

eTPU library usage in an application

Covers all Automotive MCUs with eTPU, eTPU2 and eTPU2+

by: Marketa Venclikova

1. Introduction

The Enhanced Time Processor Unit (eTPU) is an

autonomous, CPU independent 24-bit programmable

I/O controller having its own core and memory system

allowing to perform complex timing and I/O

management.

The eTPU was originally designed for combustion

engine and advanced timing control, but nowadays

alongside with expansion of hybrid vehicles eTPU is

gaining momentum in the field of automotive motor

control applications as well.

A new eTPU/eTPU2/eTPU2+ library of various

functions for engine control and motor control has been

developed and is provided in the form of precompiled

binaries (eTPU function set) available to download from

http://www.nxp.com/webapp/etpu_cw/. The new library

is based on the previous eTPU function sets (set1 to

set4), where most of the functions were updated, added

new functionality or completely new functions were

implemented.

This application note serves as a cookbook on how to

get eTPU binaries and related files and embed them into

an application. For better understanding an example

how to generate PWM signal using one of the eTPU

Motor Control library functions is provided in section 4.

NXP Semiconductors Document Number: AN5374

Application Notes Rev. 0 , 12/2016

Contents

1. Introduction .. 1
2. eTPU library overview ... 2
3. How to get eTPU function binaries 3

3.1. Download the eTPU function set 3
3.2. The etpu_set content overview 4
3.3. The eTPU project structure 5
3.4. The eTPU initialization ... 5

4. The eTPU PWMM function utilization in an application .. 6
4.1. PWMM function overview 6
4.2. Download the PWMM function 7
4.3. Create a S32DS project ... 7
4.4. Include files into a project 8
4.5. Configuration of the ETPU 9
4.6. Get the eTPU running ... 12
4.7. Configure FreeMASTER and debug 13
4.8. Application output .. 13

5. Summary .. 15

http://www.nxp.com/webapp/etpu_cw/

eTPU library overview

eTPU library usage in an application, Rev. 0, 12/2016

2 NXP Semiconductors

2. eTPU library overview

NXP provides an eTPU library comprising functions for engine control, motor control and general

timing based on CodeWarrior for eTPU development tool. Following functions are already available to

download:

• Engine control functions

o Cam

o Crank

o Crank Emulator

o Tooth Generator

o Fuel

o Direct Injection

o Spark

o Knock Window

• Motor Control:

o Motor Control PWM

o Resolver Interface

All of the above listed functions are compatible with eTPU, eTPU2 and eTPU2+. Other functions

intended for general timing and communication are planned to be included in the eTPU library. This

application note only provides instruction how to incorporate the eTPU Library functions binaries into

an user application. A detailed description of individual functions can be found in AN4907 (Engine

Control eTPU Library) and in AN5335 (Motor Control eTPU Library). Table 1 presents several ways

how to get the eTPU Function code, depending on whether you want a ready to use eTPU functions with

precompiled binaries (follow the rows for an eTPU user), or there is a need for you to modify the eTPU

function source code (follow the rows for an eTPU developer).

Table 1 Where to get the eTPU function code and the tools needed

 How to get the code Tool needed

eTPU

user

CW eTPU Function Selector – custom eTPU binary

image
-

AN4908 Engine Control demo SW GHS Multi compiler

AN5353 Motor Control eTPU Demo S S32DS

eTPU

developer

AN4907 Engine Control eTPU Library
Code Warrior for eTPU

AN5335 Motor Control eTPU Library

eTPU Library ported to ASH WARE ASH WARE development tool

http://cache.nxp.com/files/microcontrollers/doc/app_note/AN4907.pdf?fsrch=1&sr=1&pageNum=1
http://cache.nxp.com/files/microcontrollers/doc/app_note/AN4907.pdf?fsrch=1&sr=1&pageNum=1
http://www.nxp.com/webapp/etpu_cw/
http://cache.nxp.com/files/microcontrollers/doc/app_note/AN4908.pdf?fsrch=1&sr=1&pageNum=1
http://www.nxp.com/s32ds
http://cache.nxp.com/files/microcontrollers/doc/app_note/AN4907.pdf?fsrch=1&sr=1&pageNum=1
http://www.nxp.com/products/software-and-tools/software-development-tools/codewarrior-development-tools/codewarrior-development-studios/codewarrior-for-processors/codewarrior-development-studio-for-etpu-v10.3:eTPU2?parentCode=null&nodeId=015210BAF72726E4C7
https://www.ashware.com/Software
https://www.ashware.com/website/etpu2p-development-tool

