
© NXP B.V.

3-phase Sensorless PMSM Motor Control

Kit with MagniV MC9S12ZVM

Featuring Motor Control

Application Tuning (MCAT) Tool

1 Introduction

This application note targeted for automotive

applications describes the design of a 3-phase

Permanent Magnet Synchronous Motor (PMSM) vector

control drive with 2-shunt current sensing without a

position sensor.

This cost-effective solution benefits from

MC9S12ZVM device dedicated for motor control. The

system is designed to drive a 3-phase PM synchronous

motor. Following are the supported features:

• 3-phase PMSM speed Field Oriented Control.

• Current sensing with two shunt resistors.

• Shaft position and speed estimated by sensorless

algorithm.

• Application control user interface using

FreeMASTER debugging tool.

• Motor Control Application Tuning (MCAT) tool

NXP Semiconductor Document Number: AN5135

Application Notes Rev. 1 , 05/2016

1 Introduction .. 1

2 System concept ... 2

3 PMSM field oriented control .. 2

3.1 Fundamental principle of PMSM FOC 2

3.2 PMSM model in quadrature phase synchronous

reference frame .. 4

3.3 Output voltage actuation and phase current

measurement ... 6

3.4 Rotor position/speed estimation 8

4 Software implementation on the MC9S12ZVML128 10

4.1 MC9S12ZVML128 – Key modules for PMSM FOC

control 10

4.2 MCS12ZVM Device initialization 13

4.3 Software architecture ... 15

5 FreeMASTER and MCAT user interface 30

5.1 MCAT Settings and Tuning 31

5.2 MCAT Application Control 35

6 Conclusion .. 36

7 References .. 36

Contents

https://www.nxp.com/products/processors-and-microcontrollers/additional-mpu-mcus-architectures/s12-magniv-mixed-signal-mcus/s12zvm-mixed-signal-mcu-for-automotive-industrial-motor-control-applications:S12ZVM?utm_medium=AN-2021

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

2 NXP Semiconductors

2 System concept

The system is designed to drive a 3-phase PM synchronous motor. The application meets the following

performance specifications:

 Targeted at the MC9S12ZVM Evaluation Board (refer to dedicated user manual for

MC9S12ZVM available at www.nxp.com) See section References for more information.

 Control technique incorporating:

o Field Oriented Control of 3-phase PM synchronous motor without position sensor

o Closed-loop speed control

o Bi-directional rotation

o Close-loop current control

o Flux and torque independent control

o Position and speed is estimated by Extended BEMF observer.

o Start up with alignment

o Reconstruction of three-phase motor currents from two shunt resistors

o 100 μs sampling period with FreeMASTER recorder

 FreeMASTER software control interface (motor start/stop, speed setup)

 FreeMASTER software monitor

 FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters,

current loop, sensorless parameters, speed loop)

 FreeMASTER software MCAT graphical control page (required speed, actual motor speed,

start/stop status, DC-Bus voltage level, motor current, system status)

 FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and

motor current)

 FreeMASTER software high-speed recorder (reconstructed motor currents, vector control

algorithm quantities)

 DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection.

3 PMSM field oriented control

3.1 Fundamental principle of PMSM FOC

High-performance motor control is characterized by smooth rotation over the entire speed range of the

motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control,

Field Oriented Control is used for PM synchronous motors.

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the

fundamental harmonic of stator-mmf is considered, the torque Te developed by an AC machine, in

vector notation, is given by the following equation:

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 3

Equation 1

where pp is the number of motor pole-pairs, is is stator current vector and ψs represents vector of the

stator flux. Constant 3/2 indicates a non-power invariant form of transformation used.

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator

current vector is satisfied by the mechanical commutator. Because there is no such mechanical

commutator in AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the

commutator has to be substituted electrically by enhanced current control. This suggests the orientating

of the stator current vector in so that the component of stator current magnetizing the machine (flux

component) is isolated from the torque producing component.

This can be accomplished by decomposing the current vector into two components projected in the

reference frame, often called the dq frame that rotates synchronously with the rotor. It has becomes a

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux

axis.

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical

position transducer or position observer can be utilized to measure the rotor position and the position of

the rotor flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor

flux axis, the current in the q-axis represents solely the torque producing current component.

What further results from setting the reference frame speed to be synchronous with the rotor flux axis

speed is that both d and q axis current components are DC values. This implies utilization of simple

current controllers to control the demanded torque and magnetizing flux of the machine, thus

simplifying the control structure design.

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To

perform vector control, it is necessary to perform the following four steps:

 Measure the motor quantities (DC link voltage and currents, rotor position/speed).

 Transform measured currents into the two-phase system (α, β) using a Clarke transformation.

After that transform the currents in α, β coordinates into the d, q reference frame using a Park

transformation.

 The stator current torque (isq) and flux (isd) producing components are separately controlled in d,

q rotating frame.

 The output of the control is stator voltage space vector and it is transformed by an inverse Park

transformation back from the d, q reference frame into the two-phase system fixed with the

stator. The output three-phase voltage is generated using a space vector modulation.

To be able to decompose currents into torque and flux producing components (isd, isq), position of the

motor-magnetizing flux has to be known. This requires knowledge of accurate rotor position and

velocity. This application note deals with the sensorless FOC control where the position and velocity is

obtain by help of position/velocity estimator.

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

4 NXP Semiconductors

Figure 1. Field oriented control transformations

3.2 PMSM model in quadrature phase synchronous reference frame

Quadrature phase model in synchronous reference frame is very popular for field oriented control

structures, because both controllable quantities, current and voltage, are DC values. This allows to

employ only simple controllers to force the machine currents into the defined states. Furthermore full

decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and

position control.

The equations describing voltages in the three phase windings of a permanent magnet synchronous

machine can be written in matrix form as follows:

Equation 2

where the total linkage flux in each phase is given as:

Equation 3

where Laa, Lbb, Lcc, are stator phase self-inductances and Lab=Lba, Lbc=Lcb, Lca=Lac are mutual

inductances between respective stator phases. The term ΨPM represents the magnetic flux generated by

the rotor permanent magnets, and θe is electrical rotor angle.

