
Freescale Semiconductor, Inc. Document Number: AN5127
Application Note Rev. 1, 05/2015

How to Run the MQX™ RTOS on Various
RAM Memories for i.MX 6SoloX

1 Introduction
This document describes how to customize
software to enable Cortex®-M4 to run MQX™
RTOS on different RAM memories, such as
OCRAM and DDR SDRAM.

By default, the i.MX 6SoloX Linux® BSP and
MQX RTOS releases support Cortex-M4 to run
on the QuadSPI NOR flash. In some cases,
however, users need to run the MQX RTOS on
DDR or OCRAM instead of the NOR flash.

This document is based on the following
environments:

• i.MX 6SoloX SABRE-SDB

• Freescale MQX 4.1 i.MX 6SoloX GA

• Yocto 3.10.53 GA

• ARM® Development Studio 5 (DS-5™)
version 5.18.0

• IAR 7.20

Contents

1 Introduction ... 1

2 Scenario Overview ... 2

3 How to Define the Memory Layout 4

4 How to Change the MQX RTOS Start Address 6

5 How to Change the Linux Kernel Start Address 9

6 How to Change the U-Boot Start Address 12

7 How to Run the Demo ... 13

8 Low Power Consumption .. 15

9 Influence and Impact on the System 16

10 Revision History ... 16

© Freescale Semiconductor, Inc., 2015. All rights reserved.

2 Scenario Overview
The i.MX 6SoloX processors are the newest multi-core architecture designed by using the ARM
Cortex®-A9 and ARM Cortex-M4 cores. This dual-core architecture enables the device to run an open
operating system (OS) like Linux on the Cortex-A9 core and an RTOS like MQX on the Cortex-M4 core.

This Asymmetric Multi-core Processor (AMP) system has the following advantages:

• Improves the power efficiency for a reduced carbon footprint. For example, one core enters low
power mode while the other core is running.

• Balances different task requirements in single silicon chip, such as real-time vs. non real-time
tasks and simple computing vs. complex computing tasks.

• Meets various application scenarios, such as automobile, industrial automation, consumer
electrics.

Based on these conditions, Freescale provides the possibility to run the Linux OS on the Cortex-A9 core
and run the MQX RTOS on the Cortex-M4 core at the same time. The reference board has the following
memory features:

• 1 GB DDR

• 256 KB NOR Flash through QuadSPI

• 128 KB OCRAM

However, the release BSP only supports to run the MQX RTOS on the QuadSPI NOR flash and run the
Linux OS on DDR by default. To determine whether to run the MQX RTOS on various RAM memories,
consider the following cases:

• The custom board has no NOR flash because of the BOM cost or hardware space.

• Downloading to RAM is faster than to the flash and is more convenient for debugging.

• Running the program out of RAM memory might be faster and enhance the application performance.

This document describes how to customize software to make Cortex-M4 to run the MQX RTOS on
various RAM memories. It includes:

• Running the MQX RTOS on DDR

• Running the MQX RTOS on OCRAM

To run both the MQX RTOS and the Linux kernel on DDR, consider the following points:

• How to define the memory layout

• How to change the Linux kernel start address

• How to change the MQX RTOS start address

• How to change the U-Boot start address

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
2 Freescale Semiconductor, Inc.

• How to run the demo

To run the MQX RTOS on OCRAM while running the Linux kernel on DDR, consider the following
points:

• How to define the memory layout

• How to change the MQX RTOS start address

• How to run the demo

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 3

3 How to Define the Memory Layout
Table 1 shows the memory layout for the release BSP.

Table 1 Memory layout

Core OS type Start address Size Memory type

Cortex-A9 Linux 0x80000000 1024 MB DDR

Cortex-M4 MQX 0x78000000 256 KB QSPI NOR flash

3.1 Running the MQX RTOS on DDR
To run the MQX RTOS on DDR, you need to allocate some DDR memory to the MQX RTOS and this
specific memory should not be accessed by the Linux OS. Therefore, it is a better solution to leave a
section of memory at the beginning of DDR for MQX RTOS and allocate the rest of the DDR memory to
the Linux kernel.

For example, if you have a system with 1 GB of DDR, you can partition the system as follows.
Table 2 System partition

Core OS type Start address Size Memory type

Cortex-A9 Linux 0x81000000 1008 MB DDR

Cortex-M4 MQX 0x80000000 16 MB DDR

In this case, pay attention to the following points:

• The Linux kernel requires the start address to be a multiple of 16 MB. This means that the
addresses should be incremented by 0x1000000, so we can only change the start address to
0x81000000, 0x82000000, etc.

