
Freescale Semiconductor
Application Note

Document Number: AN4805
Rev. 2, 01/2014

Contents

 Introduction. 1
Programming Language Prerequisites 2
Hardware Semaphore Routines 2

3.1 Get Core Identification, Get_Core_ID 3
3.2 Get Semaphore Gate Status, Get_Gate_Status . . . 4
3.3 Lock Semaphore Gate, Lock_Gate 4
3.4 Unlock Semaphore Gate, Unlock_Gate 5
3.5 Reset Semaphore Gate, Reset_Gate 6
Classic Semaphore Examples. 7

4.1 Signaling semaphore. 7
4.2 Blocking semaphore . 9
4.3 Rendezvous semaphore . 11
Classic Issue: Deadlock . 11
Summary . 12

A Practical Approach to
Hardware Semaphores
For MCP56xx and MPC57xx Multi-core Qorivva Devices
by: Mong Sim
1 Introduction
A semaphore is a variable or abstract data type that
provides a simple but useful abstraction for controlling
access by multiple processes to a common resource in a
parallel programming or multi-user environment.

Semaphores are the predominant method in access
control in parallel programming and multi-threaded
programming environments since their invention in 1965
by the late Edsger Dijkstra, a Dutch computer scientist.
Although the semaphore concept was further enhanced
from its original principle into many variations, they all
serve a similar purpose: to grant access to shared
resources without race conditions.

This practical approach to hardware semaphores
provides simple semaphore routines that lock, unlock,
and reset semaphore gates (flags). These routines are
non-blocking and reentrant functions suitable for
multi-core application usage. This application note
presents each routine with C code, followed by a detailed
explanation of its functionality.

1
2
3

4

5
6

© Freescale Semiconductor, Inc., 2014. All rights reserved.

Programming Language Prerequisites
After the individual semaphore routines are discussed, they are used to build a few classic semaphore
examples:

• Simple signaling semaphore

• Blocking semaphore

• Rendezvous semaphore

These application note examples were created for the MPC5643L, but they can also be applied to
other MPC56xx and MPC57xx multi-core chips with a hardware semaphore module.

The intention of this application note is to provide the necessary understanding for using the hardware
semaphore module on MPC56xx and MPC57xx Qorivva multi-core chips. It is not intended as an
application note to teach semaphore concepts.

2 Programming Language Prerequisites
In this application note, the software examples are illustrated in PowerPC assembly and C programming
language.

Software

• CodeWarrior (freescale.com or codewarrior.com)

Hardware

• XPC56xx motherboard with XPC5643L144QFP mini module (EVB, the target system)

• 12 VDC power supply for the EVB

• Personal computer with XP operating system (the host system)

3 Hardware Semaphore Routines
All the hardware semaphore routines presented in this application note are platform-specific. They only
work with MPC56xx and MPC57xx Qorivva multi-core chips with a hardware semaphore module, as
shown in Table 1.

NOTE
The Freescale semaphore module uses the term semaphore gate, which is
similar to a semaphore flag. A locked gate is similar to a set flag and
unlocking and resetting a gate are similar to clearing a flag.

Table 1. Hardware semaphore multi-core chips

Chip Semaphore module Remarks

MPC5643L (in Decoupled Parallel mode) SEMA4 First generation hardware semaphore

MPC5643L (in Lock Step mode) Disabled in Lock Step mode —

MPC5676R SEMA4 First generation hardware semaphore

MPC57xxM (Multi-core) SEMA42 Second generation hardware semaphore
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor2

http://www.freescale.com
http://www.codewarrior.com
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers:POWER_ARCH_5XXX?utm_medium=AN-2021

Hardware Semaphore Routines
3.1 Get Core Identification, Get_Core_ID
The hardware semaphore module requires that all cores competing for a semaphore gate must present a
translated core ID as a valid parameter to lock a gate. This routine reads the core Process ID (PID) and
converts it to an equivalent ID the hardware semaphore module will accept.

This routine may be called once in the lifetime of an application; it may also be called within a Lock Gate
routine, or a user can simply supply the appropriate core ID to the Lock_Gate routine. In this application
note, the Get_Core_ID function is called within the Lock_Gate routine for simplicity and safety. This
method also guarantees that the correct core ID is sent to the hardware semaphore for locking a gate.