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 5

Figure 2. Orientation of stator (stationary) and rotor (rotational) reference frames, with current

components transformed into both frames

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by

transforming the three phase voltage equations (Equation 1 and Equation 2) into a two phase rotational

frame which is aligned and rotates synchronously with the rotor as shown in Figure 2. Such

transformation, after some mathematical corrections, yields the following set of equations:

Equation 4

where ωe is electrical rotor speed. It can be seen that Equation 4

 represents a non-linear cross dependent system, with cross-coupling terms in both d and q axis and

back-EMF voltage component in the q-axis. When FOC concept is employed, both cross-coupling terms

shall be compensated in order to allow independent control of current d and q components. Design of the

controllers is then governed by following pair of equations, derived from Equation 4

on page 5 after compensation:

Equation 5

Equation 6

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

6 NXP Semiconductors

which describes the model of the plant for d and q current loop. Both equations are structurally identical,

therefore the same approach of controller design can be adopted for both d and q controllers. The only

difference is in values of d and q axis inductances, which results in different gains of the controllers.

Considering closed loop feedback control of a plant model as in either equation, using standard PI

controllers, then the controller proportional and integral gains can be derived, using a pole-placement

method, as follows:

Equation 7

Equation 8

where ω0 represents the system natural frequency [rad/sec] and ξ is the Damping factor [-] of the current

control loop.

Figure 3. FOC Control Structure

3.3 Output voltage actuation and phase current measurement

The 3-phase voltage source inverter shown in Figure 4 uses two shunt resistors (R68 and R48) placed in

each of the inverter leg as phase current sensors. Stator phase current which flows through the shunt

resistor produces a voltage drop which is interfaced to the AD converter of microcontroller through

conditional circuitry (refer to MC9S12ZVML128 Evaluation Board User Manual available at nxp.com).

http://www.nxp.com/

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 7

Figure 4. 3-phase DC/AC inverter with shunt resistors for current measurement

Figure 5 shows gain setup and input signal filtering circuit for two internal operational amplifier

integrated on MC9S12ZVM which provides the conditional circuitry and adjusts voltages to fit into the

ADC input voltage range.

Figure 5. Phase current measurement conditional circuitry

The phase current sampling technique is a critical issue for detection of phase current differences and for

acquiring full three phase information of stator current by its reconstruction. Phase current flowing

through shunt resistors produces a voltage drop which needs to be appropriately sampled by the AD

converter when low-side transistors are switched on. The current cannot be measured by the current

shunt resistors at an arbitrary moment. This is because that the current only flows through the shunt

resistor when the bottom transistor of the respective inverter leg is switched on. Therefore considering

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

8 NXP Semiconductors

Figure 4, phase A current is measured using the R68 shunt resistor and can only be sampled when the

transistor Q6 is switched on. Correspondingly, the current in phase B can only be measured if the

transistor Q2 is switched on, and the current in phase C can only be measured if the transistor Q4 is

switched on. In order to get an actual instant of current sensing, voltage waveform analysis has to be

performed.

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are shown in Figure

6. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As

shown in the following figure, (PWM period I), the best sampling instant of phase current is in the

middle of the PWM period, where all bottom transistors are switched on. However, not all three currents

can be measured at an arbitrary voltage shape. PWM period II in the following figure shows the case

when the bottom transistor of phase A is ON for a very short time. If the ON time is shorter than a

certain critical time (depends on hardware design), the current cannot be correctly measured.

Figure 6. Generated phase duty cycles in different PWM periods

In case of standard motor operation where the supplied voltage is generated using the space vector

modulation, the sampling instant of phase current takes place in the middle of the PWM period in which

all bottom transistors are switched ON. If the modulation index of applied SVM technique increases

there is an instant when one of the bottom transistors is switched ON for a very short time period.

Therefore, only two currents are measured and the third one is calculated from the following equation:

Equation 9

Therefore, a minimum ON time of the low-side switch is required for three phase current reconstruction.

3.4 Rotor position/speed estimation

The first stage of the proposed overall control structure is alignment algorithm of rotor PM to set an

accurate initial position. The alignment algorithm applies DC voltage to phase A for a certain period.

This will cause the rotor to move to "align" position, where stator and rotor fluxes are aligned. The rotor

position in which the rotor stabilizes after applying DC voltage is set as zero position. The alignment

algorithm allows applying a full startup torque to the motor.

PMSM field oriented control

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 9

In the second stage, the field-oriented control is in open-loop mode, in order to move the motor up to a

speed value where the observer provides sufficiently accurate speed and position estimations. As soon as

the observer provides appropriate estimates, the rotor speed and position calculation is based on the

estimation of a BEMF in the stationary reference frame using a Luenberger type of observer.

When the PMSM reaches a minimum operating speed, a minimum measurable level of BEMF is

generated by the rotor’s permanent magnets. The BEMF observer then transitions into the closed-loop

mode. The feedback loops are then controlled by the estimated angle and estimated speed signals from

the BEMF observer.

This estimation method for the position and angular speed is based on the motor mathematical model

with an extended electromotive force function. This extended BEMF model includes both position

information from the conventionally defined BEMF and the stator inductance. This enables extraction of

the rotor position and velocity information by estimating the extended BEMF only.

The observer is applied to PMSM motor with an estimator model excluding the extended BEMF term.

Then the extended BEMF term can be estimated using the observer as shown in Figure 7, which uses a

simple observer of PMSM stator current. The BEMF observer presented here is realized within the

rotating reference frame (dq). The estimator of dq-axis consists of the stator current observer based on

RL motor circuit with estimated motor parameters. This current observer is fed by the sum of the actual

applied motor voltage, cross-coupled rotational term, which corresponds to the motor saliency (Ld-Lq),

and compensator corrective output. The observer provides BEMF signals as disturbance because BEMF

is not included in the observer model.

Figure 7. Luenberger type stator current observer acting as state filter for BEMF

To obtain the speed and position information from the position error, another algorithm ‘A tracking

observer’ is used. This algorithm adopts the phase-locked loop mechanism. It requires a single input

argument as phase error. Such phase tracking observer, with standard PI controller used as the loop

compensator is shown in Figure 8.

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

10 NXP Semiconductors

Figure 8. Block diagram of proposed PLL scheme for position estimation

4 Software implementation on the MC9S12ZVML128

4.1 MC9S12ZVML128 – Key modules for PMSM FOC control

The MC9S12ZVML128 device includes modules such as the Pulse Width Modulator with Fault

Protection (PMF), a Programmable Trigger Unit (PTU), an Analogue-to-Digital Converter (ADC), and a

Timer module (TIM) and a Gate Drive Unit (GDU) suitable for control applications, in particular, motor

control applications. These modules are directly interconnected and can be configured to meet various

motor control application requirements. Figure 9 shows module interconnection for a typical PMSM

Sensorless application. The modules are described below and a detailed description can be found in the

MC9S12ZVMRMV1, MC9S12ZVM-Family Reference Manual available at nxp.com.