• The DDR size is scalable. The maximum is 2 GB and the minimum is 256 MB. The DDR memory
size should be allocated according to the actual memory size.

• The DDR memory connected to the Cortex-M4 (> 0xa0000000) space should not be allocated to
execute the Cortex-M4 code, because that region is predefined as the device type and XN. We can
select the region for Cortex-M4 from (0x80000000 - 0x9FFFFFFF).

3.2 Running the MQX RTOS on OCRAM
Theoretically, the MQX RTOS can run on any address of OCRAM. In some cases, however, if your
OCRAM has other purposes, it should define the memory layout carefully. In reference BSP, when
U-Boot enters command line mode, most of the OCRAM space used by the boot ROM codes is freed, but
the first 0x1000 bytes starting from 0x00900000 are used by DDR frequency change for implementing
Linux low power mode. This address range cannot be used for the MQX RTOS and should be reserved for
the Cortex-A9 Linux Software.

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
4 Freescale Semiconductor, Inc.

Table 3 New memory layout

Core OS type Start address Size Memory type

Cortex-A9 Linux 0x80000000 1024 MB DDR

Cortex-M4 MQX RTOS 0x00901000 64 KB OCRAM

In this case, pay attention to the following points:

• It is not necessary to rebuild the Linux kernel and U-Boot.

• The memory size should not exceed the threshold 128 KB of OCRAM.

• 0x00900000 - 0x00901000 is reserved for frequency scaling that is described by the device tree. If
your Linux does not need low power mode support for DDR, you can change the start address to
0x00900000.

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 5

4 How to Change the MQX RTOS Start Address
The methods of changing the MQX RTOS start address for different development tools are similar. In this
document, we use ARM Development Studio 5 (DS-5™) to build the MQX RTOS.

For more information about how to use DS-5, see the Getting Started with ARM

Development Studio 5

(DS-5™) with Freescale MQX™ RTOS (MQXGSRTOS).

4.1 Configuring ARM Development Studio 5 (DS-5™)
The MQX RTOS build procedure has two targets:

• Flash target

Default target. With the flash target, the code and application run in the flash memory. In the default
BSP, this flash memory is the NOR flash through QSPI.

• RAM target

The instructions are the same as the flash target except one additional step when building the
application: Change the link file flash.xxx to ram.xxx. With the RAM target, the code and application
run in the RAM memory, for example, DDR and OCRAM.

In common cases, the RAM target is used for debugging and the flash target is used for final application
deployment.

To enable M4 to run the MQX RTOS on the DDR SDRAM memory, select the RAM target. This
document takes the mutex project as an example.

1. When you import the mutex project, the default configuration is Int Flash Release. Rename it to
RAM Release, as shown in Figure 1.

Figure 1 Default configuration

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
6 Freescale Semiconductor, Inc.

2. Change the link file flash.scf to ram.scf, as shown in Figure 2.

Figure 2 Changing the link file

For more information about how to select the RAM target, see the Freescale MQX™ RTOS 4.1.0 i.MX
6SoloX Release Notes (MQXIMX6SXRN).

4.2 Modifying link files and build
• For the RAM Release version, edit <install dir>/lib/imx6sx_sdb_m4.ds5/release/bsp/ram.scf.

• For the RAM Debug version, edit <install dir>/lib/imx6sx_sdb_m4.ds5/debug/bsp/ram.scf.

The modifications of codes are as follows:

• Original code:
#define CODE_BASE_ADDR_START 0x78000000

#define CODE_BASE_ADDR_END 0x7803FFF0

• New code for running the MQX RTOS on DDR:
#define CODE_BASE_ADDR_START 0x80000000

#define CODE_BASE_ADDR_END 0x80FFFFFF

• New code for running the MQX RTOS on OCRAM:
#define CODE_BASE_ADDR_START 0x00901000

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 7

#define CODE_BASE_ADDR_END 0x00921000

When the build process is completed, the mutex.axf will be at:

• <install dir>/mqx/examples/mutex/build/ds5/mutex_imx6sx_sdb_m4/RAM Release

• <install dir>/mqx/examples/mutex/build/ds5/mutex_imx6sx_sdb_m4/RAM Debug

Under the DS-5 command prompt, access the directories above and run:
fromelf --bin --output=mutex.bin mutex.axf

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
8 Freescale Semiconductor, Inc.