How to get eTPU function binaries

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 3

3. How to get eTPU function binaries

This chapter describes how to download eTPU function binary and how to include it into a project and

get the application running using eTPU functions.

3.1. Download the eTPU function set

User can easily download the required eTPU function using a designated eTPU function selector web

tool available at http://www.nxp.com/etpu. The first step is to select the corresponding version of eTPU

that the application will be running on and select particular function/functions to be downloaded.

Functions marked as “Included routines” are automatically included to eTPU function set according to

selection made. Devices supporting particular version of the eTPU are highlighted (see Figure 1 eTPU

function selector web tool), eTPU2 and eTPU2+ versions are back compatible with functions intended

for eTPU, but not conversely.

As a second step the user is prompted to provide a feedback describing the features of the application

where eTPU functions are to be used in and give a short overview about the eTPU tasks.

The eTPU function set will be compiled in the third step by clicking on the “Create function set” button

and user will be able to download it as a zip file.

Figure 1 eTPU function selector web tool

http://www.nxp.com/etpu

How to get eTPU function binaries

eTPU library usage in an application, Rev. 0, 12/2016

4 NXP Semiconductors

3.2. The etpu_set content overview

When unpacked the file “etpu_set.zip” contains following folders and files:

 etpu – this folder includes other subfolders with C utility functions, API and binary image of the

eTPU function.

o The _utils folder contains files etpu_util.c /.h including low-level functions handling the

eTPU.

o The etpu_set folder contains the binary image of eTPU code and interface files, all generated

by the eTPU compiler.

o The <func> folder(s), <func> represents the function(s) tag, include the eTPU function’s

API. There is one separate folder for each eTPU function. These drivers enable an easy

access to eTPU functions from an application.

• include – this folder contains device specific header files, one of which needs to be included in

the user main.c file and etpu_struct.h file defining the eTPU registers – an essential file for

etpu_util.h /.c.

• files – etpu_gct.c_ and etpu_gct.h_ are eTPU configuration templates.

The user is strictly recommended not to modify any file from etpu and include folders, functions are

ready to be used in a user application by a function call. The only files allowed to be modified are

etpu_gct.c and etpu_gct.h.

Table 2 content of the etpu_set folder overview

Folder Subfolder Content

etpu _utils etpu_util.c

etpu_util.h

etpu_set etpu_<func>_auto.h

etpu_set.h

<func> etpu_<func>.c

etpu_<func>.h

include - <device>_vars.h

typedefs.h

etpu_struct.h

- - etpu_gct.c_

etpu_gct.h_

How to get eTPU function binaries

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 5

3.3. The eTPU project structure

There is a structure of the project using eTPU functions on Figure 2 that have to be followed by user

when including eTPU function binaries, eTPU APIs and eTPU Utilities into an application. All these

items are included in the etpu_set.zip download package.

The eTPU source code (at the bottom of the Figure 2) is not included in the etpu_set.zip package. The

source code is available with AN4907 (Engine Control eTPU Library) and AN5335 (Motor Control

eTPU Library). Modification of the source code requires eTPU development tools (e.g. CodeWarrior,

AshWare) and specific knowledge of eTPU programming.

