
APPLICATION NOTE

SJA1000
Stand-alone CAN controller

AN97076

SJA1000
Stand-alone CAN controller

Application Note
AN97076

2

Abstract

The Controller Area Network (CAN) is a serial, asynchronous, multi-master communication protocol for
connecting electronic control modules, sensors and actuators in automotive and industrial applications.

With the SJA1000, Philips Semiconductors provides a stand-alone CAN controller which is more than a simple
replacement of the PCA82C200.

Attractive features are implemented for a wide range of applications, supporting system optimization, diagnosis
and maintenance.

 Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copy-
right owner.

The information presented in this document does not form part of any quotation or contract, is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent- or other indus-
trial or intellectual property rights.

SJA1000
Stand-alone CAN controller

Application Note
AN97076

3

Author(s):
Peter Hank, Egon Jöhnk

Systems Laboratory Hamburg
Germany

APPLICATION NOTE

SJA1000
Stand-alone CAN controller

AN97076

Keywords

SJA1000
Stand-alone CAN controller

CAN2.0B
PeliCAN

Date: 1997-12-15

SJA1000
Stand-alone CAN controller

Application Note
AN97076

4

Summary

This application note focuses on the description of the SJA1000 as part of a system. Diagrams illustrate the
interface capability of the SJA1000 for the connection to a variety of microcontrollers and CAN transceiver
circuits. General flow diagrams for programming the device in different modes are shown in detail. Configuration,
Transmission and Reception program examples are attached. Special emphasis has been placed on the
description of the SJA1000 PeliCAN features including useful examples, e.g., for automatic bit-rate detection,
global clock synchronization and system self test.

SJA1000
Stand-alone CAN controller

Application Note
AN97076

5

CONTENTS

1 INTRODUCTION7

2 OVERVIEW ..7
2.1 SJA1000 Features ...7
2.2 CAN Node Architecture ...9
2.3 Block Diagram ...10

3 SYSTEM...11
3.1 SJA1000 Application..11
3.2 Power Supply...11
3.3 Reset ...12
3.4 Oscillator and Clocking Strategy..12

3.4.1 Sleep and Wake-up ..12
3.5 CPU Interface ..13
3.6 Physical Layer Interface ..14

4 CONTROL OF CAN COMMUNICATION... 15
4.1 Basic Functions and Registers for Controlling the SJA1000 ...15

4.1.1 Transmit Buffer / Receive Buffer...17
4.1.2 Acceptance Filter ..18

4.2 Functions for CAN Communications..23
4.2.1 Initialization ...23
4.2.2 Transmission ..27
4.2.3 Abort Transmission...31
4.2.4 Reception..32
4.2.5 Interrupts...38

5 PELICAN MODE FUNCTIONS42
5.1 Receive FIFO / Message Counter / Direct RAM Access ...42
5.2 Error Analysis Functions..44

5.2.1 Error Counters ..45
5.2.2 Error Interrupts..45
5.2.3 Error Code Capture ..45

5.3 Arbitration Lost Capture...48
5.4 Single Shot Transmission ..49
5.5 Listen Only Mode...49
5.6 Automatic Bit-Rate Detection...50
5.7 CAN Self Tests ..51
5.8 Receive Sync Pulse Generation ..52

6 REFERENCES ...53

7 APPENDIX..54

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

6

(this page has intentionally been left lank)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

7

1. INTRODUCTION
The SJA1000 is a stand-alone CAN Controller product with advanced features for use in automotive and general
industrial applications. It is intended to replace the PCA82C200 because it is hardware and software compatible.
Due to an enhanced set of functions this device is well suited for many applications especially when system
optimization, diagnosis and maintenance are important.

This report is intended to guide the user in designing complete CAN nodes based on the SJA1000. The report
provides typical application circuit diagrams and flow charts for programming.