5 How to Change the Linux Kernel Start Address
In some other Linux kernel BSPs, they may support configuring the kernel start address from the
configuration menu, but in the Linux 3.10.53 BSP release, this feature is not supported. You need to
modify the kernel files to configure the start address. This section describes the modifications that are
required in the kernel.

The following files need to be modified:

• arch/arm/Kconfig and /arch/arm/mach-imx/Kconfig

• arch/arm/mach-imx/Makefile.boot

• arch/arm/Makefile

5.1 Modifying the Kconfig files
ZRELADDR is the physical address where the decompressed kernel image is placed. If
AUTO_ZRELADDR is selected, the address is determined at run-time by masking the current PC with
0xf8000000. This assumes that the zImage is placed in the first 128 MB of the memory.
#ifdef CONFIG_AUTO_ZRELADDR

 @ determine final kernel image address

 mov r4, pc

 and r4, r4, #0xf8000000

 add r4, r4, #TEXT_OFFSET

#else

 ldr r4, =zreladdr

In the default Kconfig files, because the kernel is for multiple platforms and is based on the MXC
architecture, CONFIG_ARCH_MULTIPLATFORM and CONFIG _ARCH_MXC should be selected.
For example, imx_v7_defconfig, CONFIG_ARCH_MULTIPLATFORM, and CONFIG _ARCH_MXC
are all default, but this will cause CONFIG_AUTO_ZRELADDR to be selected. In this case, the zImage
is placed in the first 128 MB of the DDR memory, which may overlap the DDR memory space used by the
MQX RTOS. For example, the zImage is placed in 0x80001000 by default, which is not expected.

Therefore, you need to make the following modifications to set CONFIG_AUTO_ZRELADDR to default
N:

• Delete “select AUTO_ZRELADDR” from the CONFIG_ARCH_MULTIPLATFORM menu. The
file is /arch/arm/Kconfig.

• Delete “select AUTO_ZRELADDR if !ZBOOT_ROM” from the CONFIG _ARCH_MXC menu.
The file is /arch/arm/mach-imx/Kconfig.

When the configuration for the kernel is complete, the CONFIG_AUTO_ZRELADDR is N, and you can
manually modify the physical address where the decompressed kernel image is placed.

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 9

5.2 Adding arch/arm/mach-imx/Makefile.boot
When CONFIG_AUTO_ZRELADDR is not set, the physical address where the decompressed kernel
image is placed is defined by zreladdr. Usually, the Linux kernel uses the Makefile.boot file to load
custom-board boot parameters. In the Linux 3.10.53 BSP, the file is deleted and the kernel automatically
computes this physical address according to the SOC type, for example, 0x80008000 for i.MX 6SoloX,
0x10008000 for i.MX 6Quad/DualLite and i.MX 6SoloLite.

In this case, we only consider i.MX 6SoloX SOC, and add Makefile.boot as follows:
zreladdr-y := 0x81008000

Pay attention to the following points:

• The DDR memory map is different between i.MX 6Quad/DualLite, i.MX 6SoloLite, and i.MX
6SoloX. ZRELADDR is different between the SOC types. In this case, only i.MX 6SoloX is
considered.

• ZRELADDR is variable, but it should be compliant with the memory layout. This address should
be less than 128 MB from the Linux kernel start address, or it fails to boot.
Linux kernel start address: 0x80000000 0x81000000 0x82000000

zreladdr: 0x80001000 0x81008000 0x82008000

This is because the kernel automatically fixes PHYS_OFFSET according to ZRELADDR.

• The 0x8000 offset is a common value. Do not change it. The first 16 KB is for the page table, and
the second 16 KB is for boot parameters.

5.3 Modifying arch/arm/Makefile
In the Linux 3.10.53 BSP, Makefile.boot is not included in the build system, so you need to add it to the
build system.

