
Freescale Semiconductor
Application Note

© 2013 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
As the bit-band region is optional on the ARM Cortex-M0+
processor, Freescale has implemented an Upper SRAM
(SRAM_U) bit-band region on the KE04 and KE06
subfamily devices. The bit-band region operation is like that
of the ARM Cortex-M3 and ARM Cortex-M4 processors. It
maps a complete word of memory onto a single bit in the
bit-band region. For example, writing to one of the alias
words sets or clears the corresponding bit in the bit-band
region. It enables individual bits to be toggled without
performing a read/modify/write sequence.

The Bit Manipulation Engine (BME) provides hardware
operations for an atomic read/modify/write peripheral and
SRAM_U address space. The atomic read/modify/write
operation is an indivisible "read followed by a write" bus
sequence. The BME hardware microarchitecture is a 2-stage
pipeline design that matches the protocol of the
AMBA-AHB system bus interfaces. By combining the basic
load and store instruction support in the ARM Cortex-M0+
instruction set architecture with the concept of decorated
storage provided by the BME. BME can implement
robustness and efficient read-modify-write capability on KE
series Cortex-M0+ core microcontrollers.

Document Number: AN4838
Rev. 0, 12/2013

Contents
1. Introduction . 1
2. Bit-Band . 2
3. BME Introduction . 3
4. Contrast Normal C and BME operations 9
5. Conclusion . 10
6. Demo Code . 10
7. References . 10
8. Glossary . 10

How to Use Bit-band and BME on the
KE04 and KE06 Subfamilies
by Cheng Yangtao

Asia Pacific Microcontroller Solutions Group

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

2 Freescale Semiconductor

Bit-Band

2 Bit-Band
The following mapping formula demonstrates how to match each word in the alias region to a
corresponding bit or target bit in the bit-band region.

bit_word_offset = (byte_offset x 32) + (bit_number × 4)

bit_word_addr = bit_band_base + bit_word_offset

Where:
• bit_word_offset is the position of the target bit in the bit-band memory region.
• bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
• bit_band_base is the starting address of the alias region.
• byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
• bit_number is the bit position, 0 to 7, of the targeted bit.

For example, the alias word at 0x22000000 maps to bit [0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + 0*4.

Figure 1. KE04 bit-band mapping

2.1 Bit-Band Operation
Writing to a word in the alias region has the same effect as a read/modify/write operation on the targeted
bit in the bit-band region.

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

Freescale Semiconductor 3

BME Introduction

Bit [0] of the value written to a word in the alias region determines the value written to the targeted bit in
the bit-band region. Writing a value with bit [0] set writes a 1 to the bit-band bit, and writing a value with
bit [0] cleared writes a 0 to the bit-band bit.

Reading a word in the alias region returns either 0x01 or 0x00. A value of 0x01 indicates that the targeted
bit in the bit-band region is set. A value of 0x00 indicates that the targeted bit is clear.

2.2 Bit-band library
The user can define simple bit-band access with a macro such as:

#define Bit_Band_Set(Addr, Bit) {*(volatile uint32_t *)(0x22000000 + (((uint32_t)Addr)&0x3FF)*32 +
((uint8_t)Bit)*4) = 0x01; } /*set the bit*/

#define Bit_Band_Clear(Addr, Bit) {*(volatile uint32_t *)(0x22000000 + (((uint32_t)Addr)&0x3FF)*32
+ ((uint8_t)Bit)*4) = 0; } /*clear the bit*/

For example, if the user wants to set the 0x20000000 bit1, the C code is:

Bit_Band_Set(0x20000000, 1) ;

There is a bit-band library (bitband.h) in the attached the code in which the user can refer to the bit-band
demo code.

3 BME Introduction
BME decorated references are only available on system bus transactions generated by the processor core
and targeted at the standard 512 KB peripheral address space at 0x40000000~0x4007FFFF and SRAM_U
space based at 0x20000000. The decoration semantic is embedded into address bits[28:19], creating a 448
MB space at addresses 0x44000000~0x5FFFFFFF for AIPS and a 448 MB space at addresses
0x24000000~0x3FFFFFFF for SRAM_U. These bits are stripped out of the actual address sent to the
peripheral bus controller and used by the BME to define and control its operation.

