

Freescale Semiconductor Document Number: AN5045
Application Note Rev. 0, 11/2014

© 2014 Freescale Semiconductor, Inc.

Using the MPC5777M MCAN Module to Exchange
CAN FD Messages
by: Graham Rice

1 Introduction

A CAN network (Controller Area Network) is

an asynchronous serial bus network that

connects devices, sensors and actuators for

control applications. This multimaster

communication protocol was first developed in

1986 for automotive application data rate of up

to 1 Mbps with high integrity. CAN is now

standardised in ISO 11898, ISO 16845 and SAE

J1939 for automotive, industrial and general

embedded communications. Since 1993,

Freescale have included CAN controllers to

power management chips and many 8-bit, 16-bit

and 32-bit embedded architectures, including

Qorivva automotive microcontrollers and QorIQ

network processors.

The MPC57xx family of microcontrollers

embed the Multimaster CAN (MCAN) module.

This application note demonstrates how to use

the MPC5777 MCAN module and more

specifically the latest CAN FD (Flexible Data)

features that are included in the MCAN module.

Using the Freescale MPC57xx motherboard and

MPC5777M expansion card with the example

code provided, previous CAN experience is not

Contents
1 Introduction ... 1

2 CAN FD overview 2

3 Configuring and using the MCAN module 4

4 Configuring the MCAN transmission
scheme .. 4

5 Assigning message memory space 9

6 Configuring CAN FD with bit rate

switching ... 10

7 Filtering messages by ID number 12

8 Transmitting, receiving and cancelling

messages ... 16

9 Conclusion ... 21

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

2 Freescale Semiconductor

necessary. If you do require basic CAN training before reading this application note, please go to CAN

link. Examples used in this document are designed to demonstrate the latest MCAN module capabilities.

1.1 Objectives

After reading this document the reader will be able to:

 Understand the improvements available with CAN FD

 Perform basic transmit and receive operations with the MCAN module

 Configure memory space to transmit and receive messages

 Filter the received messages by the message ID number

 Send and receive CAN FD (Flexible Data) frames at higher speed.

2 CAN FD overview

This section provides an overview of CAN FD. It also describes FD message format and structure.

2.1 CAN FD

‘FD’ stands for flexible data. It means there is a change in bit rate at the end of the arbitration phase, for

the data phase.

The CAN 2.0 specification limits a CAN frame to 8 data bytes at a maximum bit rate of 1 Mbps.

The CAN FD standard allows extended frames to be sent, up to 64 data bytes in a single frame at a

higher bit rate for the data phase of a frame, up to 8 Mbps. The CAN FD standard introduces the ability

to switch from one bit rate to another mid-frame. Extended Data Length (EDL), as shown in Figure 2,

sets a data length of up to 8 or up to 64 data bytes. Bit Rate Switching (BRS) indicates whether two bit

rates (the data phase is transmitted at a different bit rate to the arbitration phase) are enabled.

http://www.freescale.com/webapp/sps/site/application.jsp?code=APLCAN

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 3

Figure 1 Bit rate change mid-message

2.2 FD message format and structure

The data sent is packaged into a message as shown in Figure 2, consisting of:

 an arbitration phase

 a data transmission phase

 an ACK phase.

The arbitration phase is a message header consisting of an ID number and other bits to indicate the

purpose of the message (supplying or requesting data), the speed and format configuration (CAN or

CAN FD).

This is followed by the data transmission phase, consisting of the Data Length Code (DLC), to indicate

how many data bytes the message contains. The data the user wishes to send the CRC and finally a

dominant bit.

The ACK (acknowledgment) is transmitted by other nodes on the bus, if at least one has successfully

received the message.

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

4 Freescale Semiconductor

Figure 2 CAN FD frame

3 Configuring and using the MCAN module

Figure 3 shows the steps required to initialise and configure an MPC5777M MCAN module, to create a
low level MCAN driver. Each step within the flowchart is detailed in the following sections of this
application note.

Figure 3 Steps to initialise and configure the MCAN module

4 Configuring the MCAN transmission scheme

4.1 Description

The backward compatible MCAN module on the MPC5777M can operate under the CAN 2.0

specification, and make use of the new CAN FD features. The module must be configured for CAN

according to ISO11898-1, CAN FD or CAN FD with BRS. Timing parameters must be applied to the

module, depending upon the scheme chosen. These timing constants define the time for a single bit and

are used for the transmitter and receiver, so that they are configured identically.