4.1.1 Module interconnection

The modules involved in output actuation, data acquisition and the synchronization of actuation and

acquisition, form the so-called Control Loop. This control loop consists of the PMF, GDU, ADC and

PTU modules. The control loop is very flexible in operation and can support static, dynamic or

asynchronous timing.

The PTU and ADC are based on list architecture; which means they operate using lists stored in

memory. These lists define the trigger points for the PTU, commands for the ADC, and results from the

ADC.

Each control loop cycle is started by a PMF reload event. The PMF reload event restarts the PTU time

base. If the PTU is enabled, the reload is immediately passed on as a ptu_reload event to the ADC and

GDU modules.

The PMF generates the reload event at the required PWM reload frequency. The PMF reload event

causes the PTU time base to restart, to acquire the first trigger time from the list, and to generate the

ptu_reload signal for the ADCx to start loading the ADC conversion command from the Command

Sequence List (CSL).

When the trigger time is encountered, the corresponding PTU trigger generates the trigger_x signal for

the associated ADC. For simultaneous sampling, the PTU generates two simultaneous trigger_x signals,

one for each ADC. At the trigger_x signal assertion the ADC starts the first conversion of the next

conversion sequence in the CSL (the first A/D command is already downloaded) (MC9S12ZVMRMV1,

MC9S12ZVM-Family Reference Manual, available at nxp.com).

From the above mentioned, this implies that the PTU module serves as a delay block which can schedule

several acquisitions of state variables relative to the start of the PWM period and within one PWM

period.

http://www.nxp.com/
http://www.nxp.com/

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 11

Figure 9. Module interconnections

4.1.2 Module involvement in digital PMSM Sensorless control loop

This section will discuss timing and modules synchronization to accomplish PMSM Sensorless FOC on

the MC9S12ZVM128L and the internal hardware features.

The time diagram of the automatic synchronization between PWM and ADC in the PMSM application

is shown in Figure 10.

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

12 NXP Semiconductors

Figure 10. Time Diagram of PWM and ADC Synchronization

The PMSM Sensorless FOC control with two shunt measurement is based on static timing; meaning the

trigger point instances of the ADC conversions are located at same place within one control loop cycle.

Each control cycle starts with PWM reload signal. The reload signal is generated every second PWM

period. The PWM reload signal itself also triggers the reload of the Trigger List in the PTU module, as

well as restarting the PTU counter. When the PTU counter reaches the predefined value in the trigger list

(Trig.0 and Trig.1), the PTU triggers ADC measurement. At the time of Trig.0, two simultaneous

measurements of phase currents in phase A and phase B are triggered. Two other simultaneous

measurements are triggered at time of Trig.1, one for Temperature and one for the DC-Bus voltage. The

ADC conversion results are automatically stored into a predefined queue in memory.

The CPU is triggered by the ADC conversion complete interrupt service routine. Based on the stored

ADC values the current PI controllers calculate new PWM duty cycles. These duty cycles will be

updated to GDU at next reload event.

The TIM, PTU, GDU and ADC peripherals are based on the bus clock. To achieve a higher resolution of

PWM, the PMF module is supplied by a core clock. The core clock is double that of the bus clock.

Free for application use Free for application use

deadtime

EOC

interrupt

Trig. 0 Trig. 0 Trig. 0

A_top

0

PWM counter

PMF phA out

ADC conversion

commands execution

PTU triggers

PWM Reload

ISR service routine

PMFMOD

VAL0

A_bot

PMF half cycle reload

every fourth opportunity

phase
AB

phase phase
AB

FOC

Calculations

FOC

Calculations

100 us

PMF half cycle reload

every fourth opportunity

AB

Trig. 1 Trig. 1 Trig. 1

Udcb

temp
EOC

interrupt

Udcb

temp
EOC

interrupt

Udcb

temp

PTU counter

Active ADC

sample point

Delay in

order for

DMA to load

ADC list

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 13

4.2 MCS12ZVM Device initialization

4.2.1 CPMU

For proper operation the CPMU needs to have stable power supply. The power supply is stable when the

GDUF_GLVLSF is cleared. The application is using Internal Reference which provides a 1 MHz

internal clock (CPMUOSC_OSCE = 1). Out of the 1 MHz Internal clock the bus and core clock is

derived by following settings:

CPMUREFDIV_REFFRQ = 0;

 CPMUSYNR_SYNDIV = 49;

 CPMUSYNR_VCOFRQ = 3;

 CPMUPOSTDIV_POSTDIV = 0;

Set the bus and core clock to 50 MHz and 100 MHz respectively. The SW needs to wait until the PLL

lock (CPMUIFLG_LOCK set to 1).

The CPMU module settings provide also possibility to enable the High Temperature Sensor which is

routed than to ADC channel.

4.2.2 PMF

The Pulse Width Modulator with Fault Protection (PMF) module is configured to generate a centre-

aligned (PMFCFG0_EDGEx = 0) PWM with a frequency of 20 kHz (PMFMODA = 2500). In order to

protect the MOSFET devices in the same leg of the inverter, deadtime is set to approximately 0.25 us

(PMFDTMA = 25). PWM generator A runs as the master and generates the Reload Signal as a

synchronization signal for the other submodules (PMFCFG2_REV[0:1] = 1). The reload signal is

generated at every fourth PWM opportunity (PMFFQCA = 3). Pair A, Pair B and Pair C PWMs are

synchronized to PWM generator A (PMFCFG0_MTG = 0).

A PWM pulse width PMFVAL registers are double buffered and are swapped when GLDOK is set and

the PWM reload signal occurs. The GLDOK is an external signal generated by the PTU module. The

GLDOK is enabled at the PWM module (PMFENCA_GLDOKA = 1)

4.2.3 PTU

The Programmable Trigger Unit (PTU) is intended to completely avoid CPU involvement in the time

acquisitions of state variables during the control cycle.

The PTU module consists of two trigger generators (TG). For each TG, a separate enable bit is available,

so that both TGs can be enabled independently. Trigger generator 0 is connected to ADC0, and trigger

generator 1 is connected to ADC1. The trigger generation of the PTU module is synchronized to the

incoming reload event. This reload event resets and restarts the internal time base counter and makes

sure that the first trigger value from the actual trigger list is loaded. Furthermore, the corresponding

ADC is informed that a new control cycle has started.