Figure 1. Get_Core_ID routine

Figure 1 lists the C code for the Get_Core_ID routine. This routine reads the core ID and returns the
translated core ID to the caller. The description of the code in Figure 1 is as follows:

Line Description

1 Get_Core_ID routine will return the translated code ID to the caller.

5 A method to call assembly within C code to read special purpose register (SPR) number 286 (PID). This SPR
contains the PID. (See your chip’s core reference manual for the correct SPR number.)

7–10 Translates the core ID and returns to the caller. (See the SEMA4_GATEn description in the Semaphore
chapter of your chip’s reference manual for the valid core (processor) ID (PID).)
The equation for converting the PID to an ID that the semaphore module will accept is as follows:
Translated CoreID = PID + 1

= 0 + 1 = 1 // if PID is equal to 0
= 1 + 1 = 2 // if PID is equal to 1

Constant:
Core0_ID = 1// translated core ID for core 0 to be used for semaphore module
Core1_ID = 2 // translated core ID for core 1 to be used for semaphore module
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor 3

Hardware Semaphore Routines
The routine in Figure 1 translates IDs for a dual-core system. To modify the above routine to support more
cores, simply increase the number of case statements to match the number of cores and return the
appropriate translated core IDs.

3.2 Get Semaphore Gate Status, Get_Gate_Status
This routine reads the status of a gate state machine and returns the status to the caller. Users can determine
from the gate status which core locked this gate or whether the gate is available for all cores. An unlocked
gate will return a status of zero while a locked gate will return a number associated with the core that
locked the gate.

Figure 2. Get_Gate_Status routine

Figure 2 lists the C code for Get_Gate_Status routine. This routine reads the status of a gate state machine
and returns the status to the caller. The description of the code in Figure 2 is as follows:

3.3 Lock Semaphore Gate, Lock_Gate
See the Semaphore chapter of your chip’s reference manual chapter for the number of gates supported by
the device you are using. The MPC5643L, in Decoupled Parallel mode (DPM), has 16 gates.

Each gate can be locked by any core and can only be unlocked by the core that locked it. The caller to this
routine must supply a valid gate number to lock a gate; invalid gate numbers are ignored. The caller must
also parse the returned status to determine if the operation was successful. A successful operation returns
a status equal to the translated core ID associated with the core that locked it.

Line Description

1 Get_Gate_Status reads the gate requested by the caller and returns the gate status to the caller.

3 Reads the status of the gate state machine and returns the status to the caller.
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor4

Hardware Semaphore Routines
Figure 3. Lock_Gate routine

Figure 3 lists the C code for the Lock_Gate routine. This routine tries to lock a gate and returns the gate
status to its caller. The description of the code in Figure 3 is as follows:

3.4 Unlock Semaphore Gate, Unlock_Gate
A semaphore gate can only be unlocked by the core that locked it. However, a locked gate or locked gates
can also be released from a locked state using a reset operation provided by the hardware semaphore
module. Resetting a gate is discussed later in Section 3.5, “Reset Semaphore Gate, Reset_Gate.” The caller
to the Unlock_Gate routine must also parse the returned status to determine whether the unlock operation
was successful.

Figure 4. Unlock_Gate routine

Line Description

1 Lock_Gate locks a gate requested by the caller and returns the status of that gate.

3 Refers to Get_Core_ID

7 Tries to lock the requested gate with its translated core ID

9 Refers to Get_Gate_Status
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor 5

Hardware Semaphore Routines
Figure 4 lists the C code for the Unlock_Gate routine. This routine tries to unlock a gate and returns the
gate status to its caller. The description of the code in Figure 4 is as follows:

3.5 Reset Semaphore Gate, Reset_Gate
The Reset semaphore gate feature provides a flexible way for any core to reset a gate, or all gates, to a
ready state (unlocked state). Specifically, Reset_Gate will release a locked gate, or gates, from a locked
state to a ready state. The semaphore module uses a secure reset mechanism that requires a dual-write
access pattern to reset a gate. This mechanism requires that consecutive writes with predefined data are
issued from the same core. These consecutive writes are illustrated in Figure 5, which displays the
Reset_Gate software routine. This software routine resets one or all semaphore gates, depending on the
value of the gate number provided to the Reset_Gate routine. To reset a single gate, the gate number should
be provided to the routine. To reset all gates, a value larger than 63 should be provided to the Reset_Gate
routine.