Figure 2 Structure of a project utilizing eTPU functions

3.4. The eTPU initialization

To correctly initialize the eTPU user is recommended to use etpu_gct.c /.h template files. The templates

include eTPU initialization code ready to be modified specifically for the user application. The user

needs to include etpu_gct.c /.h and etpu_<func>.c /.h into the main.c of the application, add function

calls my_system_etpu_init/start to configure the eTPU and create an eTPU interrupt service routine

including eTPU run-time interface code. Perform the following steps:

1. Include etpu_gct.c /.h template files into main.c and modify them

2. Include etpu_<func>.c /.h API into the main.c.

http://cache.nxp.com/files/microcontrollers/doc/app_note/AN4907.pdf?fsrch=1&sr=1&pageNum=1

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

6 NXP Semiconductors

3. Create an eTPU interrupt routine utilizing the eTPU function run-time interface code if needed

4. Call the my_system_etpu_init(); and my_system_etpu_start(); in the main function to initialize

eTPU

User can optionally include FreeMASTER binaries for debug purposes or standard automotive Motor

Control Library (MCLib) if some math operations needed.

4. The eTPU PWMM function utilization in an application

The MPC574xR controller board is used for the demonstration of the eTPU PWMM motor control

function. The demo application is created in S32 Design Studio (S32DS), available to download free at

http://www.nxp.com/s32ds. The S32DS is supported for MPC564xA, MPC5676R, MPC574xR and

MPC5777C devices having eTPU2 and eTPU2+. For the debug and demonstration purpose the

FreeMASTER Run-Time Debugging Tool (available to download free at

http://www.nxp.com/freemaster) is used to visualize PWMM outputs. Finally, several functions from

Automotive Math and Motor Control Library Set are used within this application.

4.1. PWMM function overview

This eTPU Motor Control PWM function provides various options of PWM configuration. Depending

on configuration it utilizes either four or seven eTPU channels - three channels to generate three phases

of single output PWM signal, or six eTPU channels to generate three phases of complementary output

PWM signals; plus one channel is always used to update and synchronize all the eTPU PWM outputs.

The function API utilizes four structure types, where function configuration, data, states and inputs are

stored. All of the structures need to be defined within the configuration file etpu_gct.c. The structure

types are as follows:

• pwmm_instance_t – this structure holds parameters used to initialize the eTPU functions, such as

numbers of channels assigned to phases and master channel, type of phases

(single/complementary), PWM polarity etc.

• pwmm_config_t – this structure holds configuration parameters of the modulation, that are

allowed to be changed in run-time.

• pwmm_inputs – this structure holds values which are inputs driving the PWM duty-cycles

• pwmm_states – this structure holds states and actual duty cycles of the PWM output signals

The PWMM API includes the following routines to handle the PWMM function running on the eTPU

channels:

• fs_etpu_pwmm_init()

• fs_etpu_pwmm_config()

• fs_etpu_pwmm_set_inputs()

• fs_etpu_pwmm_enable()

• fs_etpu_pwmm_disable()

• fs_etpu_pwmm_get_states()

http://www.nxp.com/s32ds
http://www.nxp.com/freemaster
http://www.nxp.com/products/software-and-tools/run-time-software/automotive-software-and-tools/motor-control-development-solutions/automotive-math-and-motor-control-library-set:AUTOMATH_MCL

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 7

For more detailed description please refer to PWMM-doxyDoc file included together with the eTPU

PWMM function API source code.

4.2. Download the PWMM function

To get the eTPU PWM motor control function, the eTPU binaries and adjacent files need to be

downloaded, as described in chapter 3.1. Together with the PWMM function the binary image of the

MC_SIN and MC_UTIL are included. The generated etpu_set.zip file contains following subfolders:

• etpu

o _etpu_set

o _utils

o pwmm

• include

• templates etpu_gct.c_ /.h_

4.3. Create a S32DS project

As soon as S32 Design Studio is properly installed (version 1.1 for Power Architecture used in this

example), a new project can be created performing following steps:

1. Select File → New → S32DS Project

2. Type a name of the project to the upper line of the project wizard window and select the

appropriate device on the left panel, in this application particularly MPC5743R and continue

with Next. The device selection can be seen on Figure 3 Project wizard - selection of the device.

3. Then select language (C/C++) and choose the debugger option.

4. Click Finish to complete the project creation. The new project will appear on the left bar in the

project explorer.

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

8 NXP Semiconductors

Figure 3 Project wizard - selection of the device

4.4. Include files into a project

All the downloaded eTPU PWMM function related files need to be included into the new S32DS

project. Do following steps:

• Unzip the etpu_set.zip and copy paste the content as is to the “src” in the project.