• Original code:
ifeq ($(CONFIG_ARCH_MULTIPLATFORM),y)

MACHINE :=

endif

• New code:
ifeq ($(CONFIG_ARCH_MULTIPLATFORM),y)

MACHINE := arch/arm/mach-imx

endif

5.4 Using the patch to apply the modifications
Use the patch to apply the modifications described above:
cd build/tmp/work/imx6sxsabresd-poky-linux-gnueabi/linux-imx/3.10.53-r0/git

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
10 Freescale Semiconductor, Inc.

git am 0001-Kernel-M4-Reserve-16M-DDR-memory-for-M4-core-use.patch

. ./setup-environment build/

bitbake -v -f -c configure linux-imx

bitbake -v -f -c compile linux-imx

bitbake -v -f -c install linux-imx

bitbake -v -f -c deploy linux-imx

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 11

6 How to Change the U-Boot Start Address
By default, U-Boot runs on DDR and it occupies some memory at the beginning of DDR. If you also want
to run the MQX RTOS on DDR, change U-Boot start address first, or it will conflict with the MQX RTOS.

Generally, we change the U-Boot start address to be consisten with the Linux kernel start address. For
example, if the Linux kernel start address is 0x81000000, we should change the U-Boot start address to
0x81000000.

It is easy to change the U-Boot start address. You only need to modify the physical memory map value in
/include/configs/mx6sxsabresd.h as follows:

• Original code:
#define PHYS_SDRAM MMDC0_ARB_BASE_ADDR

#define PHYS_SDRAM_SIZE SZ_1G

• New code:
#define PHYS_SDRAM (MMDC0_ARB_BASE_ADDR + SZ_16M)

#define PHYS_SDRAM_SIZE (SZ_1G - SZ_16M)

In addition, you can also change the U-Boot default environment variables and it is very convenient for
you to load the MQX RTOS image and Linux image in the boot command prompt. These changes are
optional.
The following is an example to set these environment variables:

• Original code:
#define CONFIG_LOADADDR 0x80800000

#define CONFIG_SYS_AUXCORE_BOOTDATA 0x78000000

#define CONFIG_SYS_MEMTEST_START 0x80000000

• New code:
#define CONFIG_LOADADDR 0x81800000

#define CONFIG_SYS_AUXCORE_BOOTDATA 0x80000000

#define CONFIG_SYS_MEMTEST_START (0x80000000 + SZ_16M)

Use the patch to apply the changes above:
cd build/tmp/work/imx6sxsabresd-poky-linux-gnueabi/u-boot-imx/2014.04-r0/git

git am 0001-U-Boot-M4-Reserve-16M-DDR-memory-for-M4-core-use.patch

. ./setup-environment build/

bitbake -v -f -c compile u-boot

bitbake -v -f -c install u-boot

bitbake -v -f -c deploy u-boot

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
12 Freescale Semiconductor, Inc.

7 How to Run the Demo

7.1 Prerequisites
No matter what memory the MQX RTOS runs on, this demo should meet the following requirements:

• It should have uboot.imx for i.MX 6SoloX. This U-Boot is used for loading dtb, zImage, and
MQX application images to RAM and booting the MQX application and Linux kernel.

• It should have imx6sx-sdb-m4.dtb for i.MX 6SoloX: This dtb should prevent resource conflicts
between Cortex-A9 and Cortex-M4.

• It should have mutex_imx6sx_sdb_m4.bin. This is an MQX application demo image.

• It should have zImage. This is a Linux kernel demo image.

For more information about how to boot the Linux OS and how to run the MQX application, see the i.MX
Linux User's Guide (IMXLUG).

NOTE
The following steps are based on the U-Boot. This U-Boot image demo is
for minimum change version and some optional environment variables are
not modified in the source codes. Therefore, we should modify these
environment variables in run-time. If you have modified the related
environment variables in the source code and rebuilt it, you can skip these
steps.

7.2 Running the MQX RTOS on DDR
Assume that you have an SD/MMC image for booting from the SD4 slot, and you have copied mutex.bin,
zImage, and imx6sx-sdb-m4.dtb to the FAT file system on the SD card. Perform the following steps:

1. Load the MQX application binary to DDR.
fatload mmc 2:1 0x80000000 mutex_imx6sx_sdb_m4.bin

2. Flush the U-Boot data cache.
dcache flush

3. Run the MQX application on DDR.
bootaux 0x80000000

4. Run the Linux kernel.
run bootcmd

7.3 Running the MQX RTOS on OCRAM
Assume that you have an SD/MMC image for booting from the SD4 slot, and you have copied mutex.bin,
zImage, and imx6sx-sdb-m4.dtb to the FAT file system on the SD card. Perform the following steps:

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 13

1. Load the MQX application binary to OCRAM.
fatload mmc 2:1 0x00901000 mutex_imx6sx_sdb_m4.bin

2. Flush the U-Boot data cache.
dcache flush

3. Run the MQX application on OCRAM.
bootaux 0x00901000

4. Boot the Linux kernel and mount filesystem.
run bootcmd

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
14 Freescale Semiconductor, Inc.

