
 

© 2015 Freescale Semiconductor, Inc.  
 

Freescale Semiconductor  Document Number: AN5065 

Application Note  
 
 
 
 
 
 
 
 
 
 
 
 

Adding Custom Registers to the 
CodeWarrior for Power Architecture® 
Processors  
 
 
 
 
 

1. Introduction 
This document describes how to add new registers to 
the debugger database of the CodeWarrior 
Development Studio for Power Architecture® 
Processors that can be viewed in the Registers view of 
the CodeWarrior IDE. 

CAUTION Modifications to the debugger 
database files that are invalid may 
corrupt the CodeWarrior for Power 
Architecture installation on your 
machine. Restoring the original 
database files should be sufficient to 
recover from any problems. If not, a 
complete re-installation of the 
CodeWarrior for Power Architecture 
software is required. 

This document helps you to create new register files and 
package them in a database file that will be loaded and 
interpreted by the debugger. 

 
Contents 
1. Introduction ....................................................... 1 
2. Background ....................................................... 2 
3. Finding and extracting database files ............. 2 
4. Adding custom definitions .............................. 3 
 



 

Background 
 

 

Adding Custom Registers to the CodeWarrior for Power Architecture® Processors Application Note 
2 Freescale Semiconductor 

 

NOTE Any modifications made to the CodeWarrior software, files, and folders as described 
in this application note are not supported by default and should be made at your own 
risk. 

2. Background 
The debugger uses database files for storing persistence information, such as register information. A 
database file is actually a collection of archived XML files. It has the .mwpdb extension. Each processor 
type has a separate database file. 

A register is defined in a register-definition file, which is an XML file that provides detailed information 
(such as the meaning of each bit in the register) about a register. 
 
For each processor, the register-definition files of all the registers that belong to the processor are 
bundled in a .zip file that is named for the processor. Then, the file extension of each ZIP file is changed 
from .zip to .mwpdb. For example, the .mwpdb file that contains the register-definition files of all the 
registers that belong to the QorIQ T1040 processor is PowerPC_EABI_T1040.mwpdb. 

Each processor has the following two types of registers: 

• Processor-specific registers: Includes register set that is specific to the processor. 
• Core-specific registers: Includes register set that is specific to the core used in the register. 

Registers specific to a core are common for all processors that use the core. 

3. Finding and extracting database files 
For the CodeWarrior for Power Architecture v10.x debugger product, the database files are located in: 

• For Windows: 

<CWInstallDir>\PA\bin\plugins\support\Products\ProductData 

where <CWInstallDir> is C:\Freescale\CW_PA_v10.x.x in a default installation. 
 

• For Linux: 

<CWInstallDir>/PA/CodeWarrior/CodeWarrior_Plugins/Support/Products/ProductData 

where <CWInstallDir> is /opt/Freescale/CodeWarrior_PA_v10.x.x in a default installation. 
 
Perform the following steps to find and extract the correct database file: 

1. Locate the appropriate grouping (<product-name>.mwpdb file) of register-definition files. For 
Windows, go to the following folder: 



 
 Adding custom definitions 

 

Adding Custom Registers to the CodeWarrior for Power Architecture® Processors Application Note 
Freescale Semiconductor 3 
 

<CWInstallDir>\PA\bin\plugins\support\Products\ProductData 

For Linux, go to the following folder: 

<CWInstallDir>/PA/CodeWarrior/CodeWarrior_Plugins/Support/Products/ProductData 

2. Make a backup copy of the <product-name>.mwpdb file and save it in another folder. 

3. Change the file extension of the <product-name>.mwpdb file to <product-name>.zip. 

4. Using a standard zip utility, unzip the <product-name>.zip file to the following folder (for 
Windows): 

<CWInstallDir>\PA\bin\plugins\support\Products\ProductData\<product-name>.mwpdb 

or to the following folder (for Linux): 

<CWInstallDir>/PA/CodeWarrior/CodeWarrior_Plugins/Support/Products/ProductData/<pro
duct-name>.mwpdb 

5. Delete the <product-name>.zip file. 

When finished, the ProductData folder should look like it did before this process began, except that now 
<product-name>.mwpdb will be a folder, not a file. The <product-name>.mwpdb folder contains register-
definition files and these files are used by the CodeWarrior debugger in their unzipped form in the same 
way that they are used in their original zipped form. You can open the <product-name>.mwpdb folder and 
see the structure of its files and folders. 

