

.

Using LPI2C in STOP Low Power Mode

1. Introduction

The LPI2C is a low power Inter-Integrated Circuit (I2C)

module that supports an efficient interface to an I2C bus

as a master and/or a slave. The LPI2C continues

operating in stop modes if an appropriate clock is

available and is designed for low CPU overhead with

DMA offloading of FIFO register accesses. The LPI2C

implements logic support for standard-mode, fast-mode,

fast-mode plus, and ultra-fast modes of operation.

This application note shows how to use the LPI2C in the

STOP and VLPS (Very Low Power Stop) low power

mode with KS22 SoC. It describes the master and slave

cases separately, as LPI2C implements the master and

slave in two independent parts and their configurations

are different. Both master and slave cases utilize the

DMA engine, they setup the DMA channels and the

LPI2C to work in STOP mode, they then directly enter

VLPS mode. Any valid address match or request on the

I2C bus causes the LPI2C to trigger a DMA request, and

perform data transfer without utilizing the CPU. The

CPU is then woken up by DMA finish interrupt after the

transfer is complete.

© 2016 Freescale Semiconductor, Inc. All rights reserved.

Freescale Semiconductor, Inc. Document Number: AN5245

Application Note Rev. 0 , 01/2016

Contents

1. Introduction .. 1
2. Overview .. 2

2.1. Low power mode consideration 2
2.2. Clock source consideration 2
2.3. Data transfer consideration 2
2.4. Baud rate consideration ... 3

3. Environment Setup .. 4
3.1 Requirements .. 4
3.2 Hardware setup ... 4

4. LPI2C Master Work in STOP .. 6
4.1. IP configurations... 6
4.2. Software work flow .. 9
4.3. Build and Run the demo .. 9

5. LPI2C Slave Work in STOP .. 11
5.1. IP configurations... 11
5.2. Software work flow .. 13
5.3. Important note .. 13
5.4. Build and Run the demo 14

6. Conclusion .. 15
7. References .. 15
3 Revision history .. 15

Overview

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

2 Freescale Semiconductor, Inc.

2. Overview

In typical embedded system use cases the designer sets up the whole system or CPU to enter into low

power mode for as long as possible so as to save power. This requires some of the IP modules to work in

low power mode to deal with non-critical tasks, such as low speed communication, when the CPU or

other parts of the SoC have stopped. The LPI2C is designed for this purpose. It works in VLPR, VLPW,

STOP, and VLPS low power mode, and transfer data to the I2C bus without utilizing the CPU.

2.1. Low power mode consideration

LPI2C works in most of the different low power modes, however this application note focuses on how to

make LPI2C work in STOP/VLPS mode. VLPS is the lowest power consumption mode that LPI2C can

work with. In other modes such as VLPR/VLPW/PSTOP, the LPI2C configuration is very similar to

STOP/VLPS.

2.2. Clock source consideration

KS22 SoC has integrated the LPI2C module and provided several functional clock sources for this

module, this is shown in Figure 1. These clocks are asynchronous to the bus clock and can remain

enabled in low power modes to support LPI2C working in low power modes (except MCGFLLCLK).

Among these clocks, only the MCGIRCLK can be enabled in both STOP and VLPS mode. So

MCGIRCLK is selected as the clock source for this case.

Figure 1. LPI2C clock sources

2.3. Data transfer consideration

To support I2C data transfer without CPU interaction in low power mode, the DMA has to be involved

to transfer data between memory (SRAM or Flash) and LPI2C Tx/Rx FIFO. The LPI2C supports raising

requests to the DMA engine when data can be written to transmit FIFO or data is ready to read from

receive FIFO according to the FIFO watermark. Also, in slave mode, when a valid address is ready in

the address status register, it raises a request to the DMA for address fetching. Table 1 shows the LPI2C

Overview

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 3

status flag relationship with the DMA request. When the flag is set, the DMA request is sent to the

DMA engine.

Table 1. LPI2C flag relationship with DMA request

LPI2C status flag Master/Slave Description DMA Request

TDF M/S Data can be written to transmit data register TX

RDF M/S Data can be read from the receive data

register

RX

AVF S Address can be read from the address status

register

RX

DMA works under asynchronous mode in STOP and VLPS. When a DMA request is detected in STOP

or VLPS then the device initiates a normal exit from the low power mode. This includes restoring the

on-chip regulator and internal power switches, enabling the clock generators in the MCG, enabling the

system and bus clocks (but not the core clock) and negating the stop mode signal to the bus masters and

bus slaves. The only difference is that the CPU will remain in the low power mode with the CPU clock

disabled.