If the counter value matches the current trigger value, then a trigger event is generated. In this way, the

reload event is delayed by the number of bus clock cycles defined by the current trigger value. All

acquisition time values are stored inside the global memory map, basically, inside the system memory as

a three dimensional array of integers (PTUTriggerEventList[][][]). The exact location of the acquisition

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

14 NXP Semiconductors

time values (PTUTriggerEventList[][][]) in the system memory is given by the linker command file and

linked to the PTU module during the initialization phase.

PTUPTRL = (uint8_t)((long)PTUTriggerEventList);

PTUPTRM = (uint8_t)(((long)PTUTriggerEventList) >> 8);

PTUPTRH = (uint8_t)(((long)PTUTriggerEventList) >> 16);

Each trigger generator uses only one list to load the trigger values from the memory. The pointers for the

primary (TG0L0IDX/ TG1L0IDX) and alternate (TG0L1IDX/ TG1L1IDX) lists are equal.

TG0L1IDX = (uint8_t)(((long)&PTUTriggerEventList[0][0][0] - (long)PTUTriggerEventList) >> 1);

TG1L0IDX = (uint8_t)(((long)&PTUTriggerEventList[1][0][0] - (long)PTUTriggerEventList) >> 1);

TG1L1IDX = (uint8_t)(((long)&PTUTriggerEventList[1][0][0] - (long)PTUTriggerEventList) >> 1);

The trigger generator is using only one physical list of trigger events, even if the trigger generator logic

is switching between both pointers. The PTU module generates the LDOK signal used to inform other

modules that the double buffered registers were updated by software.

4.2.4 GDU

The Gate Drive Unit (GDU) is a Field Effect Transistor (FET) pre-driver designed for three-phase motor

control applications. The following GDU features are used in PMSM FOC sensorless control

 Charge Pump: The charge pump is used to maintain the high-side driver gate source voltage

VGS when PWM is running at a 100% duty cycle. The clock for the charge pump is set to be

 (GDUCLK2_GCPCD = 2)

 Desaturation Error: The GDU integrates three desaturation comparators for the low-side FET

pre-drivers and three desaturation comparators for the high-side FET pre-drivers. The

desaturation level is set to be 1.40 V (GDUDSLVL = 0x77) for both low-side and high-side

FET. A blanking time during the FET transients needs to be employed. The blanking time is set

to be approximately 8 us (GDUCTR = 0x13).

 Current Sense Amplifiers: Internal current sense amplifier 0 and 1 (GDUE_GCSE0 = 1 and

GDUE_GCSE1 = 1) is used to measure motor phase currents in phase A and phase B. The

output of the current sense amplifier 0 is routed internally to ADC0 channel 0. The output of the

current sense amplifier 1 is routed internally to ADC1 channel 1.

4.2.5 ADC

The MC9S12ZVML128 uses two independent Analogue-to-Digital Converters (ADC). Both ADCs are

n-channel multiplexed input successive approximation analogue-to-digital converters. The List Based

Architecture (LBA) provides a flexible conversion sequence definition, as well as flexible oversampling.

Both ADC conversion command lists are stored inside the global memory map, basically, inside the

system memory as two dimensional arrays of bytes (ADC0CommandList[][], ADC1CommandList[][]).

The exact location of the ADC conversion commands in the system memory is given by the linker

command file and linked to the respective ADC module during the initialization phase. The same

strategy is used for the ADC Results. The Conversion results are stored in an array of shorts

(ADC0ResultList[], ADC1ResultList[]) located in system memory.

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 15

 // ADC0 Command Base Pointer

 ADC0CBP = ADC0CommandList;

 // ADC0 Result Base Pointer

 ADC0RBP = ADC0ResultList;

 // ADC1 Command Base Pointer

 ADC1CBP = ADC1CommandList;

 // ADC1 Result Base Pointer

 ADC1RBP = ADC1ResultList;

The ADC conversion clocks are set to be 8.33 MHz (ADC0TIM = 2; ADC1TIM = 2). The results are

stored in memory as 12-bit (ADC0FMT_SRES = 4; ADC1FMT_SRES = 4) left-justified data

(ADC0FMT_DJM = 0; ADC1FMT_DJM = 0).

Conversion flow of both ADCs is controlled by internal signals (generated by the PTU) and by the

DataBus (ADC0CTL_0_ACC_CFG = 3; ADC1CTL_0_ACC_CFG = 3). The results are stored in

system memory even if commutation occurs when conversion is ongoing (ADC0CTL_0_STR_SEQA =

1; ADC1CTL_0_STR_SEQA = 1).

The ADC1 schedules the end of list interrupt (ADC1CONIE_1_EOL_IE = 1) to perform application

logic and calculate the PMSM FOC Sensorless algorithm.

The PMSM sensorless FOC algorithm uses ADC0 to measure the motor phase A current and DC-Bus

voltage. The ADC1 is used to measure the motor phase B current and temperature.

4.3 Software architecture

4.3.1 Introduction

This section describes the software design of the Sensorless PMSM Field Oriented Control framework

application. First, the application overview and description of software implementation are provided.

Then the numerical scaling in fixed-point fractional arithmetic of the controller is discussed. The aim of

this chapter is to help in understanding of the designed software.

4.3.2 Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service

routine associated with the ADC end of sequence interrupt, executing all motor control tasks. These

include both fast current and slow speed loop control. All tasks are performed in an order described by

the application state machine shown in Figure 13, and application flowcharts shown in Figure 11 and

Figure 12.

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

16 NXP Semiconductors

Figure 11. Flow chart diagram of main function with background loop

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor

control calculations, the state machine functions are called within a periodic interrupt service routine.

Hence in order to actually call state machine functions the periphery causing this periodic interrupt must

be properly configured and the interrupt enabled. As is described in section MCS12ZVM Device

initialization, all peripherals are initially configured and all interrupts are enabled after a RESET of the

device. As soon as interrupts are enabled and all peripheries are correctly configured, the state machine

functions are called from the ADC end of sequence interrupt service routine. The background loop

handles non-critical timing tasks, such as the FreeMASTER communication polling.

while(1)

Application peripherals

reset & configuration

MAIN

state = init;

event = e_init;

FMSTR_Poll();

END

true

false

FreeMASTER polling function

Enable external interrupts

All peripherals required by the

application are reset and configured

Initial state machine settings

Enable Interrupts;

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 17

Figure 12. Flow chart diagram of periodic interrupt service routine.