Figure 5. Reset_Gate routine

The following table provides a description of the Reset_Gate software routine.

Line Description

1 Unlock_Gate unlocks a gate requested by the caller and returns the status of that gate.

3 Tries to unlock the gate (Gate can only be unlocked by the core that locked it)
Constant:
UNLOCK = 0

5 Refers to Get_Gate_Status
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor6

Classic Semaphore Examples
4 Classic Semaphore Examples
Section 1, “Introduction,” mentions that semaphore routines are non-blocking. This seems like a
contradiction because a semaphore should block to function. However, a non-blocking semaphore routine
typically refers to a semaphore routine that allows an application to try to acquire a semaphore gate (lock
gate) without entering into a spinlock (waiting in a loop while repeatedly checking if the lock is available).
If the semaphore gate cannot be locked, then it will return fail but not block; it will not go into a spinlock
trying to lock that gate. If the gate can be locked, the semaphore will lock it and return true (semaphore
gate is locked).

4.1 Signaling semaphore
Perhaps the simplest use for a semaphore is signaling, which means that one task sends a signal to another
task to indicate that something has happened. Signaling provides a mechanism to guarantee that a section
of code of a task runs before a section of code for another task.

Line Description

1 Reset_Gate will reset a gate or all gates requested by the caller
 • Reset one gate: a valid gate number
 • Reset all gates: a gate number greater than 63

4 Writes the first reset data pattern (0xE2<<8)

6 Waits for the state machine to prompt for the next data pattern

8 If it takes more than 10 whole loops, the routine will time out. (The state machine should not take more than
two clock cycles.)

11 Writes the second reset data pattern (0xID << 8) and resets the gate(s) as specified by “gate_no“
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor 7

Classic Semaphore Examples
Figure 6. Signaling semaphore, writer function

Figure 7. Signaling semaphore, reader function
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor8

Classic Semaphore Examples
In this example, task 0 and task 1 will run in core 0 and core 1, respectively. Both tasks have shared access
to a resource. Task 0 is the writer and task 1 is the reader. The reader must wait for the writer to finish
writing the information to the shared resource and signal the reader before the reader can read the shared
resource information and display it.

Figure 6 and Figure 7 list the C code for the writer and reader, task 0 and task 1, respectively.

This example illustrates simple writer and reader tasks using a signaling semaphore to resolve a
serialization problem in a multi-core system. The writer and the reader work as follows:

Note that Reset_Gate is used to release GATE_0 in this example instead of Unlock_Gate to unlock gate 0.
This is because core 0 has locked gate 0 and has no idea when core 1 will read the information written by
core 0. Moreover, core 1 cannot unlock the gate locked by core 0. The workaround is to use Reset_Gate
to release gate 0 after core 1 has consumed the information written by core 0.

4.2 Blocking semaphore
This example uses a symmetric solution to resolve a coherency problem between two tasks; that is, both
tasks call the same routine. Both cores competing to lock gate 0 will call the printer function to gain access
to the line printer device to print a line of text. The first core to lock gate 0 will proceed to print its line of
text and then unlock gate 0 before other core can lock gate 0.

This method ensures that the printer function is able to print a complete message from a task before
beginning to print another message from a different task. This example avoids a potential data coherency
problem between these two tasks.

Line Writer (task 0) Reader (task 1)

 3 Constant:
CORE0_LOCK = 1

Constant:
CORE0_LOCK = 1

6–9 Waits for semaphore flag clear (gate 0 unlock) before
proceeding to write shared resource
Constant:
Gate_0 = 0

Waits for semaphore flag to set (Waits for task 0 to
signal, lock gate 0) before proceed to read shared
resource.
Constant:
Gate_0 = 0

11 Writes shared resource —

13–17 Set semaphore flag (Lock Gate 0); Signals task 1 that
information is ready for read.

—

11 — (Gate 0 is locked)
Task 1 reads shared resource and print the line of text.