NOTE

When the DMA engine is working, part of the modules in SoC are in

wakeup from STOP or VLPS mode, but the CPU is still kept in stop.

The use case described here makes LPI2C active in STOP or VLPS low power mode with DMA engine

standby and CPU stop. LPI2C raises a DMA request when there are Tx/Rx requests on the I2C bus.

When the DMA receives those requests it either transfers the data or command from memory to LPI2C

Tx FIFO data, or transfers the data from the LPI2C Rx FIFO data register to memory. When all the

requested data is ready DMA wakes up the CPU to process the data.

Section 4, “LPI2C Master Work in STOP” and section 5, “LPI2C Slave Work in STOP” give further

details on implementation and configuration for both Master and Slave use cases.

2.4. Baud rate consideration

Under the STOP or VLPS low power modes, the bus and flash clock cannot be high enough to support

high speed I2C baud rate. With 4 MHz bus and the LPI2C source clock, the I2C baud rate can only be

configured to maximum 500 kbps. Also, on the DMA side, the internal system bus is working in a very

low speed, it may not be able to move data as fast as the high baud rate requires.

Environment Setup

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

4 Freescale Semiconductor, Inc.

3. Environment Setup

3.1 Requirements

To implement and run this use case, there are some requirements for both software and hardware:

Software requirement

• Associated software demo package with this Application Note

• IAR Embedded Workbench 7.50.2

Hardware Requirement

• MAPS-KS22F256 Development Kit, including MCU board and Dock board. See Figure 2.

• Cables for connecting two boards(CN4) I2C SDA/SCL/GND signals (in Slave case)

3.2 Hardware setup

Before building and running the demos, the KS22 hardware boards must be setup to ensure that the

following jumpers are set:

• MAPS-KS22F256 MCU board

— M1 (1-2), VDD power for KS22

— JP10 (1-2), 3V3 for board power supply

• MAPS-Dock board

— JP15, JP17 for on board debugger

— JP7 for debug UART

— JP4 for I2C EEPROM

Environment Setup

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 5

You can use a USB cable connecting to CN14 from PC for the total boards power supply. This CN14

acts as a power supply, OpenSDA JLINK debugger and USB serial debug port. For further details on the

boards, refer to the MAPS-KS22F256 Users Guide.

Figure 2. MAPS-KS22F256 Development Kit

USB Power
(CN14)

Debugger &
Serial port

Reset (K1)

M1 JP10

JP17

JP15

JP7

MCU Board

Dock Board

CN4, I2C
connector

JP4

http://cache.nxp.com/zh-Hans/files/MAPSKS22F256UG.pdf?fpsp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

LPI2C Master Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

6 Freescale Semiconductor, Inc.

4. LPI2C Master Work in STOP

This demo is to read the 64 bytes of data from I2C EEPROM AT24C02 (on MAPS-Dock board) per

second. The system enters VLPS mode by default, and a Low Power timer is configured to wake up the

system and enable the DMA request for LPI2C Tx/Rx every 1 second. After timer timeout, the system

reverts to VLPS mode with the DMA Tx started. The LPI2C sends START and the I2C device address

of AT24C02 to the bus with a READ request. It utilizes the AT24C02 sequential read feature, the

AT24C02 sends data byte by byte in sequence before a STOP from the Master is detected. After a

READ request is sent by the Master, the DMA Rx begins to receive data from the LPI2C receive data

register to fill the 64 bytes buffer. The CPU is woken up by the Rx DMA channel completed interrupt

and prints the 64 bytes on the debug console.

4.1. IP configurations

4.1.1. System clock

The system runs under the BLPI (Bypassed Low Power Internal) clock mode with 4 MHz IRC as clock

source. The PLL and FLL are disabled, the core and bus clock are from the 4 MHz IRC with divider 1,

so their frequencies are all 4 MHz. The MCGIRCLK is enabled, it also sources from the 4 MHz IRC

without divider, and it is used by the LPI2C.

4.1.2. DMAMUX and EDMA Module

• DMAMUX

— Enable DMA Channel0, connected with LPI2C0 Master/Slave TX request source.

— Enable DMA Channel1, connected with LPI2C0 Master/Slave RX request source.