4.3.3 State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions

variable called state_table[][](). The first parameter describes the current application event, and the

second parameter describes the actual application state. These two parameters select a particular pointer

to state machine function, which causes a function call whenever state_table[][]() is called.

ISR

state_table[state][event] ();

state_LED[state]();

RTFI

FMSTR_Recorder();

faultIDp = 0x0
true

false e_fault

/* Clear PMF Reload

interrupt flag

/* FreeMASTER recorder function

/* State Machine periodical calling

/* Fault detection routine

/* PMF Reload interrupt service routine

/* State variable acquisition

Meas_Get3PhCurrent();

Meas_GetTemperature();

Meas_GetUdcVoltage();

faultDetection();

switchAppOnOff or

btFlipFlop

e_app_one_app_off

/* User accessible switch

for stopping application

Read HW user controls;

ADC end of sequence
interrupt service routine

Clear ADC end of
sequence interrupt
service flag

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

18 NXP Semiconductors

Figure 13. Application state machine

The application state machine consists of following seven states, which are selected using variable state

defined as:

AppStates:

 INIT - state = 0

 FAULT - state = 1

 READY - state = 2

 CALIB - state = 3

 ALIGN - state = 4

 RUN - state = 5

INIT

READY

CALIB

FAULT

ALIGN

Power on / hw. reset

Application peripherals

reset & configuration

e_init

RUN

e_init_done e_app_off

e_app_on

e_app_off e_app_off

e_calib_done

e_align_done

e_aligne_calib

e_ready e_run

e_fault

e_faul

t

e_fault_clear

e_fault e_fault

e_fault e_fault

/* Enable external interrupts

/* Disable all external interrupts

executed in ISR

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 19

To signalize/initiate a change of state, eleven events are defined, and are selected using variable event

defined as:

AppEvents:

 e_fault - event = 0

 e_fault_clear - event = 1

 e_init - event = 2

 e_init_done - event = 3

 e_ready - event = 4

 e_app_on - event = 5

 e_app_off - event = 11

 e_calib - event = 6

 e_calib_done - event = 7

 e_align - event = 8

 e_align_done - event = 9

 e_run - event = 10

4.3.3.1 State – FAULT

Figure 14. FAULT state with transitions

The application goes immediately to this state when a fault is detected. The system allows all states to

pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that allows

transition back to itself if a fault is present in the system and the user does not request clearing of fault

flags. There are two different variables to signal fault occurrence in the application. The warning register

tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting

close to its critical operation. And the fault register permFaults represents a fault flag, which is set and

put the application immediately to fault state. Even if the actual fault is reset (fault source disappears),

the fault remains set until manually cleared by the user. Such mechanisms allow for stopping the

application and analyzing the cause of failure, even if the fault was caused by a short glitch on

monitored pins/variables. State FAULT can only be left when application variable switchFaultClear is

manually set to true (using FreeMASTER) or by simultaneously pressing the user buttons (SW1 and

SW2) on the S12ZVM evaluation board. That is, the user has acknowledged that the fault source has

been removed and the application can be restarted. When the user sets switchFaultClear = true; the

following sequence is automatically executed:

FAULT

e_fault

e_fault_clear

e_fault

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

20 NXP Semiconductors

 permFaults.mcu.R = 0x0; // Clear mcu faults

 permFaults.motor.R = 0x0; // Clear motor faults

 permFaults.stateMachine.R = 0x0; // Clear state machine faults

 // When all Faults cleared prepare for transition to next state.

 cntrState.usrControl.readFault = true;

 cntrState.usrControl.switchFaultClear = false;

 cntrState.event = e_fault_clear;

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to

proceed to INIT state. This request is purely user action and does not depend on actual fault status. In

other words, it is up to the user to decide when to set switchFaultClear true. However, according to the

interrupt data flow diagram shown in Figure 12, function faultDetection() is called before state machine

function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault

condition remaining in the system, the respective bits in permFaults and tempFaults variables will be set.

As a consequence of permFaults not equal to zero, function faultDetection() will modify the application

event from e_fault_clear back to e_fault, which means jump to fall state when state machine function

state_table[event][state]() is called. Hence, INIT state will not be entered even though the user tried to

clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all fault bits are

cleared, which means no fault is detected (permFaults = 0x0) and application variable switchFaultClear

is manually set to true.

The application is scanning for following system warnings and errors:

 Over voltage

 Under voltage

 Over phase current in each phase

 Over heating

The thresholds against the measured system variables are compared can be modified in INIT state. In

addition, fault state is entered if following errors are detected:

 ADC Errors (Load OK, Restart Request, Trigger, End of List, Command Value, Illegal Access)

 GDU Errors (Desaturation, High VHD Supply, Low VLS Supply, Overcurrent)

 PMF Errors (Fault detected)

 PTU Errors (Memory Access, Reload, Timing)

4.3.3.2 State – INIT

Figure 15. INIT state with transitions

State INIT is "one pass" state/function, and can be entered from all states except for READY state,

provided there are no faults detected. All application state variables are initialized in state INIT.

INIT

e_init

e_init_done e_app_off

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 21

Figure 16. Flow chart of state INIT

After the execution of INIT state, the application event is automatically set to

cntrState.event=e_init_done, and state READY is selected as the next state to enter.

4.3.3.3 State – READY

Figure 17. READY state with transitions

In READY state application is waiting for user command to start the motor. The application is released

from waiting mode by releasing the on board user switch or by FreeMASTER interface setting the

variable switchAppOnOff = true (see flow chart in Figure 18).

Figure 18. Flow chart of state READY

Initialization of application variables

e_init

e_init_done

READY

e_init_done

e_app_one_ready

state = ready;

event = e_ready;

e_init_done

e_app_on

/* Fault detection routine

/* State variable acquisition

Meas_Get3PhCurrent();

Meas_GetTemperature();

Meas_GetUdcVoltage();

faultDetection();

switchAppOnOff

e_app_one_app_off

/* User accessible switch

for stopping application

ISR /* PMF Reload interrupt service routine

btFlipFlop

e_app_one_app_off

/* On board HW switch

for stopping application

Read HW user controls;

/* ADC end of sequence
interrupt service routine

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

22 NXP Semiconductors

4.3.3.4 State – CALIB

Figure 19. CALIB state with transitions

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all

PWM output are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the

PWM outputs, and taking several measurements of all configured ADC channels. These measurements

are then averaged, and the average value for each channel is stored. This value will be subtracted from

the measured value when in normal operation. This way the half range DC offset, caused by voltage

shift of 2.5V in conditional circuitry (see Figure 5), is removed in both measured phases. State CALIB

is a state that allows transition back to itself, provided no faults are present, the user does not request

stop of the application (by switchAppOnOff=true), and the calibration process has not finished. The

number of samples for averaging is set by default to 2^8=256, and can be modified in the state INIT.