• Delete all the redundant header files from “etpu_set\include” except of etpu_struct.h and

mpc5746r_vars.h . Other header files are redundant.

• Retype the ending of etpu_gct.c_ and etpu_gct.h_ to .c and .h in “etpu_set”

• FreeMASTER and Automotive Math and Motor Control library (MCLIB) are utilized within

this project – source codes and communication drivers are pasted in the “src” folder in the

project.

Finally include following header files in the main_Z4_1.c file:
/**
* User includes
**/
#include "etpu_set\etpu\pwmm\etpu_pwmm.h" /* eTPU PWMM function API */
#include "etpu_set\etpu_gct.h" /* eTPU configuration */
#include "MCLIB\gmclib.h" /* General Motor Control Library */
#include "MCLIB\gdflib.h" /* General Motor Control Library */
#include "FreeMASTER\MPC57xx\freemaster.h" /* FreeMASTER Communication driver */

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 9

Figure 4 Project final content

4.5. Configuration of the ETPU

The eTPU configuration can be easily done modifying etpu_gct.c and etpu_gct.h files. Thanks to those

API files the user is prevented from direct access to the eTPU registers.

4.5.1. Edit etpu_gct.h

 The eTPU channel functionality definition in this application is done in etpu_gct.h as follows:

• Assign eTPU functions to eTPU channels – master channel does not generate any output

signal, this channel is intended for eTPU PWMM output synchronization. In this particular

application complementary PWM signals are configured, so it means that one phase is driven by

two eTPU channels. Note that the channel numbers assigned to one phase must be consecutive.

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

10 NXP Semiconductors

/***
* Define Functions to Channels
***/
#define ETPU_PWMM_MASTER_CH ETPU_ENGINE_A_CHANNEL(10)
#define ETPU_PWMM_PHASEA_BASE_CH ETPU_ENGINE_A_CHANNEL(11)
#define ETPU_PWMM_PHASEA_COMPL_CH ETPU_ENGINE_A_CHANNEL(12)
#define ETPU_PWMM_PHASEB_BASE_CH ETPU_ENGINE_A_CHANNEL(17)
#define ETPU_PWMM_PHASEB_COMPL_CH ETPU_ENGINE_A_CHANNEL(18)
#define ETPU_PWMM_PHASEC_BASE_CH ETPU_ENGINE_A_CHANNEL(15)
#define ETPU_PWMM_PHASEC_COMPL_CH ETPU_ENGINE_A_CHANNEL(16)

• Enable interrupt from eTPU channels – interrupt flag is set by the Master Channel every time

when there is a missing update on any of the three phases. In order to enable the interrupt flag

propagation to the interrupt controller (INTC), a bit corresponding to the PWMM master channel

number must be set in the CIE register.

/***
* Define Interrupt Enable, DMA Enable and Output Disable
***/
#define ETPU_CIE_A (1<<ETPU_PWMM_MASTER_CH) /* enable interrupt on ETPU PWMM_CHAN */

• Enable global variable access – make the eTPU structures visible outside the gct to be

accessible also for PWMM API.

/**
* Global Variables Access
**/
/* Global <FUNC1> structures defined in etpu_gct.c */
extern struct pwmm_instance_t pwmm_instance;
extern struct pwmm_config_t pwmm_config;
extern struct pwmm_inputs_t pwmm_inputs;
extern struct pwmm_states_t pwmm_states;

• Define the eTPU system frequency – update the value of the macro to be corresponding to the

eTPU system frequency. All of the eTPU timing is derived from the system clock so it is

necessary to specify it here.

/**
* Application Constants and Macros
**/

#define SYS_FREQ_HZ 160E6

4.5.2. Configure etpu_gct.c

Configuration of the eTPU together with eTPU function structures definition (in particular PWMM

related structures) is done in etpu_gct.c. The eTPU itself configuration structures are already part of this

file and serves as a template of eTPU configuration. Function specific structures need to be defined

manually here in this configuration file.