• EDMA

— Channel0

– Transmits bytes to LPI2C MTDR register with command and data

– Disable interrupt after major loop done

– Disable DMA request after major loop done

– 4 bytes per minor loop

– 3 minor loops per major loop

— Channel1

– Receive bytes from LPI2C MRDR register with data

– Enable interrupt after major loop done

– Disable DMA request after major loop done

– 1 byte per minor loop

– 64 minor loops per major loop (64 Bytes buffer created for receive data)

– Work in asynchronous mode (must for STOP/VLPS mode)

LPI2C Master Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 7

The MTDR is a 32bit register (as shown in Figure 3) with DATA in [7-0] bits and CMD in [10-8] bits, a

CMD/DATA buffer is constructed in a uint32_t array with 3 items:

1. START + Slave Address + R/W

2. Receive (DATA[7:0] + 1) bytes

3. STOP

It has 3 minor loops with a total of 12 Bytes for one major loop. In this way, DMA is utilized to send

command and address to LPI2C, and complete the Master-Receive start address on the I2C bus.

Enable interrupt after major loop done for receive channel1, to wakeup the CPU to print out the received

64 bytes buffer from EEPROM.

Figure 3. LPI2C MTDR register description

4.1.3. LPTimer Module

• Work in time counter mode

• LPO 1 KHz as clock source to make sure it can work in STOP/VLPS mode

• Disable prescaler, set compare value to 1000. This means that the counter is equal to a compare

value of 1000 per second.

• Enable interrupt

LPI2C Master Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

8 Freescale Semiconductor, Inc.

4.1.4. LPI2C Master Module

• Use LPI2C0 instance

• Enable Doze mode by setting LPI2C0_MCR[DOZEN], to make LPI2C active in STOP/VLPS

mode

• Functional clock source from MCGIRCLK of 4 MHz by SIM_SOPT2[LPI2C0SRC]

• 100 kbps baud rate[1]

• Set Tx/Rx FIFO watermark to zero by LPI2C0_MFCR

• Enable DMA for both Tx/Rx by LPI2C0_MDER

• Enable Master mode by setting LPI2C0_MCR[MEN]

[1] Baud rate = Clock Source / Divide. The Divide is configured by the LPI2Cx_MCCR0 and LPI2Cx_MCFGR2 register.

Divide = ((CLKLO+CLKHI+2)*2^PRESCALER) + ROUNDDOWN ((2+FILTSCL)/2^PRESCALER)

LPI2C Master Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 9

4.2. Software work flow

Figure 4. Master case software work flow

In this work flow, after the DMA configuration is complete, the CPU only handles IRQ and printing

data buffer. It remains in VLPS low power mode most of the time. The LPTimer interrupt handler runs

every second to enable the DMA request for I2C master Tx/Rx, to trigger the DMA engine to start

working. When channel0/1 have completed their work, DMA Channel1 major loop complete interrupt

handler sets the receive complete flag for the main loop to print data.

4.3. Build and Run the demo

4.3.1. Build the demo

The project workspace files of the demo are located in:

examples/mapsks22f256/demo_apps/lpi2c_master_vlps/iar

LPI2C Master Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

10 Freescale Semiconductor, Inc.

The source files of the demo are located in:

examples/mapsks22f256/demo_apps/lpi2c_master_vlps/src

Open the IAR workspace file lpi2c_master_vlps.eww, click “Make” button to build the whole project.

4.3.2. Run the demo

Connect the USB cable with the MAPS-Dock board CN14 and PC Host to power up the board. User can

find either CMSIS-DAP or JLINK debugger device be found on PC. The user can download a program

image to the microcontroller through CMSIS-DAP or OpenSDA JLINK, depends on what on-board

debugger MAPS-Dock installed.

Run a serial terminal tool like Putty or Terminal on PC host and open the USB serial port: MBED Serial

Port or JLINK CDC port (COM port number can be found in the Windows Device Manager) with speed

of 115200 bps and format of 8in1.

Click the “Download and Debug” button to download the binary into KS22 flash, and debug the

program from main(). Run the demo, it prints out 64 bytes of data read from EEPROM every second. It

is a sequential read, when total read length over the EEPROM size, EEPROM would set its internal read

pointer to the start of storage, then master would get the data from the beginning of the storage.

LPI2C Slave Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 11

5. LPI2C Slave Work in STOP

This demo configures KS22 as an I2C slave, provides an internal buffer (16 bytes) to store data for the

Master side to read and write, just like an EEPROM. I2C master can use Master-Receive to read the

buffer by Single-byte or Multiple-byte read operations, the Multiple-byte read would make slave send

the data in the buffer in loop until the master generates STOP. The master can also use Master-Transmit

to write data into the slave internal buffer by Single-byte or Multiple-byte write operations.

