDPAA applications

7.1.1 Compiling the device tree for P4080
Go to your Linux kernel source code directory and run the following commands:

 cp drivers/staging/fsl_dpa_offload/dts/p4080-usdpaa.dts
 arch/powerpc/boot/dts

 scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o p4080ds-usdpaa.dtb
 arch/powerpc/boot/dts/p4080ds-usdpaa.dts

The DTB file p4080ds-usdpaa.dtb will be built in the current directory.

7.1.2 Compiling the device tree for B4860
Go to your Linux kernel source code directory and run the following commands:

References

Modifying DPAA Offloading Applications, Rev 0, 08/2013

20 Freescale Semiconductor, Inc.

 cp drivers/staging/fsl_dpa_offload/usecases/dts/b4860qds-usdpaa.dts
 arch/powerpc/boot/dts

 scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o b4860qds-usdpaa.dtb
 arch/powerpc/boot/dts/b4860qds-usdpaa.dts

The DTB file b4860qds-usdpaa.dtb will be built in the current directory.

7.1.3 Compiling the device tree for B4420
Go to your Linux kernel source code directory and run the following commands:

 cp drivers/staging/fsl_dpa_offload/usecases/dts/b4420qds-usdpaa.dts
 arch/powerpc/boot/dts

 scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o b4420qds-usdpaa.dtb
 arch/powerpc/boot/dts/b4420qds-usdpaa.dts

The DTB file b4420qds-usdpaa.dtb will be built in the current directory.

7.2 Compiling the device tree for IP offloading

7.2.1 Compiling the device tree for P4080
Go to your Linux kernel source code directory and run the following commands:

cp drivers/staging/fsl_dpa_offload/dts/p4080ds-usdpaa.dts
arch/powerpc/boot/dts/

cp drivers/staging/fsl_dpa_offload/dts/p4080si-post.dtsi
arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/p4080si-pre.dtsi
arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/p4080si-chosen-offld.dtsi
arch/powerpc/boot/dts/fsl/p4080ds-chosen.dtsi

scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o p4080ds-usdpaa.dtb
arch/powerpc/boot/dts/p4080ds-usdpaa.dts

The DTB file p4080ds-usdpaa.dtb will be built in the current directory.

7.2.2 Compiling the device tree for B4860
Go to your Linux kernel source code directory and run the following commands:

cp drivers/staging/fsl_dpa_offload/dts/b4860qds-usdpaa.dts
 arch/powerpc/boot/dts

cp drivers/staging/fsl_dpa_offload/dts/b4860si-pre.dtsi
 arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/b4860si-chosen-offld.dtsi

Appendix A – Preparing DPA Offloading DTB Files

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 21

 arch/powerpc/boot/dts/fsl/b4860si-chosen.dtsi

scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o
 b4860qds-usdpaa.dtb
arch/powerpc/boot/dts/b4860qds-usdpaa.dts

The DTB file b4860qds-usdpaa.dtb will be built in the current directory.

7.2.3 Compiling the device tree for B4420
Go to your Linux kernel source code directory and run the following commands:

cp drivers/staging/fsl_dpa_offload/dts/b4420qds-usdpaa.dts
 arch/powerpc/boot/dts

cp drivers/staging/fsl_dpa_offload/dts/b4420si-pre.dtsi
 arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/b4420si-chosen-offld.dtsi
 arch/powerpc/boot/dts/fsl/b4420si-chosen.dtsi

scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o
 b4420qds-usdpaa.dtb
arch/powerpc/boot/dts/b4420qds-usdpaa.dts

The DTB file b4420qds-usdpaa.dtb will be built in the current directory.

7.3 Compiling the device tree for IP reassembly

7.3.1 Compiling the device tree for P4080
On P4080 there is no specific device tree building process for IP reassembly. You can use the one described in Compiling
the Device Tree for USDPAA Applications.

7.3.2 Compiling the device tree for B4860
Go to your Linux kernel source code directory.

cp drivers/staging/fsl_dpa_offload/dts/b4860si-pre.dtsi
 arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/b4860si-chosen-reass.dtsi
 arch/powerpc/boot/dts/fsl/b4860si-chosen.dtsi

scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o b4860qds-usdpaa.dtb
arch/powerpc/boot/dts/b4860qds-usdpaa.dts

The DTB file b4860qds-usdpaa.dtb will be built in the current directory.

7.3.3 Compiling the device tree for B4420
Go to your Linux kernel source code directory.

Appendix A – Preparing DPA Offloading DTB Files

Modifying DPAA Offloading Applications, Rev 0, 08/2013

22 Freescale Semiconductor, Inc.

cp drivers/staging/fsl_dpa_offload/dts/b4420si-pre.dtsi
 arch/powerpc/boot/dts/fsl

cp drivers/staging/fsl_dpa_offload/dts/b4420si-chosen-reass.dtsi
 arch/powerpc/boot/dts/fsl/b4420si-chosen.dtsi

scripts/dtc/dtc –f –b 0 –p 1024 –I dts –O dtb –o b4420qds-usdpaa.dtb
arch/powerpc/boot/dts/b4420qds-usdpaa.dts

The DTB file b4420qds-usdpaa.dtb will be built in the current directory.

8 Revision history
This table summarizes revisions to this document.

Table 13. Revision history

Revision Date Description

0 08/2013 Initial public release.

Revision history

Modifying DPAA Offloading Applications, Rev 0, 08/2013

Freescale Semiconductor, Inc. 23

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions .

Freescale, the Freescale logo, and QorIQ are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, is a trademark
of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

Document Number AN4785
Revision 0, 08/2013

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Altering the classifier_demo application
	Overview
	Running classifier_demo
	Application environment specifications
	Application start-up and configuration
	Running the application

	Adapting the fragmentation_demo application
	Overview
	Running fragmentation_demo
	Application environment specifications
	Application start-up and configuration
	Running the application

	Manipulating the reassembly_demo application
	Overview
	Virtual storage profiles
	Differences from Linux IP stack

	Running reasembly_demo
	Application environment specifications
	Application start-up and configuration
	Running the application

	Customizing the ipsec_offload application
	IPSec_offload application overview
	IPSec_offload outbound flows
	IPSec_offload inbound flows
	Differences from existing ipsecfwd application

	Running the Application
	Application environment specifications
	Application Start-up and Configuration
	Running Traffic

	ipsec_offload application flow

	References
	Appendix A – Preparing DPA Offloading DTB Files
	Compiling the device tree for USDPAA applications
	Compiling the device tree for IP offloading
	Compiling the device tree for IP reassembly

	Revision history