BME support decorated loads and decorated stores operation. The decorated loads including unsigned bit
field extract (UBFX), load-and-clear 1 bit (LAC1), and load-and-set 1 bit (LAS1) operations. The
decorated stores including AND, OR, XOR and bit field insert (BFI) operations.

Table 1. Base Address and BME operations

Modules Base Address Decorated
Address Space Decorated Stores Decorated Load

— — — AND OR XOR BVFI LAC1 LAS1 UBFX

SRAM_U 0x20000000 0x24000000-0x3
FFFFFFF

Y Y Y Y Y Y Y

Peripherals 0x4000F000 0x44000000-0x4
FFFFFFF

Y Y Y Y Y Y Y

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

4 Freescale Semiconductor

BME Introduction

Note: 0x4000F000 is the base address of GPIO controller and is aliased to 0x400FF000.
Note: Y indicates that this operation is feasible.
Note: N indicates that this operation is infeasible.

The user must write or read target data from the decorated address. Each operation has a fixed style. The
user must make up the correct 32-bit decorated address as shown below.

Figure 2. Decorated address make up

Note: addr[19:0] and addr[18:0] are peripheral adress or SRAM_U address.
Note: b is LSB position. It indicates the operation will begin from this bit. For example there is 11101111 in 0x20000000, if the
user wants to set the bit 4 from 0 to 1, the b should be 4.
Note: w is the bit field width minus 1 identifier. For example, if the bit filed is “1001”, the w should be 3.
Note: -bit can be 0 or 1, it is an insignificant bit.
Note: addr[30:29] is SRAM_U or peripheral option, addr[30:29]=01 is SRAM_U, addr[30:29]=10 is peripheral. Addr[30:29] is
identical in decorated address and target address.

3.1 Decorated store operations
The decorated store includes three common logical operations: AND, OR , XOR, and a bit field insert.
Each operation is a 2-cycle atomic read-modify-write sequence. The data size can be 8-, 16-, or 32-bits.

For the 16-bit write mode, bit[0] of SRAM_U or the peripheral address should be 0. For the 32-bit write
mode, bit[1:0] of SRAM_U or the peripheral address should be 00. There is no similar limitation in the
8-bit write mode.

3.1.1 AND
AND command performs a logical AND operation. See the example in the following section.

GPIO 0x4000FF000 0x440000000-0x
4FFFFFFF

Y Y y N Y Y N

0x4000F0000 0x50000000-0x5
FFFFFFF

Y Y Y Y Y Y Y

Table 1. Base Address and BME operations (continued)

Modules Base Address Decorated
Address Space Decorated Stores Decorated Load

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

Freescale Semiconductor 5

BME Introduction

3.1.1.1 Byte (8-bit) write mode
SRAM_U memory address is 0x20000001, the original data in 0x20000001 is 0xA5, write data is 0x5A.
The result is 0xA5&0x5A. How to make up the decorated address:

addr[19:0] = 0x00001, addr[27:26] = 0x01, addr[30:29] = 0x01, so the decorated address is:

addr[31:0] = 0010 0100 0000 0000 0000 0000 0000 0001 =0x24000001. We can see that the decorated
address and memory address is idential in addr[30:29] =0x01. The 8-bit write mode C code as below:

(*(volatile uint8_t *)(uint32_t)0x20000001) = 0xF5; /* put 0xF5 to 0x20000001 */

printf("0x%x\n", (*(volatile uint8_t *)(uint32_t)0x20000001));

(*(volatile uint8_t *)(uint32_t)0x24000001) = 0x5A; /* write 0x5A to decorated address */

printf("0x%x\n", (*(volatile uint8_t *)(uint32_t)0x20000001));

After AND opertion, the data in 0x20000001 should be 0x50.

3.1.1.2 Halfword (16-bit) write mode
The bit[0] of SRAM_U or peripheral address should be 0.

For example, SRAM_U memory address is 0x20000002, the original data in 0x20000002~0x20000003 is
0xF5F5, write data is 0x5A5A. The result is 0xF5F5&0x5A5A. How to make up the decorated address:

addr[19:0] = 0x00002, addr[27:26] = 0x01, addr[30:29] = 0x01, so the decorated address is:

addr[31:0] = 0010 0100 0000 0000 0000 0000 0000 0010 =0x24000002. The 16-bit write mode C code as
below:

\ (*(volatile uint16_t *)(uint32_t)0x20000002) = 0xF5F5; /* put 0xF5F5 to 0x20000002 */

printf("0x%x\n", (*(volatile uint16_t *)(uint32_t)0x20000002));

 (*(volatile uint16_t *)(uint32_t)0x24000002) = 0x5A5A; /* write 0x5A5A to decorated address */

printf("0x%x\n", (*(volatile uint16_t *)(uint32_t)0x20000002));

After AND opertion, the data in 0x20000002~0x20000003 should be 0x5050.