This case requires two MAPS-KS22 boards with LPI2C0 SDA/SCL/GND pin connected (CN4 3, 4, 2),

and the demo project is divided into two projects: master and slave. Each project run on one board. Here

only describes the LPI2C slave project, the master is designed to co-operated with slave demo

without any special configurations for low power.

5.1. IP configurations

5.1.1. System clock

System running under the BLPI (Bypassed Low Power Internal) clock mode with 4MHz IRC as clock

source. The PLL and FLL is disabled, the core and bus clock are from 4 MHz IRC with divider 1, so

their frequencies are all 4 MHz. The MCGIRCLK is enabled also source from 4 MHz IRC without

divider, it is used by the LPI2C.

5.1.2. DMAMUX and EDMA Module

• DMAMUX

— Enable DMA Channel0, connected with LPI2C0 Master/Slave TX request source.

— Enable DMA Channel1, connected with LPI2C0 Master/Slave RX request source.

• EDMA

— Channel0

– Transmits bytes to LPI2C STDR register with data

– Disable interrupt after major loop done

– Keep DMA request enabled even after major loop done

– 1byte per minor loop

– 16 minor loops per major loop (16Bytes internal buffer)

— Channel1

– Receive bytes from LPI2C SRDR register with data

– Disable interrupt after major loop done

– Keep DMA request enabled even after major loop done

– 1 byte per minor loop

– 16 minor loops per major loop (16 bytes internal buffer)

— Work in asynchronous mode (must for STOP/VLPS mode)

LPI2C Slave Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

12 Freescale Semiconductor, Inc.

DMA is configured for transferring data between internal 16 Bytes buffer and the LPI2C slave transmit

data register or receive data register. It is always working no matter if the major loop is completed or

not, as the DMA request is always enabled.

5.1.3. LPI2C Slave Module

• Use LPI2C0 instance

• Enable Doze mode by set LPI2C0_MCR[DOZEN], to make LPI2C active in STOP/VLPS mode

• Functional clock source from MCGIRCLK of 4 MHz by SIM_SOPT2[LPI2C0SRC]

• Set the slave address into LPI2C0_SAMR

• Configure the TDF only be set in the Slave-Transmit condition[1] by LPI2C0_SCFGR1[TXCFG]

• Enable the TX Data SCL Stall and RX SCL Stall for clock stretching on SCL[2]

• Enable DMA by set LPI2C0_SDER

• Enable Slave mode by set LPI2C0_SCR[SEN]

• Enable interrupt for potential bus or FIFO error

 [1] If TDF is not configured to be set in the Slave-Transmit condition, the TDF would always be set when slave Tx FIFO is empty, this will mis-trigger the DMA engine to

transmit data, and mess data would occur on the I2C bus.

[2] The clock stretching on SCL for slave is must for working in STOP/VLPS mode, because the DMA engine is not working as faster as normal RUN mode, the data would not

be present on the SDA bus as master expected on time. Slave must tell master it’s preparing the data after receiving the request by clock stretching.

LPI2C Slave Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 13

5.2. Software work flow

Figure 5. Slave case software work flow

In the work flow above, the CPU does nothing after DMA configuration is completed, except for

handling IRQ if there is error in the I2C bus. It mostly stays in the VLPS low power mode. The DMA

engine is responsible for transferring data between the internal buffer and the LPI2C slave TDR and

RDR registers when there is a request from the Master on the I2C bus. The Address Match, Slave-

Transmit, and Slave-Receive progress does not require action from the CPU.

5.3. Important note

For LPI2Cx_SCFGR1[TXCFG]: Transmit Flag Configuration, the transmit data flag will always assert

before a NACK and STOP is detected at the end of a slave-transmit transfer. This can cause an extra

word to be written to the transmit data FIFO, but not present on the I2C bus. This would not cause an

issue on the I2C bus, but it means when using DMA to transmit data to slave data FIFO, the DMA

channel current source address would be plus 1 offset. If DMA is not re-configured for the next transmit,

one word would be missed, which is already transmitted in the previous DMA job. Keep this in mind

when you are using the DMA automatically for slave transmit.

LPI2C Slave Work in STOP

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

14 Freescale Semiconductor, Inc.

5.4. Build and Run the demo

5.4.1. Build the demo

The project workspace files of the demo are located in:

examples/mapsks22f256/demo_apps/lpi2c_slave_vlps/iar

The source files of the demo are located in:

examples/mapsks22f256/demo_apps/lpi2c_slave_vlps/src

Open the IAR workspace file lpi2c_slave_vlps.eww. There are two projects in this workspace:

1. lpi2c_master: it acts as I2C master, firstly it reads the data from the slave internal buffer; it then

overwrites those data using Master-Transmit, then reads the data back again to verify. Build it by

selecting it, and click “Make” button.