2. OVERVIEW
The stand-alone CAN controller SJA1000 [1] has two different Modes of Operation:

- BasicCAN Mode (PCA82C200 compatible)
- PeliCAN Mode

Upon Power-up the BasicCAN Mode is the default mode of operation. Consequently, existing hardware and
software developed for the PCA82C200 can be used without any change. In addition to the functions known
from the PCA82C200 [7], some extra features have been implemented in this mode which make the device
more attractive. However, they do not influence the compatibility to the PCA82C200.

The PeliCAN Mode is a new mode of operation which is able to handle all frame types according to CAN
specification 2.0B [8]. Furthermore it provides a couple of enhanced features which makes the SJA1000 suitable
for a wide range of applications.

2.1 SJA1000 Features
The features of the SJA1000 can be clustered into three main groups:

Well-established PCA82C200 Functions

Features of this group have already been implemented in the PCA82C200.

Improved PCA82C200 Functions

Partly these functions have already been implemented in the PCA82C200. However, in the SJA1000 they have
been improved in terms of speed, size or performance.

Enhanced Functions in PeliCAN Mode

In PeliCAN Mode the SJA1000 offers a couple of Error Analysis Functions supporting diagnosis, system
maintenance and optimization. Furthermore functions for general CPU support and System Self Test have been
added in this mode.

In the following table all SJA1000 features are listed including their main benefits for the application.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

8

Table 1: SJA1000 Features with benefits for the application

Well-established PCA82C200 Functions

Flexible microprocessor interface Allows interfacing most microprocessors or microcontrollers.

Programmable CAN output driver Interface to all kind of physical layers.

CAN bit-rates up to 1Mbit/s The SJA1000 covers the whole range of bit-rates, including high speed
applications.

Improved PCA82C200 Functions

CAN 2.0B (passive) The CAN 2.0B passive characteristics of the SJA1000 allows the CAN
controller to tolerate CAN messages with 29-bit identifiers.

64 byte Receive FIFO Up to 21 messages can be stored in the Receive FIFO, this lengthens
the max. interrupt service time and avoids data overrun conditions.

24 MHz Clock frequency Faster microprocessor access and more CAN bit-timing options.

Receive Comparator Bypass Shortens the internal delays, resulting in a much higher CAN bus length
due to an improved bit-timing programming.

Enhanced Functions in PeliCAN Mode

CAN 2.0B (active) CAN 2.0B active support extends application field to networks with
29-bit identifiers.

Transmit Buffer Single message transmit buffer for messages with 11-bit or 29-bit
identifiers.

Enhanced Acceptance Filter Two acceptance filter modes supporting both 11-bit and 29-bit identifier
filtering.

Readable Error Counters Supports error analysis which can be used for:

Programmable Error Warning Limit - diagnostics, system maintenance and system optimization

Error Code Capture Register during the prototype phase and during normal operation.

Error Interrupts

Arbitration Lost Capture Interrupt Supports system optimization including message latency time analysis.

Single Shot Transmission Minimizes software commands and allows fast reloading of transmit
buffer.

Listen Only Mode SJA1000 can operate as a passive CAN monitor which can be used for
analyzing the CAN bus traffic or for automatic bit-rate detection.

Self Test Mode Supports functional self tests of complete CAN nodes or self reception
in a system.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

9

2.2 CAN Node Architecture
Generally each CAN module can be divided into different functional blocks. The connection to the CAN bus lines
is usually built with a CAN Transceiver optimized for the applications [3], [4], [5]. The transceiver controls the
logic level signals from the CAN controller into the physical levels on the bus and vice versa.

The next upper level is a CAN Controller which implements the complete CAN protocol defined in the CAN
Specification [8]. Often it also covers message buffering and acceptance filtering.

All these CAN functions are controlled by a Module Controller which performs the functionality of the
application. For example, it controls actuators, reads sensors and handles the man-machine interface (MMI).

As shown in Figure 1 the SJA1000 stand-alone CAN controller is always located between a microcontroller and
the transceiver, which is an integrated circuit in most cases.