In this example for T1040, we end up with the file PowerPC_EABI_T1040.zip (now deleted) and the folder 
PowerPC_EABI_T1040.mwpdb. 

4. Adding custom definitions 
Once the register-definition files are extracted, you need to edit them to add in the new or custom register 
definitions. In this example, which is performed on Windows, 13 BMAN (DPAA) registers are added to 
the list of T1040 registers.  

The .zip file associated with this Application Note contains the .xml files described in the following steps, 
which are intended to be used as references. 

NOTE The file PowerPC_EABI_T1040.mwpdb is available at: 
PowerPC_EABI_T1040.mwpdb.zip. This file contains all the XML files and folders 
that are either modified or created while going through the procedures described in 
this Application Note. 

 

http://cache.freescale.com/files/soft_dev_tools/doc/app_note/AN5065SW.zip�


 

Adding custom definitions 
 

 

Adding Custom Registers to the CodeWarrior for Power Architecture® Processors Application Note 
4 Freescale Semiconductor 

 

Perform the following steps to add custom definitions: 

To add one or more new registers, start by editing the product-manifest.xml file, which is 
located in the 
<CWInstallDir>\PA\bin\plugins\support\Products\ProductData\PowerPC_EABI_T1040.mwpdb. 

NOTE You can edit these XML files in any text editor, though an XML editor is 
recommended. 

At the top of the product-manifest.xml file, locate the XML header <register-details>. This 
group is an alphabetical list of all the individual registers that are displayed in the CodeWarrior 
for Power Architecture Debugger's Registers view. Since BMAN is the new first entry in this 
group, add the following lines above the CCM_CCLR0 entry, after <register-details>: 

       <file> 
        <name>BMAN_BCSP0_CR</name> 
        <version>1.0</version> 
        <path>RegisterDetails/QorIQ/T1040/BMAN/BMAN_BCSP0_CR.xml</path> 
      </file> 
 

The referenced BMAN_BCSP0_CR.xml file is created later and provides the register details for the 
BMAN_BCSP0_CR register. 

1. Repeat Step 1, for every BMAN register to be added to the CodeWarrior for Power Architecture 
Debugger's Registers view. This example adds only 13 registers: BMAN_BCSP0_CR, 
BMAN_BCSP0_RR0, BMAN_BCSP0_RR1, BMAN_BCSP0_RCRn (0-7), BMAN_BCSP0_RCR_PI_CENA, and 
BMAN_BCSP0_RCR_CI_CENA.  

2. Find the XML header <register-collection> in the product-manifest.xml file. This header 
starts the ordered list of register groups in the T1040, organized by each group's base address in 
the T1040 memory map. According to the QorIQT1040 Reference Manual, the BMAN block’s 
base address is 31_A000h, and the register group (that is already displayed in Register Details 
view) just above it is Security Monitor, at 31_4000h. 

3. Below the <register-collection> XML header, find SECMON (SECMON), which looks like this: 

      <file> 
        <name>SECMON (SECMON)</name> 
        <version>1.0</version> 
        <path>Registers/QorIQ/T1040/SECMON/SECMON.xml</path> 
      </file> 

Insert the following lines after the </file> line of the SECMON entry: 

      <file> 
        <name>BMAN (BMAN)</name> 
        <version>1.0</version> 
        <path>Registers/QorIQ/T1040/BMAN/BMAN.xml</path> 
      </file> 



 
 Adding custom definitions 

 

Adding Custom Registers to the CodeWarrior for Power Architecture® Processors Application Note 
Freescale Semiconductor 5 
 

The referenced BMAN.xml file will be created in Step 6 below and will provide the register 
mapping for all the newly-added BMAN registers. 

4. Create the folder <path>PowerPC_EABI_T1040.mwpdb\Registers\QorIQ\T1040\BMAN. 

5. In the new BMAN folder, create a blank file BMAN.xml. Using an existing file such as SECMON.xml as 
a guide, fill in the contents of BMAN.xml with header information and entries for each of the 13 
BMAN registers defined in Step 1. See Table 4-1, BMAN Software Portal Memory Map, of the 
T1040 QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual for address 
offsets for each register. 