3.1.1.3 Word (32-bit) write mode
The bit[1:0] of SRAM_U or peripheral address should be 00.

For example, SRAM_U memory address is 0x20000004, the original data in 0x20000004 ~0x20000007
is 0xF5F5F5F5, write data is 0x5A5A5A5A. The result is 0xF5F5F5F5&0x5A5A5A5A. How to make up
the decorated address:

addr[19:0] = 0x00004, addr[27:26] = 0x01, addr[30:29] = 0x01, so the decorated address is:
addr[31:0] = 0010 0100 0000 0000 0000 0000 0000 0100 =0x24000004. The word(32-bit) write
mode C code is:
(*(volatile uint32_t *)(uint32_t)0x20000004) = 0xF5F5F5F5; /* put 0xF5F5F5F5 to 0x20000002
*/

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

6 Freescale Semiconductor

BME Introduction

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000004));
 (*(volatile uint32_t *)(uint32_t)0x24000004) = 0x5A5A5A5A; /* write 0x5A5A5A5A to
decorated address */
printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000004));
After AND opertion, the data in 0x20000004 ~0x20000007 should be 0x50505050.

3.1.2 OR
OR command performs a logical OR operation. It also supports 8-, 16-, or 32-bit access modes.

For example, SRAM_U memory address is 0x20000008, the original data in 0x20000008~0x2000000B
is 0xA5A5A5A5, write data is 0x5A5A5A5A. The result is 0xA5A5A5A5|0x5A5A5A5A. Next steps to
make up the decorated address:

addr[19:0] = 0x00008, addr[27:26] = 0x02, addr[30:29] = 0x01, so the decorated address is:

addr[31:0] = 0010 0100 0000 0000 0000 0000 0000 1000 =0x28000008. The word (32-bit) write mode C
code is:

(*(volatile uint32_t *)(uint32_t)0x20000008) = 0xA5A5A5A5; /* put 0xA5A5A5A5 to 0x20000008 */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000008));

 (*(volatile uint32_t *)(uint32_t)0x28000008) = 0x5A5A5A5A; /* write 0x5A5A5A5A to decorated
address */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000008));

After OR opertion, the data in 0x20000008~0x2000000B should be 0xFFFFFFFF.

3.1.3 XOR
A XOR command performs a logical XOR operation. XOR supports 8-, 16-, and 32-bit access modes.

For example, SRAM_U memory address is 0x2000000C, the inital data in 0x2000000C~0x2000000F is
0xA5A5A5A5, write data is 0xFFFFFFFF. The result is 0xA5A5A5A5^0xFFFFFFFF. Next steps to make
up the decorated address:

addr[19:0] = 0x0000C, addr[27:26] = 0x03, addr[30:29] = 0x01, so the decorated address is:

addr[31:0] = 0010 1100 0000 0000 0000 0000 0000 1100 =0x2C00000C. Because the word (32-bit) write
mode C code is:

 (*(volatile uint32_t *)(uint32_t)0x2000000C) = 0xA5A5A5A5; /* put 0xA5A5A5A5 to 0x2000000C */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x2000000C));

 (*(volatile uint32_t *)(uint32_t) 0x2C00000C) = 0xFFFFFFFF; /* write 0xFFFFFFFF to decorated
address */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x2000000C));

After XOR opertion, the data in 0x2000000C~0x2000000F should be 0x5A5A5A5A.