13–17 — Task 1 clears semaphore flag using Reset_Gate and
verifies if gate 0 is unlocked.
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor 9

Classic Semaphore Examples
Figure 8. Binary semaphore, printer function

Figure 8 lists the C code for the printer routine. This example illustrates a simple blocking semaphore
(binary semaphore) between two tasks using symmetric solution. The printer routine works as follows:

Line Core 0 Core 1

 Core 0 call printer function

Printer(CORE0_LOCK,msg0);
Constant:
CORE0_LOCK = 1
UNLOCK = 0

Core 1 call printer function

Printer(CORE1_LOCK,msg1);
Constant:
CORE1_LOCK = 2
UNLOCK = 0

6–9 Core 0 tries to lock gate 0
Constant:
GATE_0 = 0

Core 1 tries to lock gate 0
Constant:
GATE_0 = 0

Assume core 0 locks gate 0 —

11 Core 0 print msg0 —

12–16 Core 0 unlock gate 0 —

— Assume core 1 now locks gate 0

11 — Core 1 print msg1

12–16 — Core 1 unlock gate 0
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor10

Classic Issue: Deadlock
4.3 Rendezvous semaphore
Rendezvous requires that each task arriving at a rendezvous point must signal its presence and wait for all
tasks to arrive at the rendezvous point before executing the next stage of code. This example attempts to
solve a synchronization problem using a rendezvous semaphore.

In this example, two tasks running in core 0 and core 1 are synchronized at the rendezvous point. When
either of these two tasks arrives at the rendezvous point, it must signal (lock a gate) to inform the other
task of its arrival. When both tasks have arrived at the rendezvous point and signaled, then both tasks can
start running the next stage of their code. The two tasks are then synchronized.

Figure 9 lists the C code for the rendezvous example. This example illustrates a simple rendezvous
between two tasks to achieve synchronization. The code for this example is arranged side-by-side in the
table to show the relationship between the two tasks.

Figure 9. Rendezvous semaphore, synchronization

5 Classic Issue: Deadlock
The example in Section 4.3, “Rendezvous semaphore,” can be rewritten, by changing the order of the
code, to create a deadlock between task 0 and task1 at the rendezvous point.

In this scenario, when task 0 and task 1 arrive at the rendezvous point, neither signals its presence because
it is waiting for the other task to signal first. That is, task 0 waits for task 1 to signal arrival while task 1
also waits for task 0 to signal arrival. In this case, there is a deadlock situation. This is a classic application
problem using semaphore concepts. There are other classic and non-classic issues related to the usage of
semaphore concepts. Please refer to semaphore literature for more details and resolutions.

Task 0 Task 1

//Task 0 arrives at rendezvous point: signals it is
//present.
// Constant:
// GATE_0 = 0
// GATE_1 = 1
// UNLOCK = 1

Lock_Gate (GATE_0);

//Task 1 arrives at rendezvous point: signals it is
//present.
// Constant:
// GATE_0 = 0
// GATE_1 = 1
// UNLOCK = 1

Lock_Gate (GATE_1);

//Check if all task 1 arrived?
status = UNLOCK;
while (status==UNLOCK)
{

Status = Get_Gate_Status (GATE_1);
}

//Check if all task 0 arrived?
status = UNLOCK;
while (status==UNLOCK)
{

Status = Get_Gate_Status (GATE_0);
}

All tasks arrived at rendezvous point and signaled their present

Task 0 calls A_Function () Task 1 calls B_Function ()
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor 11

Summary
6 Summary
The source code of these routines, Get_Core_ID, Get_Gate_Status, Lock_Gate, Unlock_Gate and
Reset_Gate, provide examples of how the semaphore module can be accessed and configured. Users can
use these routines in their applications without any modification. However, for those who wish to write
their own hardware semaphore routines, these examples provide a head start.
A Practical Approach to Hardware Semaphores, Rev. 2

Freescale Semiconductor12

Document Number: AN4805
Rev. 2
01/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, CodeWarrior, and Qorivva are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org word

marks and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

	1 Introduction
	2 Programming Language Prerequisites
	3 Hardware Semaphore Routines
	3.1 Get Core Identification, Get_Core_ID
	3.2 Get Semaphore Gate Status, Get_Gate_Status
	3.3 Lock Semaphore Gate, Lock_Gate
	3.4 Unlock Semaphore Gate, Unlock_Gate
	3.5 Reset Semaphore Gate, Reset_Gate

	4 Classic Semaphore Examples
	4.1 Signaling semaphore
	4.2 Blocking semaphore
	4.3 Rendezvous semaphore

	5 Classic Issue: Deadlock
	6 Summary