The initialisation must also set the input and output pins to operate with the MCAN module(s).

Start Initialise CAN

mode

Configure

message timing

Configure

memory space

Setup message

filters

Additional BRS

timing settings

Transmit or

receive

messages

End

Main loop

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 5

All the MCAN modules share an auxiliary clock source which has a maximum frequency of 50 MHz on

MPC5777M. Each module can be configured with its own operation scheme and timing parameters,

which allows an MCU to operate on as many different buses as there are nodes at different bit rates.

4.2 Implementation

For the following examples, the auxiliary clock source will be configured as 40 MHz, taken directly

from XOSC. This will allow the examples to run up to a maximum bit rate of 8 Mbps. The clock

provided to the MCAN modules can be configured with the MPC5777M’s Clock Generation Module
(MC_CGM) configuration registers (AC8).

For transmitting and receiving a CAN FD message, the module must be configured for CAN FD with a

single set of timing parameters provided. The scheme is selected by use of the CAN Control Register

(CCCR) and the timing by the Bit Timing and Prescaler Register (BTP).

Note that the CCCR and BTP registers must be unlocked in order to change the configuration settings.

The locking mechanism prevents changes being made while the module is operating. They can be

unlocked by the CCE and INIT bits of the CCCR register.

Figure 4 shows that the INIT bit of the CCCR register operates in a different clock domain to the CPU

and so care must be taken when attempting to change this bit. A suitable methodology is detailed in step

1 and step 2 of Table 1.

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

6 Freescale Semiconductor

Figure 4 MCAN_CCCR register and bit definitions

The bit time is defined by a multiple number of time quanta (tq), with 1 tq equal to the MCAN clock
period. Each bit consists of a SYNC time, a Time Segment 1(TSEG1) and Time Segment 2(TSEG2). A 40
MHz MCAN clock will give a tq of 25 ns, with the programmed multipliers defining the length of these
time segments. The SYNC value is always 1 and the remaining two segments can be user programmed.
The receiver will sample and record the value of the transmitted bit between TSEG1 and TSEG2.

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 7

Figure 5 MCAN_BTP register and bit definitions

Figure 6 Timing breakdown for a single bit

Timing can be optimised for data speed on the bus, or to maintain data integrity on a reactive bus. This

can be achieved by varying the ratio between TSEG1 and TSEG2 thus the sample point for a bit.

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

8 Freescale Semiconductor

Stage 5 in Table 1 shows how to configure the BTP timing parameters for a bit time of 2 µs, and a

sample point after 80% of the bit time, i.e. after 1.6 µs. The calculation below demonstrates how this is

achieved by setting TSEG1 to 31 tq, TSEG2 to 8 tq and dividing the clock speed by 2.

Table 1 Steps to configure the MCAN scheme

Step Operation Description Pseudo Code

1 Initialise MCAN_CCCR Set INIT bit and check that it has
been set

INIT = 1;

If INIT ≠ 1, wait until it is

2 Unlock protected registers Set CCCR.CCE bit CCE = 1;

3 Request CAN mode change Set CCCR.CMR to CAN FD CMR = 1;

4 Change CAN mode Set CCCR.CME to CAN FD CME = 1;

5 Set BTP for 0.5 Mbps Clk/2, T1 = 31, T2 = 8, SJW = 8 M_CAN_1.BTP.R = 0x00011E77;

6 Lock protected registers Clear CCCR.CCE bit CCE = 0;

7 Return MCAN module to normal
operation

Clear INIT bit and check it has been
cleared

INIT = 0;

If INIT ≠ 0, wait until it is

8 Configure TX pin Enable output buffer with high
drive strength and select pad
mode

TX pin MSCR = 0x32000001;

9 Configure RX pin Enable input buffer and select pad
mode

RX pin MSCR = 0x00080002;

4.3 Code

The following code provides an initialisation function for MCAN 1. It unlocks the protected registers,

then puts the modules into CAN FD mode and provides timing parameters. The protected registers are

locked again and finally the module pins are configured for use by the MCAN 1 module.

void MCAN1_init() { /* Init MCAN1 */

M_CAN_1.CCCR.B.INIT = 0x1; //set to initialisation mode

while(M_CAN_1.CCCR.B.INIT == 0);