• Include device specific header file to specify eTPU data RAM frame

#include "mpc5746r_vars.h"

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 11

• Configure the eTPU engine - modify the predefined structure including parameters to configure

eTPU engine. For a detailed description of the eTPU engine configuration please refer to eTPU

Reference Manual.

struct etpu_config_t my_etpu_config =
{

…
};

• Define PWMM instance – assign the particular channels numbers using the macros defined in

etpu_gct.h, set the priority of the eTPU function, specify the type of the phases

(single/complementary), PWM modulation, polarity, function start offset and pointer to a

channel parameter base address. All the four eTPU PWMM structure types are declared and

described in the etpu_pwmm.h API.

struct pwmm_instance_t pwmm_instance =
{

 ETPU_PWMM_MASTER_CH, /**< Channel number of the PWMM master channel. */
 ETPU_PWMM_PHASEA_BASE_CH, /**< Channel number of the Phase A channel. */
 ETPU_PWMM_PHASEB_BASE_CH, /**< Channel number of the Phase B channel. */
 ETPU_PWMM_PHASEC_BASE_CH, /**< Channel number of the Phase C channel. */
 FS_ETPU_PRIORITY_MIDDLE, /**< Channel priority for all PWMM channels. */
 FS_ETPU_PWMM_FM0_COMPLEMENTARY_PAIRS, /**< Type of phases. */

FS_ETPU_PWMM_POLARITY_BASE_ACTIVE_HIGH
|FS_ETPU_PWMM_POLARITY_COMPL_ACTIVE_HIGH, /**< Base and complementary
channel polarity */

 (uint24_t)USEC2TCR1(100),
 0 /**< Channel parameter base address */

};

• Define PWMM configuration structure – specify the type of PWMM modulation, the

modulation mode (center aligned/left aligned/…), period time, dead time, minimum pulse width

and update time. All the timing parameters are expressed in TCR1 cycles. The macros from

etpu_gct.h can be used to transfer mili/micro/nano-seconds to a number of TCR1 cycles.

Parameters of this structure can be changed during run-time.

struct pwmm_config_t pwmm_config =
{

 FS_ETPU_PWMM_FM1_FRAME_UPDATE_ONLY, /**< selection of PWM update position.*/
FS_ETPU_PWMM_MODULATION_SINE_TABLE, /**< Selection of modulation. angle =
input_a, amplitude = input_b*/

 FS_ETPU_PWMM_MODE_CENTER_ALIGNED, /**< PWM Mode selection */
 USEC2TCR1(50), /**< PWM period as a number of TCR1 cycles. */
 USEC2TCR1(1), /**< PWM deadtime as a number of TCR1 cycles.*/
 USEC2TCR1(1), /**< Minimum pulse width as number of TCR1 cycles. */

USEC2TCR1(20) /**< A time period (number of TCR1 cycles) that is needed to
perform an update of all PWM phases. */

};

• Define PWMM inputs structure – this structure holds input parameters for phases A, B and C

used for update of the generated duty cycles. This structure can remain empty during

initialization.

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

12 NXP Semiconductors

struct pwmm_inputs_t pwmm_inputs;

• Define PWMM states structure – this structure contains outputs representing internal states of

the PWMM function.

struct pwmm_states_t pwmm_states;

• Implement the eTPU initialization functions – the eTPU initialization is hold by 2 functions:

o my_system_etpu_init()

This function consists of 2 parts. The first one is eTPU engine configuration using

my_etpu_init structure, the second one configures all eTPU channels using appropriate API

calls. For PWMM, the call of fs_etpu_pwmm_init(…) needs to be added the channel

configuration part.

o my_system_etpu_start()

This function does not need to be modified. It applies the interrupt-enable and DMA-enable

masks and starts the eTPU internal clocks (TCR1 and TCR2).