Module
Controller

CAN
Transceiver

CAN
Controller

CAN bus

Sensors
Actuators

MMI

Sensors
Actuators

MMI

Micro
Controller

PCA82C250/251

SJA1000

Figure 1: CAN Module Set-up

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

10

2.3 Block Diagram
The following figure shows the block diagram of the SJA1000.

The CAN Core Block controls the transmission and reception of CAN frames according to the CAN
specification.

The Interface Management Logic block performs a link to the external host controller which can be a
microcontroller or any other device. Every register access via the SJA1000 multiplexed address/data bus and
controlling of the read/write strobes is handled in this unit. Additionally to the BasicCAN functions known from the
PCA82C200, new PeliCAN features have been added. As a consequence of this, additional registers and logic
have been implemented mainly in this block.

The Transmit Buffer of the SJA1000 is able to store one complete message (Extended or Standard). Whenever
a transmission is initiated by the host controller the Interface Management Logic forces the CAN Core Block to
read the CAN message from the Transmit Buffer.

When receiving a message, the CAN Core Block converts the serial bit stream into parallel data for the
Acceptance Filter . With this programmable filter the SJA1000 decides which messages actually are received by
the host controller.

All received messages accepted by the acceptance filter are stored within a Receive FIFO . Depending on the
mode of operation and the data length up to 32 messages can be stored. This enables the user to be more
flexible when specifying interrupt services and interrupt priorities for the system because the probability of data
overrun conditions is reduced extremely.

Receive
FIFO

Acceptance
Filter

Transmit
Buffer

SJA1000 Transceiver

CAN-Bus Line

Interface
Management

Logic

Host
Controller

CAN
Core Block

CAN2.0B

Figure 2: Block Diagram SJA1000

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

11

3. SYSTEM
For connection to the host controller, the SJA1000 provides a multiplexed address/data bus and additional
read/write control signals. The SJA1000 could be seen as a peripheral memory mapped I/O device for the host
controller.

3.1 SJA1000 Application
Configuration Registers and pins of the SJA1000 allow to use all kinds of integrated or discrete CAN
transceivers. Due to the flexible microcontroller interface applications with different microcontrollers are possible.

In Figure 3 a typical SJA1000 application diagram including 80C51 microcontroller and PCA82C251 transceiver
is shown. The CAN controller functions as a clock source and the reset signal is generated by an external reset
circuitry. In this example the chip select of the SJA1000 is controlled by the microcontroller port function P2.7.
Instead of this, the chip select input could be tied to VSS. Control via an address decoder is possible, e.g., when
the address/data bus is used for other peripherals.

3.2 Power Supply
The SJA1000 has three pairs of voltage supply pins which are used for different digital and analog internal
blocks of the CAN controller.

VDD1 / VSS1: internal logic (digital)
VDD2 / VSS2: input comparator (analog)
VDD3 / VSS3: output driver (analog)

The supply has been separated for better EME behaviour. For instance the VDD2 can be de-coupled via an RC
filter for noise suppression of the comparator.

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

SJA1000 PCA82C250/251

AD0 / P0.0

AD1 / P0.1

AD2 / P0.2

AD3 / P0.3

AD4 / P0.4

AD5 / P0.5

AD6 / P0.6

AD7 / P0.7

8XCXXX
(80C51 family)

TX0

RX0

RX1

TX1

XTAL1

XTAL2

XTAL1 CLK OUT

ALE

RD

WR

INT

MODE

CS

23

24

25

26

27

28

1

2

RST

3

5

6

16

7

17

10

9

11

4

Reset Circuitry

VDD

13

14

19

20

VDD1

VDD2

VDD3

VSS1

VSS2

VSS3

22

18

12

8

21

15

RST

(Intel Mode)