M_CAN_1.CCCR.B.CCE = 0x1; // enable CCE bit to change configuration

M_CAN_1.CCCR.B.CMR = 0x2; //request CAN FD

M_CAN_1.CCCR.B.CME = 0x2; //enable CAN FD

M_CAN_1.BTP.R = 0x00011E77; //tq for 0.5Mbps SYNC=1, TSEG1=30+1, TSEG2=7+1, SJW=7+1

M_CAN_1.CCCR.B.CCE = 0x0; // disable CCE to prevent configuration changes

M_CAN_1.CCCR.B.INIT = 0x0; //Return to normal operation

while(M_CAN_1.CCCR.B.INIT == 0x1);

SIUL2.MSCR[10].R = 0x32000001; //MCAN1TX Pin, PA[10]

SIUL2.MSCR[758].R = 0x00080002; //MCAN1RX Pin, PA[11]

}

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 9

5 Assigning message memory space

5.1 Description

Memory must be assigned during initialisation to define where to store received messages and where to

store messages prior to transmission.

The quantity of data bytes per message must be configured to determine how much memory space is

required per message. This can be configured for messages that will not contain as many as 64 bytes

maximum allowed by CAN FD, resulting in more efficient memory usage and allowing more messages

to be stored in the allocated memory space.

5.2 Implementation

Each MCAN module can configure its transmit buffer and receive FIFO memory space. They are

configured with a start address offset and the number of memory elements to store. The starting address

is predefined as the start address shown in Figure 7, and it is the user’s responsibility to ensure that the

number of elements per memory space does not cause them to overlap.

Figure 7 Shared memory and address allocation for MCAN modules

Table 2 shows the configuration of all message memory space for an MCAN module. Steps 2-4 setup

the receive FIFOs and transmit buffer, and the data length allowance for each of those memory spaces in

steps 5 and 6.

Table 2 Steps to configure the MCAN memory space

Step Operation Description Pseudo Code

I Unlock protected registers Refer to section 4.2
‘Implementation’

1 Configure FIFO 0 Offset address = 0x400

Save 3 CAN messages

Overwrite old instead of
discarding new

Write M_CAN_1.RXF0C.R =
0x80030400;

2 Configure FIFO 1 Offset address = 0x800

Save 5 CAN messages

Discard new messages when full

Write M_CAN_1.RXF1C.R =
0x00050800;

4 Configure TX Buffer Store 2 messages

Offset address = 0xD00

Write M_CAN_1.TXBC.R =
0x00020D00;

5 Set data limit for receive
messages

48 data bytes/message FIFO 1

32 data bytes/message FIFO 0

Write M_CAN_1.RXESC.R =
0x00000065;

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

10 Freescale Semiconductor

6 Set data limit for transmit
messages

64 data bytes/message TX buffer Write M_CAN_1.TXESC.R =
0x00000007;

F Lock protected registers Refer to section 4.2
‘Implementation’

NOTE

The above registers are protected, and must be unlocked using the CCCR

register, as demonstrated in section 4.2 ‘Implementation’.

6 Configuring CAN FD with bit rate switching

6.1 Description

To use Bit Rate Switching (BRS) the user is only required to configure an extra set of timing parameters

and configure the module to use a different CAN scheme.

The original Bit Timing and Prescaler Register (BTP) timing parameters are used only for the arbitration

phase of the message. The additional set is used for the data phase. The data phase bit timings are

defined in exactly the same way as the arbitration message timing is configured using the Fast Bit

Timing Prescaler register (FBTP).

Using the parameters demonstrated in Table 3, the calculation below shows how to achieve a bit time of

125 ns with a sample point after 80% of this bit time. Note that the clock divider is unused and default to

÷1.

6.2 Transceiver delay compensation (TDC)

The CAN transceiver always compares what is seen by the receiver and what it is trying to transmit in

order to identify when a more dominant node has control of the bus. This can cause issues during the

faster data phase, when, due to delays on the CAN bus, the transceiver sees a difference between what is

transmitting and what is being received. This will cause the transmitter to believe it does not have

control of the bus and it will abort the transmission.

To prevent this from occurring, delay compensation can be configured for the MCAN node, allowing a

delay between the transmitter circuitry applying a bit to the bus and the receiver reading it back from the

bus. This delay is specific to the CAN Physical Layer (PHY) and bus, so when the correct delay has

been determined, it can be stored to always ensure correct operation.

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 11

If the correct delay for the bus is unknown, the message may not be transmitted because the transceiver

believes it has been dominated, and it does not indicate an error, instead the Transmit Buffer Request

Pending register (TXBRP) will never clear to zero.