2. lpi2c_slave_vlps: it act as I2C slave. Build it by selecting it, and clicking the “Make” button.

5.4.2. Run the demo

Two MAPS boards are needed to run this demo, one for master program mark as #1, another for slave

program mark as #2. They are connected by cable for 3 signals on MAPS-KS22 MCU board CN4:

SDA/SCL/GND.

1. Download the slave program. Connect the USB cable with the #2 MAPS-Dock board CN14 and

PC Host to power up the board. The user can find either CMSIS-DAP or JLINK debugger device

on their PC. The user can download a program image to the microcontroller through CMSIS-

DAP or OpenSDA JLINK, depending on what on-board debugger MAPS-Dock installed. Click

the “Download and Debug” button to download the built out master binary into KS22 flash. Exit

the IAR debug window, re-plug the USB cable to power on the slave again.

2. Download the master program. Connect the USB cable with the #1 MAPS-Dock board CN14

and PC Host to power up the board. Click the “Download and Debug” button to download the

built out slave binary into KS22 flash, then run the demo in IAR. Run a serial terminal tool like

Putty or Terminal on PC host and open the USB serial port: MBED Serial Port or JLINK CDC

port (COM port number can be found in the Windows Device Manager) with speed of 115200

bps and format of 8in1. Use this terminal to monitor the master program print out and status.

When the master starts to run, the user can see the original data from the slave, then the overwritten data

from the master which is read back from the slave.

Revision history

Using LPI2C in STOP Low Power Mode, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 15

6. Conclusion

The LPI2C IP module is well designed for low power use cases, as it can work in the STOP low power

mode without CPU interaction. This feature can significantly reduce the power consumption for product

(like Sensor Hub) that need I2C communication in idle or other non-critical path, where CPU can STOP.

Besides the low power feature, LPI2C module also supports different speed mode: Standard, Fast, Fast

Plus, Ultra-Fast and HS-mode in slave, which means the user can utilize the LPI2C to achieve a very

high speed I2C communication, up to 1 Mb/s in Fast Plus mode and 5 Mb/s in Ultra-Fast mode.

Due to the new LPI2C module the user can design the system in a very flexible, low power and high

performance way.

7. References

1. Kinetis KS22 SoC Reference Manual and Data Sheet

2. MAPS-KS22F256 and MAPS-Dock: Freescale MAPS Platform for Kinetis MCUs

3. MAPS-KS22F256 Users Guide

4. KINETIS_SDK: Software Development Kit for Kinetis MCUs

8. Revision history
Table 2. Revision history

Revision number Date Substantive changes

0 01/2016 Initial release

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m/k-series/ks22-mcus:KS22_MCU?fsrch=1&sr=1&pageNum=1
http://www.nxpic.org/page/nxp-mcu
http://cache.nxp.com/zh-Hans/files/MAPSKS22F256UG.pdf?fpsp=1&WT_TYPE=Users%20Guides&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://www.nxp.com/products/software-and-tools/run-time-software/kinetis-software-and-tools/development-platforms-with-mbed/software-development-kit-for-kinetis-mcus:KINETIS-SDK?tid=redKINETIS_SDK

Document Number: AN5245
Rev. 0

01/2016

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off.

ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or

its subsidiaries) in the EU and/or elsewhere. All other product or service names are the

property of their respective owners. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Using LPI2C in STOP Low Power Mode
	1. Introduction
	2. Overview
	2.1. Low power mode consideration
	2.2. Clock source consideration
	2.3. Data transfer consideration
	2.4. Baud rate consideration

	3. Environment Setup
	3.1 Requirements
	3.2 Hardware setup

	4. LPI2C Master Work in STOP
	4.1. IP configurations
	4.1.1. System clock
	4.1.2. DMAMUX and EDMA Module
	4.1.3. LPTimer Module
	4.1.4. LPI2C Master Module

	4.2. Software work flow
	4.3. Build and Run the demo
	4.3.1. Build the demo
	4.3.2. Run the demo

	5. LPI2C Slave Work in STOP
	5.1. IP configurations
	5.1.1. System clock
	5.1.2. DMAMUX and EDMA Module
	5.1.3. LPI2C Slave Module

	5.2. Software work flow
	5.3. Important note
	5.4. Build and Run the demo
	5.4.1. Build the demo
	5.4.2. Run the demo

	6. Conclusion
	7. References
	8. Revision history