6 ... 24 MHz

VDD

VSS
CAN bus

ALE / PROG

RD / P3.7

WR / P3.6

INT0 / P3.2

C1

C2

C1 = C2 = 15pF

TXD

RXD

CANH

CANL

P2.7

*

* Comparator Bypass = active

Figure 3: Typical SJA1000 Application

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

12

3.3 Reset
For a proper reset of the SJA1000 a stable oscillator clock has to be provided at XTAL1 of the CAN controller,
see also chapter 3.4. An external reset on pin 17 is synchronized and internally lengthened to 15 tXTAL. This
guarantees a correct reset of all SJA1000 registers (see [1]). Note that an oscillator start-up time has to be taken
into account upon power-up.

3.4 Oscillator and Clocking Strategy
The SJA1000 can operate with the on-chip oscillator or with external clock sources. Additionally the CLK OUT
pin can be enabled to output the clock frequency for the host controller. Figure 4 shows four different clocking
principles for applications with the SJA1000. If the CLK OUT signal is not needed, it can be switched off with the
Clock Divider register (Clock Off = 1). This will improve the EME performance of the CAN node.
The frequency of the CLK OUT signal can be changed with the Clock Divider Register:

f CLK OUT = f XTAL / Clock Divider factor (1,2,4,6,8,10,12,14).

Upon power up or hardware reset the default value for the Clock Divider factor depends on the selected interface
mode (pin 11). If a 16 MHz crystal is used in Intel mode, the frequency at CLK OUT is 8 MHz. In Motorola mode
a Clock Divider factor of 12 is used upon reset which results in 1,33 MHz in this case.

3.4.1 Sleep and Wake-up

Upon setting the Go To Sleep bit in the Command Register (BasicCAN mode) or the Sleep Mode bit in the Mode
Register (PeliCAN mode) the SJA1000 will enter Sleep Mode if there is no bus activity and no interrupt is
pending. The oscillator keeps on running until 15 CAN bit times have been passed. This allows a microcontroller
clocked with the CLK OUT frequency to enter its own low power consumption mode.
If one of three possible wake-up conditions [1] occurs the oscillator is started again and a Wake-up interrupt is
generated. As soon as the oscillator is stable the CLK OUT frequency is active.

XTAL1 XTAL2 XTAL1 XTAL2

AA
AA

CLK OUTµC
Clock Off = 0

SJA1000

XTAL1 XTAL2

µC

XTAL1 XTAL2

SJA1000

AA
AA

CLK OUT

Clock Off = 1

XTAL1 XTAL2 XTAL1 XTAL2

CLK OUT

Clock
Oscillator

µC
Clock Off = 1

SJA1000

XTAL1 XTAL2 XTAL1 XTAL2

CLK OUTµC
Clock Off = 1

SJA1000

a) two independent clocks b) SJA1000 is clocked from the µC oscillator

c) µC is clocked from the SJA1000 oscillator d) SJA1000 and µC are clocked from the ext. oscillator

Figure 4: Clocking Schemes

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

13

3.5 CPU Interface
The SJA1000 supports the direct connection to two famous microcontroller families: 80C51 and 68xx. With the
MODE pin of the SJA1000 the interface mode is selected.

Intel Mode: MODE = high
Motorola Mode: MODE = low

The connection for the address/data bus and the read/write control signals in both Intel and Motorola mode is
shown in Figure 5. For Philips 8-bit microcontrollers based on the 80C51 family and the 16-bit microcontrollers
with XA architecture the Intel Mode is used.

For other controllers additional glue logic is necessary for adaptation of the address/data bus and the control
signals. However, it has to be made sure that no write pulses are generated during power-up. Another possibility
is to disable the CAN controller with a high-level on the chip select input in this time.