To find the correct delay for the bus, a trial and error method is the only way to realistically find the

delay value. This process is only suitable for development and it would be unwise to use it in a real

application; the result being part messages on the bus and time to tune the Transmit Delay

Compensation Offset (TDCO) to allow the module to transmit and receive successfully. Instead the

appropriate TDCO value should be found using this process during development, and that value

programmed into the application device code. The process can be summarised as shown in Figure 8.

Figure 8 Finding the correct TDCO

The length of the delay can be found simply by increasing the number of time quanta from 0x0 to 0x1F

until the messages can be sent and the correct delay has been found. If the TDCO value reaches 0x1F

and no message has been sent successfully, it is more likely that the transmission fault lies elsewhere.

The delay value may not be a single value, rather a range of values that are suitable for successful

transmission. It is a good practice to find the minimum and maximum delay values and then select a

delay that is median of the range.

Table 3 shows the additional configuration steps for use of BRS, changing the mode of operation of the

module and programming the fast bit timing parameters with a transceiver delay compensation value.

Table 3 Program FBTP register for BRS and apply a TDCO value

Step Operation Description Pseudo Code

I Unlock protected registers Refer to section 4.2
‘Implementation’

1 Request CAN mode change Set CCCR.CMR to CAN FD with BRS CMR = 2;

2 Change CAN mode Set CCCR.CME to CAN FD with BRS CME = 2;

3 Set FBTP for 0.5 Mbps Clk/1, T1 = 3, T2 = 1, SJW = 2

TDC = ON

TDCO = 5

M_CAN_1.FBTP.R = 0x05800201;

F Lock protected registers Refer to section 4.2
‘Implementation’

yes

yes

no

no

Set delay

compensation

to 0x0

Transmit

message Message

sent?

TDCO =

0x1F?

Cancel message
and increment

TDCO

Store TDCO in

Flash memory for

later use End

Debug elsewhere

then return to start Start

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

12 Freescale Semiconductor

7 Filtering messages by ID number

7.1 Introduction

Received messages can be filtered by ID number into either of the receive FIFOs.

The destination of ID numbers that do not match with any filter is decided by the Global Filter

Configuration register (GFC). This register will also determine the destination of remote frames which

request data from a node without sending any data.

7.2 Implementation

Up to 128 filter configurations can be implemented on each MCAN module in the device. To implement

a classic filter for 11-bit ID numbers, a filter mask, ID comparison, and the destination FIFO for the

message must be selected.

Figure 9 11-bit ID filter comparison path

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 13

Figure 9 demonstrates how messages are sorted. Focusing only on messages with 11-bit IDs and no

remote frames, a received message is compared to each filter element in turn. The first element that

matches with the message will decide the memory address where the message will be stored. No more

comparisons will be made after the first positive result. If no positive result is obtained, the message can

either be discarded or stored in a particular FIFO, depending on the MCAN_GFC register.

Figure 10 shows the five most significant bits of the filter mask will be considered (bits 21-25). As the

masks are identical, matching of the ID number (bits 5-15) will determine if the received message is

placed into FIFO 0 (top filter) or FIFO 1 (bottom filter), selected with bits 2-4. Bits 0-1 set the

configuration to classic filter.

0 1 2 4 5 1
5

1
6

 2
0

2
1

 2
5

 3
1

filter FIFO ID Reserved Filter Mask

8 F 4 0 0 7 C 0

1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0x2 0x1 0x740 0x7C0

0 1 2 4 5 1
5

1
6

 2
0

2
1

 2
5

 3
1

filter FIFO ID Reserved Filter Mask

9 7 C 0 0 7 C 0

1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0x2 0x2 0x7C0 0x7C0

Figure 10 Example ID Filter configuration

Other filter settings are detailed in the section titled ‘Standard message ID Filter element’ of the
MPC5777M reference manual.

Figure 11 shows how these two filters will select the destination of the received message. The masked

ID number is compared to the filter ID. An exact match produces a positive result, selecting the message

destination.

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

14 Freescale Semiconductor

Figure 11 Application of a classic filter configuration to a received ID number

Location of the filter elements in RAM is programmed by the Standard ID Filter Configuration register

(SIDFC). The base address (FLSSA) and number of elements (LSS) the module uses for comparisons

must be provided.