After all 256 samples have been taken and the averaged values successfully saved, the application event

is automatically set to cntrState.event=e_calib_done and state machine can proceed to state ALIGN (see

flow chart in Figure 20).

Figure 20. Flow chart of state CALIB

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling

edge of switchAppOnOff=false using FreeMASTER or user flip-flop switch.

CALIB

e_app_on

e_app_off

e_calib_done
e_calib

state = calib;

event = e_calib;

e_app_on

Initializa calibration variables

calibDone = 0;

calibInitDone = 1;

calibInitDone

EnableOutput();

Meas_CalibCurrentSense();

CalibStatus= 0x0
true

false

e_calib_done

true

true
calibDone

f16PhA.f16Offset =

GDFLIB_FilterMA_F16(f16PhA.raw);

f16PhB.f16Offset =

GDFLIB_FilterMA_F16(f16PhB.raw);

f16PhC.f16Offset =

GDFLIB_FilterMA_F16(f16PhC.raw);

calibCntr <= 0x0
true

false calibDone

+
-ADC0

Meas_CalibCurrentSense();

+
-ADC1

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 23

4.3.3.5 State – ALIGN

Figure 21. ALIGN state with transitions

This state shows alignment of the rotor and stator flux vectors to mark zero position. When using a

model based approach for position estimation, the zero position is not known. The zero position is

obtained at ALIGN state, where a DC voltage is applied in phase A for a certain period. This will cause

the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position in

which the rotor stabilizes after applying this DC voltage is set as zero position. In order to wait for rotor

to stabilize in an aligned position, a certain time period is selected during which the DC voltage is

constantly applied. The period of time and the amplitude of DC voltage can be modified in INIT state.

Timing is implemented using a software counter that counts from a pre-defined value down to zero.

During this time, the event remains set to cntrState.event=e_align. When the counter reaches zero, the

counter is reset back to the pre-defined value, and event is automatically set to

cntrState.event=e_align_done. This enables a transition to RUN state see flow chart in Figure 22.

ALIGN

e_app_off

e_align_done

e_calib_done

e_align

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

24 NXP Semiconductors

Figure 22. Flow chart of state ALIGN

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling

edge of switchAppOnOff=false using FreeMASTER or user flip-flop switch.

4.3.3.6 State – RUN

Figure 23. RUN state with transitions

In this state, the FOC algorithm is calculated, as described in section PMSM field oriented control.

The control is designed such that the drive might be operated in three modes depending on the source of

the position information:

state = align;

event = e_align;

e_calib_done

EnableOutput();

uDQReq.f16Arg1 = ALIGN_VOLTAGE;

uDQReq.f16Arg2 = FRAC16(0);

thTransform.f16Arg1 = GFLIB_Sin(0);

thTransform.f16Arg2 = GFLIB_Cos(0);

AlignCntr= 0x0

true

false

GMCLIB_ParkInv(&uAlBeReq,&thTransform,&uDQReq);

svmSector = GMCLIB_SvmStd(&pwm16),&uAlBeReq);

SetDutycycle();

ClearVariablesAfterAlign();

Set50%Duty();

e_align_done

RUN

e_app_off

e_align_done

e_run

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 25

1. Force mode: The FOC control is based on the generated position (so called open loop position),

also this position is supplied to eBEMF observer in order to initialize its state.

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF

observer is left on its own, meaning that the observer is using its own estimated position and

speed one calculation step delayed.

3. Sensorless mode: Both FOC control and eBEMF observer using estimated position.

The mode might be selected manually or automatically depending on the state of variable pos_mode.

The pos_mode can be modified from FreeMASTER interface. For automatic mode the transition is

based on the threshold value set in INIT state.

Calculation of fast current loop is executed every ADC end of sequence interrupt when in RUN state

while calculation of slow speed loop is executed every Nth ADC end of sequence interrupt. Arbitration

is done using a counter that counts from value N down to zero. When zero is reached, the counter is

reset back to N and slow speed loop calculation is performed. This way, only one interrupt is needed for

both loops and timing of both loops is synchronized. Slow loop calculations are finished before entering

fast loop calculations (see flow chart in Figure 24).

Figure 24. Flow chart of state RUN

Figure 25 shows implementation of FOC algorithm and the functions and variables used. As can be seen

from the diagram, position/speed estimation is prepared for eBEMF observer.

state = run;

event = e_run;

e_align_done

CalcOpenLoop();

CalcSensorless();

ControlModeSelector();

speedLoopCntr>=

SPEED_LOOP_C

NTR

true

false

Pmf_updateDutycycle_SingleShunt();

focSlowLoop()

focFastLoop()

e_app_off

automaticMode();

controlMode

manual

automatic

pos_mode

case force:

case sensorless:

case tracking:

Control.thRotEl = OpenLoop.thRotEl;

Control.wRotEl = 0;

Force eBEMF with open loop speed

Force eBEMF with open loop position

Control.thRotEl = OpenLoop.thRotEl;

Control.wRotEl = 0;

Control.thRotEl = Sensorless.thRotEl;

Control.wRotEl= Sensorless.wRotEl;

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

26 NXP Semiconductors

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling

edge of switchAppOnOff=false using FreeMASTER or user flip-flop switch.

Figure 25. Sensorless FOC implementation

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 27

4.3.4 Scaling of quantities

This application uses a fractional representation for most of the quantities. The fractional arithmetic is

supported by several NXP devices as well as software.

The N-bit signed fractional format is represented using the 1.[N-1] format (1 sign bit, N-1 fractional

bits). Signed fractional numbers (SF) lie in the following range:

Equation 10

For word and long-word signed fractions, the most negative number that can be represented is –1.0,

whose internal representation is 0x8000 and 0x80000000, respectively. The most positive word is

0x7FFF or 1.0 – 2
-15

, and the most positive long-word is 0x7FFFFFFF or 1.0 – 2
- 31

.

The following equation shows the relationship between a real and a fractional representation:

Equation 11

where:

• Fractional Value = Fractional representation of quantities [–]

• Real Value = Real quantity in physical units [..]

• Real Quantity Range = Maximum defined quantity value used for scaling in physical units [..]