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

Freescale Semiconductor 7

BME Introduction

3.2 BFI
The BFI operation can be use to insert data into SRAM_U or peripheral registers. There is 0xFFFFF55F
in 0x20000010~0x20000013. We want to insert 0xFF from 4th bit, so the b=4, w=7. And we hope to get
0xFFFFFFFF. Next steps to make up the decorated address:

addr[18:0] = 0x00010, addr[22:19] = 0x07, addr[27:23]=0x04 , addr[30:29]=0x01, so the decorated
address is:

addr[31:0] = 0011 0010 0011 1000 0000 0000 0001 0000 =0x32380010. The word(32-bit) write mode C
code is:

 (*(volatile uint32_t *)(uint32_t)0x20000010) = 0xFFFFF55F; /* put 0xFFFFF55F to 0x20000010 */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000010));

 (*(volatile uint32_t *)(uint32_t)0x32380010) = (0xFF<<4); /* write 0xFF to decorated address */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000010));

The write data should shift to left-corresponding.

After the BFI opertion, the data in 0x20000010~0x20000013 should be 0xFFFFFFFF.

3.3 Decorated Load Operations
Decorared load includes LAC1, LAS, and UBFX operations. Each opperation supports 8-, 16-, and 32-bit
write modes.

LAC1 and LAS1 convert to a two-cycle atomic read-modify-write sequence, but UBFX is only a single
data read and not an read-modify-write.

3.3.1 LAC1
The LAC1 operation can be use to clear the bit in SRAM_U or peripheral registers.

For example, There is 0xFFFFFFFF in SRAM_U 0x20000014~0x20000017 space. We want to clear the
3rd bit and get 0xFFFFFFF7. Next steps to make up the decorated address:

addr[19:0] = 0x00014, addr[25:21] = 0x03, addr[30:29]=0x01, so the decorated address is:

addr[31:0] = 0010 1000 0110 0000 0000 0000 0001 0100 =0x28600014. The word(32-bit) write mode C
code is:

 (*(volatile uint32_t *)(uint32_t)0x20000014) = 0xFFFFFFFF; /* put 0xFFFFFFFF to 0x20000014 */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000014));

 u32Temp = (*(volatile uint32_t *)(uint32_t)0x28600014) ; /* read decorated address */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000014));

After LAC1 opertion, the data in 0x20000010~0x20000013 should be 0xFFFFFFF7.

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

8 Freescale Semiconductor

BME Introduction

3.3.2 LAS1
The LAS1 command can be use to set the bit in SRAM_U or peripheral registers.

For instance, there is 0xFFFFFFF7 in SRAM_U 0x20000018~0x2000001B space. We want to set the 3rd
bit and get 0xFFFFFFFF. Next steps to make up the decorated address:

addr[19:0] = 0x00014, addr[25:21] = b=0x03, addr[30:29]=0x01, so the decorated address is:

addr[31:0] = 0010 1100 0110 0000 0000 0000 0001 1000 =0x28600014.

The word (32-bit) write mode C code is:

 (*(volatile uint32_t *)(uint32_t)0x20000018) = 0xFFFFFFF7; /* put 0xFFFFFFF7 to 0x20000018 */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000018));

 u32Temp = (*(volatile uint32_t *)(uint32_t)0x2C600018) ; /* read decorated address */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x20000018));

After LAS1 opertion, the data in 0x20000018~0x2000001B should be 0xFFFFFFFF.

3.3.3 UBFX
UBFX command is used to extract a bit field from SRAM_U or peripheral registers. For instance, the
initial data is 0x5555AAAA in SRAM_U 0x2000001C~0x2000001F. If the user wants to extract the bit
field 0x5A from this space, the decorated address is:

addr[18:0] = 0x0001C, addr[23:19] = w=0x07, addr[27:23]=b=0x0C , addr[30:29]=0x01, so the
decorated address is:

addr[31:0] = 0011 0110 0011 1000 0000 0000 0001 1100 =0x3638001C.

The word (32-bit) write mode C code is:

 (*(volatile uint32_t *)(uint32_t)0x2000001C) = 0x5555AAAA; /* put 0x5555AAAA to 0x2000001C */

printf("0x%x\n", (*(volatile uint32_t *)(uint32_t)0x2000001C));

 u32Temp = (*(volatile uint32_t *)(uint32_t) 0x3638001C) ; /* read extract data */

printf("0x%x\n", u32Temp);

After BFI opertion, the extracted data should be 0x5A.