8 Low Power Consumption
In some cases, you may need to reduce the power consumption of the entire system. To meet these low
power application requirements, Freescale implements some low-level power management drivers.

For i.MX 6SoloX, there are two cases:

• The Linux OS is suspended while Cortex-M4 is in low-power idle mode.

In this case, the MQX RTOS is possibly not running, and then Cortex-M4 is in low-power idle
mode. There are the following suspend maps for the Linux OS:

o Standby: maps to STOP mode, which saves power significantly, because all the blocks in
the system enter the low-power state, except for the ARM core, which is still powered on,
and the memory is in self-refresh mode to retain its contents.

o Mem (suspend to RAM): maps to DORMANT mode, which saves power significantly,
because all the blocks in the system enter the low-power state, except for the memory,
which is in the self-refresh mode to retain its contents.

• The Linux OS is suspended while Cortex-M4 is running.

In this case, the MQX RTOS is running and Cortex-M4 is not in low-power idle mode. No matter
Standby and Mem, they both map to WAIT mode, which ensures that Cortex-M4 CLK is alive.

For more information about the low power mode for the Linux OS, see the i.MX 6 Linux Reference
Manual (IMX6LXRM).

For more information about the low power mode for i.MX 6SoloX, see the i.MX 6SoloX Applications
Processor Reference Manual (IMX6SXRM).

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
Freescale Semiconductor, Inc. 15

9 Influence and Impact on the System
With this function support, Cortex-M4 can run the MQX RTOS on the RAM memory (OCRAM or DDR)
instead of the QuadSPI NOR flash only. The influence and impact on the system are as follows:

• When the MQX application image is loaded to DDR or OCRAM, even though it is faster than to
load to the NOR Flash, because these RAMs is not non-volatile memory, it needs to load the image
every time on booting. This increases the booting time of the system.

• When the MQX RTOS runs on DDR or OCRAM, it can improve the performance on the MQX
side, because the speed to access the RAM is faster than to access the flash.

• When the MQX RTOS runs on DDR, Cortex-M4 shares the DDR bandwidth with Cortex-A9. It is
a risk to reduce the performance on the Linux side. It is not suitable for the DDR bandwidth
hogging applications.

• When the MQX RTOS runs on DDR, because the Linux kernel requires the start address to be a
multiple of 16 MB, the minimum reserved DDR size is 16 MB. The reserved space that is not
occupied by the MQX image becomes invalid. This is a waste of the DDR memory.

10 Revision History
Table 1 Table 4 Revision history

Revision number Date Substantive changes

1 05/2015 Initial release

 How to Run the MQX™ RTOS on Various RAM Memories for i.MX 6SoloX, Rev. 1, 05/2015
16 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products herein.
Freescale makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its patent rights nor the
rights of others. Freescale sells products pursuant to standard terms and conditions of sale,
which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S.
Pat. & Tm. Off. All other product or service names are the property of their respective
owners. The ARM Powered Logo is a trademark of ARM Limited.
© 2015 Freescale Semiconductor, Inc.

Document Number: AN5127
Rev. 1
05/2015

	1 Introduction
	2 Scenario Overview
	3 How to Define the Memory Layout
	3.1 Running the MQX RTOS on DDR
	3.2 Running the MQX RTOS on OCRAM

	4 How to Change the MQX RTOS Start Address
	4.1 Configuring ARM Development Studio 5 (DS-5™)
	4.2 Modifying link files and build

	5 How to Change the Linux Kernel Start Address
	5.1 Modifying the Kconfig files
	5.2 Adding arch/arm/mach-imx/Makefile.boot
	5.3 Modifying arch/arm/Makefile
	5.4 Using the patch to apply the modifications

	6 How to Change the U-Boot Start Address
	7 How to Run the Demo
	7.1 Prerequisites
	7.2 Running the MQX RTOS on DDR
	7.3 Running the MQX RTOS on OCRAM

	8 Low Power Consumption
	9 Influence and Impact on the System
	10 Revision History