 /* Initialization of eTPU channel settings */
 err_code = fs_etpu_pwmm_init(&pwmm_instance, &pwmm_config);

 if(err_code != FS_ETPU_ERROR_NONE) return(err_code + (ETPU_PWMM_MASTER_CH<<16));

4.6. Get the eTPU running

Create a function that will perform update of the PWM phases by

fs_etpu_pwmm_config(&pwmm_instance, &pwmm_config, &pwmm_inputs); function call from the

PWMM API. Call this function every time after the last update was successfully performed (check the

update status in the pwmm_states structure)

void etpu_pwmm_update(void)
{

/* Local variable definition */
/* … */

/* User code */
/* … */

 /* PWMM update */
 fs_etpu_pwmm_config(&pwmm_instance, &pwmm_config, &pwmm_inputs);
 fs_etpu_pwmm_get_states(&pwmm_instance, &pwmm_states);

 /* Check the eTPU load */
 etpu_engine_load = get_etpu_load_a();

}

Create an eTPU interrupt routine servicing the eTPU PWMM Master Channel interrupt. The interrupt

flag on the Master Channel is set whenever there is a missing update on any of the PWM phases.

void etpu_pwmm_master_irq(void)

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 13

{
/* Local variable definition */
/* … */

/* Clear the channel interrupt flag */

 fs_etpu_clear_chan_interrupt_flag(ETPU_PWMM_MASTER_CH);

/* User code */
/* … */}

To properly initialize and start the eTPU, perform my_system_etpu_init(); followed by

my_system_etpu_start(); function calls in the main function. Then start the PWM generation by

fs_etpu_pwmm_enable(&pwmm_instance) API function call.

int main(void)
{

/* Initialize the CPU */
/* … */

/* Initialize and run the eTPU */

 my_system_etpu_init();
my_system_etpu_start();

 /* Enable the PWMM eTPU function */
 fs_etpu_pwmm_enable(&pwmm_instance);

 /* Loop forever */
 for(;;) {

/* User code */
/* … */

 }

}

4.7. Configure FreeMASTER and debug

For the debugging and PWM duty-cycle visualization purpose the FreeMASTER Run-Time Debugging

Tool is used. Include the source code into your project and configure FreeMASTER in freemaster_cfg.h

template header file. For proper settings please refer to FreeMASTER documentation included in the

FreeMASTER installation package.

4.8. Application output

In this example the Sine Table PWM modulation utilizing complementary channel pairs is configured,

the duty cycle time change of the three phases can be seen on Figure 5. Each curve represents the value

of duty cycle change during time on one particular phase.

The eTPU PWMM function utilization in an application

eTPU library usage in an application, Rev. 0, 12/2016

14 NXP Semiconductors

Figure 5 Sine table PWM modulation duty cycles

In Figure 6 the output PWM signals are displayed using oscilloscope. There are together 6 PWM

outputs, two outputs per phase (base and complementary channel).

Figure 6 PWM outputs displayed on osciloscope

Summary

eTPU library usage in an application, Rev. 0, 12/2016

NXP Semiconductors 15

5. Summary

In this application note instructions on how to get the eTPU up and running using the available NXP

eTPU libraries are given. A detailed description of the software package generated by the eTPU

Function Selector and its integration into a user application is provided. Moreover, a particular example

application running the eTPU PWMM function on MPC5746R is described and included.

Document Number: AN5374
Rev. 0

12/2016

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire,
MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX,
STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale
logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware,
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT,
PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready
Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa,
Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a
Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are
trademarks of NXP B.V. All other product or service names are the property
of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,
Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali,
mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved. Oracle and Java are registered trademarks of Oracle
and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2016 NXP B.V

http://www.freescale.com/
http://www.freescale.com/support
http://www.nxp.com/SalesTermsandConditions

	1. Introduction
	2. eTPU library overview
	3. How to get eTPU function binaries
	3.1. Download the eTPU function set
	3.2. The etpu_set content overview
	3.3. The eTPU project structure
	3.4. The eTPU initialization

	4. The eTPU PWMM function utilization in an application
	4.1. PWMM function overview
	4.2. Download the PWMM function
	4.3. Create a S32DS project
	4.4. Include files into a project
	4.5. Configuration of the ETPU
	4.5.1. Edit etpu_gct.h
	4.5.2. Configure etpu_gct.c

	4.6. Get the eTPU running
	4.7. Configure FreeMASTER and debug
	4.8. Application output

	5. Summary