6. Create a folder <path>PowerPC_EABI_T1040.mwpdb\RegisterDetails\QorIQ\T1040\BMAN.  

7. In the new BMAN folder, create the empty file BMAN_BCSP0_CR.xml. Using an existing file such as 
SECMON_HPLR.xml as a guide, fill in the contents of BMAN_BCSP0_CR.xml with details for each bit 
field, as defined in the T1040 QorIQ Data Path Acceleration Architecture (DPAA) Reference 
Manual. 

This step takes the most work, defining all the bitfields for every new register to be added to 
the debugger's Registers view. A convenient temporary shortcut is to use the following 
simplified register-details example instead: 

<register-details-file> 
  <register-details> 
  <version>0.1</version> 
    <name>BMAN_BCSP0_CR</name> 
    <bitrange>0:63</bitrange> 
    <reset-value>0x00000000</reset-value> 
    <description>BMan software portal 0, command register.</description> 
    <bitfields> 
      <bitfield> 
        <name>-</name> 
        <bitrange>0:63</bitrange> 
        <format>binary</format> 
        <access>readwrite</access> 
        <description>BMan software portal 0, command register.</description> 
      </bitfield> 
    </bitfields> 
  </register-details> 
</register-details-file> 

Change the <name>, <bitrange>, <reset-value>, <description>, and <access> fields as 
appropriate for each new register. 

8. Edit the file <path>Registers\QorIQ\T1040\DefaultLayout_cpuPowerPCBig.xml and add the 
following line immediately after the entry for /SECMON/SECMON.xml: 

<register-file-name>Registers/QorIQ/T1040/BMAN/BMAN.xml</register-file-name>  

The DefaultLayout_cpuPowerPCBig.xml file determines the order in which the register groups are 



 

Adding custom definitions 
 

 

Adding Custom Registers to the CodeWarrior for Power Architecture® Processors Application Note 
6 Freescale Semiconductor 

 

displayed in the debugger's Registers and Register Details views. The BMAN block base 
address is 31_A000h and the Security Monitor block base address is 31_4000h, so the BMAN 
registers would logically appear immediately after SECMON registers. 

9. When all the new registers have been defined, delete the file 
<CW_PA10>\PA\bin\plugins\support\Products\ProductData\chameleon_toc.sqlite, and then 
launch or restart the CodeWarrior for Power Architecture IDE. It will take a few moments to 
process the newly organized registers information. You will see the console status message, 
Indexing debug database, while doing so.  

10. After all the background processing is completed, open the Register Details view, select the 
processor for which the new registers were added, and scroll down the list of register groups until 
the new group is found. Expanding the new group shows all the individual registers in that group, 
and clicking on any register shows the register details. New registers and register groups can be 
added incrementally, as needed. 

11. When all changes and additions are made and verified, create a .zip of all the files in the 
PowerPC_EABI_T1040.mwpdb folder (you can either move all the original, new, and modified files 
and folders into the .zip file, or delete the files and folders after copying them to the .zip file), 
then change the extension from.zip to .mwpdb.  

12. Delete chameleon_toc.sqlite one more time and launch or restart the CodeWarrior for Power 
Architecture to verify that all registers are displayed as expected. 





 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How to Reach Us: 

Home Page: 
freescale.com 

Web Support: 
freescale.com/support 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Document Number: AN5065 
 
15 July 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Information in this document is provided solely to enable system and software implementers to use 
Freescale Semiconductor products. There are no express or implied copyright licenses granted 
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in 
this document. 
 
Freescale reserves the right to make changes without further notice to any products herein. Freescale 
makes no warranty, representation, or guarantee regarding the suitability of its products for any 
particular purpose, nor does Freescale assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without limitation 
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data 
sheets and/or specifications can and do vary in different applications, and actual performance may vary 
over time. All operating parameters, including “typicals,” must be validated for each customer application 
by customer's technical experts. Freescale does not convey any license under its patent rights nor the 
rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which 
can be found at the following address: freescale.com/SalesTermsandConditions. 
 
Freescale, the Freescale logo, CodeWarrior, QorIQ, QorIQ Qonverge, and StarCore are trademarks of 
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the 
property of their respective owners. The Power Architecture and Power.org word marks and the Power 
and Power.org logos and related marks are trademarks and service marks licensed by Power.org. 
  
© Freescale Semiconductor, Inc. 2015. 
 

 
 

 


	1. Introduction
	2. Background
	3. Finding and extracting database files
	4. Adding custom definitions