4.3.4.1 Voltage scale

Voltage scaling results from the sensing circuits of the hardware used; in case of the S12ZVM device

the DC bus voltage is sensed directly on device HD pin. The voltage on HD pin is internally divided by

5 and routed to both ADC converters. The ADC converters can measure voltage level from zero to 5 V.

This is giving already the maximum measurable voltage of 25 V on HD pin. For more details see the

device reference manual available at nxp.com.

Voltage quantities are scaled to the maximum measurable voltage, in this case 25 V. The relationship

between real and fractional representations of voltage quantities is:

Equation 12

http://www.nxp.com/

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

28 NXP Semiconductors

where:

 uFrac = Fractional representation of voltage [-]

 uReal = Real voltage quantities in physical units [V]

 U_DCB_MAX = Defined voltage range maximum used for scaling in physical units [V]

In the application, the U_DCB_MAX value is the maximum measurable DCBus voltage, that is,

U_DCB_MAX = 25 V. All application voltage variables are scaled in the same way.

4.3.4.2 Current scaling

Current scaling also results from the sensing circuits of the hardware used. For more details see the

device reference manual and board user manual available at nxp.com.

The relationship between real and fractional representation of current quantities is:

Equation 13

where:

 iFrac = Fractional representation of current quantities [-]

 iReal = Real current quantities in physical units [A]

 I_MAX = Defined current range maximum used for scaling in physical units[A]

In the application, the I_MAX value is the maximum measurable current:

I_MAX = 20 A. All application current variables are scaled in the same way.

4.3.4.3 Speed scaling

Speed quantities are scaled to the defined speed range maximum. The speed range maximum is set

higher than the maximum mechanical speed of the drive. The relationship between real and fractional

representation of speed quantities is:

Equation 14

where:

 nFrac = Fractional representation of speed quantities [-]

 nReal = Real speed quantities in physical units [pm]

 N_MAX = Defined speed range maximum used for scaling in physical units [rpm]

In the application, the N_MAX value is defined as: N_MAX = 10000 mechanical rpm.

http://www.nxp.com/

Software implementation on the MC9S12ZVML128

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 29

Electrical angular speed is scaled respectively:

Equation 15

where:

 ωFrac = Fractional representation of speed quantities [-]

 ωReal = Real speed quantities in physical units [radps]

 WEL_MAX = Defined speed range maximum used for scaling in physical units [radps]

In the application, the WEL_MAX value is defined as: WEL_MAX = 4188.79 electrical radps.

4.3.4.4 Position scaling

The angles, such as rotor position, are represented as 16-bit signed fractional values in the range <–1, 1),

which corresponds to the angle in the range <–π, π). In a 16-bit signed integer value, the angle is

represented as follows:

4.3.5 AMMC library

The application source code uses the Automotive Math and Motor Control Library for the

MC9S12ZVML128 microcontrollers (MC9S12ZVMMCLUG , Math and Motor Control Library for

MC9S12ZVML128 User Manual, available at nxp.com). The library contains four independent library

blocks: MLIB, GFLIB, GDFLIB and GMCLIB. MLIB includes basic mathematical operations such as

summation, multiplication, and so on. GFLIB includes basic mathematical functions (such as sine,

cosine, ramp, and so on). Advanced filter functions are part of the General Digital Filters Library, and

standard motor control algorithms are part of the General Motor Control Library.

4.3.6 MCAT integration

Motor Control Application Tuning (MCAT) is a graphical tool dedicated to motor control developers

and the operators of modern electrical drives. The main feature of proposed approach is automatic

calculation and real-time tuning of selected control structure parameters. Connecting and tuning new

electric drive setup becomes easier because the MCAT tool offers a possibility to split the control

structure and consequently to control the motor at various levels of cascade control structure.

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the

motor control application. Respecting the parameters of the controlled drive, the correct values of

control structure parameters are calculated, which can be directly updated to the application or stored in

an application static configuration file. The electrical subsystems are modeled using physical laws and

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

30 NXP Semiconductors

the parameters estimation algorithms are based on Pole-placement method. FreeMASTER MCAT

control and tuning is described in FreeMASTER and MCAT user interface.

The MCAT tool generates a set of constants to the dedicated header file PMSM_appconfig.h (located at

“{Project Location}\FreeMASTER_control\Config\PMSM_appconfig.h”). The names of generated

constants are predefined in the MCAT xml file “Header_file_constant_list.xml” (“{Project

Location}\FreeMASTER_control\ MCAT\src\xml_files\”). The PMSM_appconfig.h contains

application scales, fault triggers, control loops parameters, speed sensor and/or observer settings and

FreeMASTER scales. The PMSM_appconfig.h is linked to the project and the constants are used for the

FOC variables initialization.

To ensure the proper communication between MCAT and FreeMASTER, the names of control-loop

variables and constants have to be introduced in the second MCAT configuration xml file,

“FM_params_list.xml” (“{Project Location}\FreeMASTER_control\MCAT\src\xml_files\”).

5 FreeMASTER and MCAT user interface

The FreeMASTER[5] debugging tool is used to control the application and monitor variables during run

time. Communication with the host PC passes via USB. However, because FreeMASTER supports

RS232 communication, there must be a driver for the physical USB interface, CP2102, installed on the

host PC that creates a virtual COM port from the USB. The driver can be installed from

www.silabs.com. The application configures the SCI module of the MC9S12ZVML128 for a

communication speed of 19200bps. Therefore, the FreeMASTER user interface also needs to be

configured respectively.

http://www.silabs.com/

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 31

Figure 26. FreeMASTER and Motor Control Application tuning tool

5.1 MCAT settings and tuning

5.1.1 Application configuration and tuning

FreeMASTER and MCAT interface (Figure 26) enables online application tuning and control. The

MCAT tuning shall be used before the very first run of the drive to generate the configuration header file

(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be

updated anytime), but some of them (especially the fault limit thresholds) must be set using the

configuration header file generation, which can be done on the “Output File” panel by clicking the

“Generate Configuration File” (see Figure 27).

MCAT Control Page with
panels, and settings
(hidden mouse-over

button)

Project panel with sub-
blocks, oscilloscopes and

recorders

Variable Watch
panel

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

32 NXP Semiconductors

Figure 27. Output file panel and “Generate Configuration File” button

Parameters runtime update is done using the “Update Target” button (see Figure 28). Changes can be

also saved using “Store Data” button, or reloaded to previously saved configuration using “Reload Data”

button.

Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can

be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change

has been made.