3.4 GPIO ACCESS
The GPIO can be accessed by the core through the crossbar/AIPS interface at 0x400FF000 and at an
aliased slot (15) at address0x4000F000. All BME operations to the GPIO space can be accomplished
referencing the aliased slot (15) at address 0x4000F000. Only some of the BME operations can be
accomplished referencing GPIO at address 0x400FF000, such as AND, OR, XOR, LAC1, and LAS1. But
BFI and UBFX operations only can be realized at 0x4000F000.

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

Freescale Semiconductor 9

Contrasting Normal C and BME operations

3.5 BME Library
There is a BME library (BME.h) in the attched code. The head file defines all the decorated operations
under 8-, 16-, and 32-bit write modes. It is convenient to migrate it to the application code. The following
example code shows how to utilize the BME library to access the peripheral registers and GPIO.

Example 1: Disable low-voltage detect in PMC_SPMSC1 register after reset.

The normal C code is:

PMC->SPMSC1 &= ~PMC_SPMSC1_LVDE_MASK;

The BME C code using library:

u8Temp = BME_BIT_CLEAR_8b(&PMC->SPMSC1, 0x02);

Example 2: Toggle PTA1 output.

The normal C code is:

GPIOA->PDOR ^= 0x02;

The BME C code using library:

BME_XOR(&GPIOA->PDOR) = 0x02;

4 Contrasting Normal C and BME operations
As BME operations are more efficient than normal C code, we can contrast the disassembly code of the
above two examples in IAR Embedded WorkBench V6.60.

Example 1:

PMC->SPMSC1 &= ~PMC_SPMSC1_LVDE_MASK;

LDR.N R0, ??DataTable2

LDRB R1, [R0]

MOVS R2, #251

ANDS R2, R2, R1

STRB R2, [R0]

u8Temp = BME_BIT_CLEAR_8b(&PMC->SPMSC1, 0x02);

LDR.N R0, ??DataTable2_1

LDRB R0, [R0]

Example 2:

GPIOA->PDOR ^= 0x02;

How to Use Bit-band and BME on the KE04 and KE06 Subfamilies, Rev. 0

10 Freescale Semiconductor

Conclusion

MOVS R0, #2

LDR.N R1, ??DataTable2_2

LDR R2, [R1]

EORS R2, R2, R0

STR R2, [R1]

BME_XOR(&GPIOA->PDOR) = 0x02;

LDR.N R1, ??DataTable2_3

STR R0, [R1]

5 Conclusion
The bit-band and BME performs with higher efficiency than a normal C function, and it is convient to
migrate the drivers to customer’s application code.

6 Demo Code
The demo code demonstrates the performance with BME hardware operations and Normal C code
operations. The demo code is built under IAR Embedded Workbench V6.60. The user can evaluate it with
FRDM-KE04Z hardware platform. If the user has another application board, they should change the
project options and select the correct debug tool.

7 References
MKE04Z24M48SF0RM Reference Manual

8 Glossary

Table 8-2. Glossary

Term Definition

SRAM_U Upper SRAM

BME Bit manipulation engine

UBFX Unsigned bit field extract

LAC Load-and-clear 1 bit

LAS1 Load-and-set 1 bit

Document Number: AN4838
Rev. 0
12/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis, are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. ARM and Cortex are the registered trademarks

of ARM Limited. ARM Cortex M-0, ARM Cortex M-3 and ARM Cortex M-4 are the

trademark of ARM Limited.

© 2013 Freescale Semiconductor, Inc.

	How to Use Bit-band and BME on the KE04 and KE06 Subfamilies
	1 Introduction
	2 Bit-Band
	Figure 1. KE04 bit-band mapping
	2.1 Bit-Band Operation
	2.2 Bit-band library

	3 BME Introduction
	Table 1. Base Address and BME operations
	Figure 2. Decorated address make up

	3.1 Decorated store operations
	3.1.1 AND
	3.1.1.1 Byte (8-bit) write mode
	3.1.1.2 Halfword (16-bit) write mode
	3.1.1.3 Word (32-bit) write mode

	3.1.2 OR
	3.1.3 XOR

	3.2 BFI
	3.3 Decorated Load Operations
	3.3.1 LAC1
	3.3.2 LAS1
	3.3.3 UBFX

	3.4 GPIO ACCESS
	3.5 BME Library

	4 Contrasting Normal C and BME operations
	5 Conclusion
	6 Demo Code
	7 References
	8 Glossary
	Table 8-2. Glossary