Figure 12 Programming the filter element memory locations

ID number received

111 0100 0111

111 1100 0000

Filter mask

111 0100 0000

Filter ID FIFO 0

111 0100 0000

Filter ID FIFO 1

111 1100 0000

111 1111 1111

111 0111 1111

Destination

will be FIFO

0

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 15

The FIFO start addresses are defined by the Receiver FIFO Configuration registers (RXFnC), see

section 5 ‘Assigning message memory space’. For 29-bit ID lengths, the Extended ID Filter

Configuration register (XIDFC) must be programmed in a similar way to the SIDFC register. Each 29-

bit filter element configuration takes two words; for the filter and for the mask configuration, that is

described in detail in ‘Extended message ID filter element’ of the MPC5777M reference manual.

Table 4 shows how to configure the module to use two filters, and then place those filters into memory.

The code listing demonstrates placing some example filters into memory for two MCAN modules.

Table 4 Program the filters and their location in memory

Step Operation Description Pseudo code

I Unlock protected registers Refer to section 4.2
‘Implementation’

1 Configure MCAN2 filter location
and quantity

Offset address = 0xF00

No. of filters = 2

Write M_CAN_2.SIDFC.R =
0x00020F00;

I Lock protected registers Refer to section 4.2
‘Implementation’

2 Program MCAN2 filter 1 Classic filter

Destination = FIFO 0

ID = 0x740

Mask = 0x7C0

Write (0x0F00) = 0x8F0007C0;

3 Program MCAN2 filter 2 Classic filter

Destination = FIFO 1

ID = 0x7C0

Mask = 0x7C0

Write (0x0F04) = 0x978007C0;

7.3 Code

The following function programs example filters for the receiver module, with the resulting filters

detailed in Table 5.

#define FULL_SRAM_BASE_ADDR_MSG_RAM 0xFFED4000 //MCAN shared SRAM base address

#define MCAN1_SIDFC_FLSSA 0x0000 //MCAN 1 STANDARD MESSAGE ID FILTERS

#define MCAN2_SIDFC_FLSSA 0x0F00 //MCAN 2 STANDARD MESSAGE ID FILTERS

void MCAN_ID_init() {

 //MCAN1_ID values

 (vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + MCAN1_SIDFC_FLSSA) = 0x8F0007C0;

/*#1 Rx 11-bit Filter FIFO0*/

 (vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + MCAN1_SIDFC_FLSSA + 0x04) = 0x978007C0;

/*#2 Rx 11-bit Filter FIFO1*/

 //MCAN2_ID values

 (vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + MCAN2_SIDFC_FLSSA) = 0x8F4007C0;

/*#3 Rx 11-bit Filter FIFO 0*/

 (vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + MCAN2_SIDFC_FLSSA + 0x04) = 0x97C007C0;

/*#4 Rx 11-bit Filter FIFO1*/

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

16 Freescale Semiconductor

}

Table 5 Filters programmed by the code above

Filter element Filter type Destination ID comparison Mask

MCAN1 #1 Classic MCAN1 FIFO 0 0x700 0x7C0

MCAN1 #2 Classic MCAN1 FIFO 1 0x780 0x7C0

MCAN2 #3 Classic MCAN2 FIFO 0 0x740 0x7C0

MCAN2 #4 Classic MCAN2 FIFO 1 0x7C0 0x7C0

8 Transmitting, receiving and cancelling messages

8.1 Introduction

For a module to transmit a message, the message is formed within the defined memory space and the

transmission is initiated. The message is sent by the node to a receiver, where it is formed in the receiver

memory space.

8.2 Implementation

This example will configure MCAN modules 1 and 2. Section 4 ‘Configuring the MCAN transmission
scheme’ describes how to configure the memory space for the modules. As they share the same SRAM

space, each module must be configured to use different address ranges. An example of this is shown in

Table 6.

The message to be transmitted is formed in the transmit buffer following the format in Figure 13. The

size and location of the MCAN transmit buffer is defined by a start address and number of buffer

elements in the Transmit Buffer Configuration register (TXBC) and the maximum number of data bytes

per message in the Transmit buffer Element Size Configuration register (TXESC) (see section 5

‘Assigning message memory space’).

T2 to T17 is the maximum allocated data space, DLC defines how many of these bytes will be taken, for

example, if DLC is 0x7, but 64 bytes of data space has been allocated by the TXESC register, the

module will take the first seven bytes, from DB0 to DB6.