MCAT tool can be configured using hidden mouse-over “Settings” button

(see Figure 26), where a set of advanced settings, for example PI

controller types, speed sensors and other blocks of the control structure

can be changed. However, it is not recommended to change these settings

since it will force the MCAT to look for a different variables names and to

generate different set of constants than the application is designed for. See

MCAT tool documentation available at nxp.com.

Generate
Configuration File

button

http://www.nxp.com/

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM Application Notes Rev. 1 05/2016

NXP Semiconductors 33

The application tuning is provided by a set of MCAT pages dedicated to every part of the control

structure. An example of the Application Parameters Tuning page is on Figure 28. Following list of

settings pages is based on the PMSM sensorless application

• Parameters

o Motor Parameters

o Hardware Scales

o SW Fault Triggers

o Application Scales

o Alignment

• Current Loop

o Loop Parameters

o D axis PI Controller

o Q axis PI Controller

o Current Controller Limits

• Speed Loop

o Loop Parameters

o Speed PI Controller

o Speed Ramp

o Speed Ramp Constants

o Actual Speed Filter

o Speed PI Controller Limits

• Sensorless

o BEMF Observer Parameters

o BEMF DQ Observer Constants

o BEMF DQ Observer PI Constants

o Tracking Observer Parameters

o Tracking Observer Constants

o Open Loop Start-up Parameters

Changes can be tested using MCAT “Control Struc” page (Figure 29), where the following control

structures can be enabled:

• Scalar Control

• Voltage FOC (Position & Speed Feedback is enabled automatically)

• Current FOC (Position & Speed Feedback is enabled automatically)

• Speed FOC (Position & Speed Feedback is enabled automatically)

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM, Application Notes, Rev. 1, 05/2016

34 NXP Semiconductors

Figure 28. MCAT input application parameters page

Figure 29. MCAT application control structure page

FreeMASTER and MCAT user interface

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM, Application Notes, Rev. 1, 05/2016

NXP Semiconductors 35

5.2 MCAT application control

All application state machine variables can be seen on the FreeMASTER MCAT control page as shown

in Figure 30. Warnings and faults are signaled by a highlighted red color bar with name of the fault

source. The warnings are indicated by a round LED-like indicator, which is placed next to the bar with

the name of the fault source. The status of any fault is signaled by highlighting respective indicators. In

the previous figure, for example, there is pending fault flag and one warning indicated ("Udcb HI" - DC

bus voltage is close to its over voltage conditions). That means that the measured voltage on the DC bus

exceeds the limit set in the MCAT_Init function. The warning indicator is still on if the voltage is higher

than the warning limit set in INIT state. In this case, the application state FAULT is selected, which is

shown by a frame indicator hovering above FAULT state. After all actual fault sources have been

removed, no warning indicators are highlighted, but the fault indicators will remain highlighted. The

pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending faults

and will enable transition of the state machine into INIT and then READY state. After the application

faults have been cleared and the application is in READY state, all variables should be set to their

default values. The application can be started by selecting APP_ON on application On/Off switch.

Successful selection is indicated by highlighting the ON/OFF button in green.

Figure 30. FreeMASTER MCAT control page for controlling the application

Warnings status

Faults status

State info and
Clear faults button

Application ON/OFF
switch

DC Bus Voltage
measurement

Mechanical speed
indicator

References

3-phase Sensorless PMSM Motor Control Kit with MagniV MC9S12ZVM, Application Notes, Rev. 1, 05/2016

36 NXP Semiconductors

6 Conclusion

The design described shows the simplicity and efficiency in using the MC9S12ZVML128

microcontroller for Sensorless PMSM motor control, and introduces it as an appropriate candidate for

various low-cost applications in the automotive area. MCAT tool provides interactive online tool which

makes the PMSM drive application tuning friendly and intuitive.

7 References

 MTRCKTSPNZVM128, 3-phase Sensorless PMSM Motor Control Kit with the MagniV

MC9S12ZVM available at www.nxp.com/AutoMCDevKits

 FreeMASTER Run-Time Debugging Tool available at www.nxp.com/FREEMASTER

 MC9S12ZVMMCLUG , Math and Motor Control Library for MC9S12ZVML128 User Manula

available at www.nxp.com/AutoMCLib

 MC9S12ZVMRMV1, MC9S12ZVM-Family Reference Manual available at www.nxp.com

 MC9S12ZVML128 Evaluation Board User Manual available at www.nxp.com/AutoMCDevKits

 MTRCKTSPNZVM128QSG , Quick Start Guide for 3-Phase Sensorless PMSM Kit with MagniV

MC9S12ZVML128 MCU, available at www.nxp.com/AutoMCDevKits

 Rashid, M. H. Power Electronics Handbook, 2nd Edition. Academic Press

 Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM available at

www.nxp.com/mcat

Document Number: AN5135
Rev. 1

05/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire,
MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX,
STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale
logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, the
Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid,
Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are
trademarks of NXP B.V. All other product or service names are the property
of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,
Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali,
mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved. Oracle and Java are registered trademarks of Oracle
and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2016 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support

	1 Introduction
	2 System concept
	3 PMSM field oriented control
	3.1 Fundamental principle of PMSM FOC
	3.2 PMSM model in quadrature phase synchronous reference frame
	3.3 Output voltage actuation and phase current measurement
	3.4 Rotor position/speed estimation

	4 Software implementation on the MC9S12ZVML128
	4.1 MC9S12ZVML128 – Key modules for PMSM FOC control
	4.1.1 Module interconnection
	4.1.2 Module involvement in digital PMSM Sensorless control loop

	4.2 MCS12ZVM Device initialization
	4.2.1 CPMU
	4.2.2 PMF
	4.2.3 PTU
	4.2.4 GDU
	4.2.5 ADC

	4.3 Software architecture
	4.3.1 Introduction
	4.3.2 Application data flow overview
	4.3.3 State machine
	4.3.3.1 State – FAULT
	4.3.3.2 State – INIT
	4.3.3.3 State – READY
	4.3.3.4 State – CALIB
	4.3.3.5 State – ALIGN
	4.3.3.6 State – RUN

	4.3.4 Scaling of quantities
	4.3.4.1 Voltage scale
	4.3.4.2 Current scaling
	4.3.4.3 Speed scaling
	4.3.4.4 Position scaling

	4.3.5 AMMC library
	4.3.6 MCAT integration

	5 FreeMASTER and MCAT user interface
	5.1 MCAT settings and tuning
	5.1.1 Application configuration and tuning

	5.2 MCAT application control

	6 Conclusion
	7 References