Table 6 DLC codes

DLC code No. of Bytes sent DLC code No. of Bytes sent

0x0 0000 0 0x8 1000 8

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 17

0x1 0001 1 0x9 1001 12

0x2 0010 2 0xA 1010 16

0x3 0011 3 0xB 1011 20

0x4 0100 4 0xC 1100 24

0x5 0101 5 0xD 1101 32

0x6 0110 6 0xE 1110 48

0x7 0111 7 0xF 1111 64

Only CAN FD messages are able to send messages with more than 8 data bytes, so to use DLC codes of

0x9 to 0xF the module must be configured for CAN FD in the CCCR register (see section 4 ‘Configuring
the MCAN transmission scheme’).

The receiver buffer follows the same format, but with additional bits to give further information about

the message that has been received. The Accept Non-Matching Frames bit (ANMF) and Filter Index

bits (FIDX), shown in Figure 14, combine to indicate which filter element the message ID matched with

which could be used to give a particular message type. A time stamp can be attached to the message

(refer to section ‘Timestamp Counter Configuration Register’ in MPC5777M Reference Manual).

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

18 Freescale Semiconductor

Figure 13 Transmit buffer element

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 19

 Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

20 Freescale Semiconductor

Figure 14 Receiver buffer element

A transmission is initiated by writing the number of prepared messages to the Transmit Buffer Add

Request register (TXBAR). This will be ignored if the Transmit Buffer Request Pending register

(TXBRP) is greater than 0, meaning a message(s) is already queued.

If a message transmission has failed in CAN FD BRS mode because the delay compensation is

incorrect, the TXBRP register will be greater than 0 and no new messages are able to be sent, therefore

the message must be cancelled before a new message can be queued. Messages can be cancelled by

writing the number of messages to be cancelled into the TXBCR register. For example; if two messages

were queued, but did not send, 0x2 should be written to the TXBCR register to cancel them both.

Table 7 and the following code listing show how to apply the message to be sent to the transmit buffer

and prompt the module to send the message.

Table 7 Constructing and sending a CAN message

Step Operation Description Pseudo Code

1 Transmit from MCAN 1 11 bit ID number = 5 T0 addr = 0x00140000;

 DLC = 4 T1 addr = 0x00040000;

 Insert data into buffer T2 addr = 0xAA55AA55;

2 Initiate transmission Apply number of messages for
transmission to TXBAR

M_CAN_1.TXBAR.R = 0x1;

8.3 Code

The following code is an example of how to construct a 4 bytes message, with DLC and ID in the

transmit buffer space. Finally it adds the message to the transmit queue by writing to the TXBAR

register.

#define FULL_SRAM_BASE_ADDR_MSG_RAM 0xFFED4000 //MCAN shared SRAM base address

void MCAN1_tx() {

if (M_CAN_1.TXBRP.R == 0) {

int id = 5;

int dlc = 4;

char data[4] = {0xAA, 0x55, 0xAA, 0x55};

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D00) = (id << 18);

/* Tx Buffer T0 */

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D04) = (dlc << 16);

/* Tx Buffer T1 */

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D08) = data[0];

/*T2 DB0*/

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D08) = data[1]<<8;

/*T2 DB1*/

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D08) = data[2]<<16;

/*T2 DB2*/

(vuint32_t)(FULL_SRAM_BASE_ADDR_MSG_RAM + 0x0D08) = data[3]<<24;

/*T2 DB3*/

M_CAN_1.TXBAR.R = 0x1; /*start transmission*/

}

Using the MPC5777M MCAN module to exchange CAN FD messages, Rev. 0, 11/2014

Freescale Semiconductor 21

}

9 Conclusion

This application note has described all the steps required to configure an MCAN module to send and

receive CAN, CAN FD and CAN FD BRS messages, forming the basis of a full MCAN module driver,

including:

 Configure a module to transmit CAN 2.0 messages and observe with an oscilloscope or CAN

bus analyser

 Configure two nodes to send CAN 2.0 messages between them, filter based on ID numbers

into different memory locations

 Send CAN FD frames of up to 64 bytes and verify that the full message is accepted and

stored correctly

 Introduce BRS to the CAN bus and tune the TDCO value for reliable communication. Verify

that the message rate is greater at a higher bit rate.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. Freescale reserves the right to make changes without
further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.

© 2014 Freescale Semiconductor, Inc.

 Document Number AN5045

 Revision 0, 11/2014

http://freescale.com/
http://freescale.com/support
http://freescale.com/SalesTermsandConditions