AD 7 .. 0

RD

WR

ALE

MODE

AD0

AD7

:
:

:
:

VDD

RD

WR

ALE

AD0

AD7

:
:

:
:

80C51 µµC SJA1000

AD 7 .. 0

RD

WR

ALE

MODE

AD0

AD7

:
:

:
:

GND

E

R/W

AS

AD0

AD7

:
:

:
:

68xx µµC SJA1000

AD 7 .. 0

RD

WR

ALE

MODE

AD0

AD7

:
:

:
:

VDD

RD

WRL

ALE

A4D0

A11D7

:
:

:
:

80C51XA µµC

SJA1000

A3

A0

80C51-type
interface

68xx-type
interface

Figure 5: CPU Interface of the SJA1000

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

14

3.6 Physical Layer Interface
For compatibility purposes with the PCA82C200, the SJA1000 includes an analog receive input comparator
circuit. This integrated comparator can be used if the transceiver function is realized with discrete components.

If an external integrated transceiver circuit is used and the comparator bypass function is not enabled in the
Clock Divider Register, the RX1 input has to be connected to a reference voltage of 2.5V (reference voltage
output of existing transceiver circuits). Figure 6 shows the equivalent circuits for both configurations:
CBP = active and CBP = inactive. Additionally the path for the wake-up signal is drawn.
For all new applications where an integrated transceiver circuit is used, it is recommended to activate the com-
parator bypass function of the SJA1000 (Figure 7). If this function is enabled, a schmitt-trigger input is used and
the internal propagation delay tD2 is much shorter as the delay tD1. of the receive comparator. This has a positive
impact on the maximum bus length [6]. Additionally, it will reduce the supply current in sleep mode significantly.

Comparator Bypass = inactive

Receive
Comp

Wake-up
Comp

RX0

RX1

Comparator Bypass = active

RX Data

Wake-up

2,5V

RX0 RX Data

Wake-up
RX1

(CBP = 0) (CBP = 1)

t D1 t D2

Figure 6: SJA1000 Receive Input Comparator

TX0

TX1

RX0

RX1

SJA1000
n.c.

OCR = 1A H

CDR = X1XX XXXX H

TxD

RxD

PCA82C250
PCA82C251
TJA1053

CANH

CANL

CAN bus

Output Control Register

Clock Divider Register

*

*

* for TJA1053
only

Figure 7: Standard application with integrated transceiver circuit

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

15

4. CONTROL OF CAN COMMUNICATION

4.1 Basic Functions and Registers for Controlling the SJA1000
The functionality with respect to configuration and activities of the SJA1000 is given by the program of the host
controller. Thus the SJA1000 is tailored to meet the requirements of CAN-bus systems with different properties.
The data exchange between the host controller and the SJA1000 is done via a set of registers (control segment)
and a RAM (message buffer). The registers and an address window to a part of the RAM, making up the
Transmit and Receive Buffers, appear to the host controller as peripheral registers.

Table 2 lists these registers grouped according to their usage in a system.

Note, that some registers are available in PeliCAN mode only and that the Control Register is available in
BasicCAN mode only. Furthermore some registers are read only or write only and some can be accessed during
Reset Mode only.

More information about the registers with respect to read and/or write access, bit definition and reset values, can
be found in the data sheet [1].

Table 2: Classification of the internal registers of the SJA1000

Register Address:

 Type of Usage Register Name (Symbol) PeliCAN
mode

BasicCAN
mode

Functionality

Mode (MOD) 0 — Sleep-. Acceptance Filter-,
Self Test-, Listen Only- and
Reset-Mode selection

elements for selecting
different operation modes

Control (CR) — 0 Reset Mode selection in
BasicCAN mode

Command (CMR) –– 1 Sleep mode command in
BasicCAN mode

Clock Divider (CDR) 31 31 set-up of clock signal at
CLKOUT (pin 7)
selection of PeliCAN Mode,
Comparator Bypass Mode,
TX1 (pin 14) Output Mode

Acceptance Code, (ACR)
 Mask (AMR)

16-19
20-23

4,
5

selection of bit patterns for
Acceptance Filtering

elements for setting up
the CAN communication

Bus Timing 0 (BTR0)
 1 (BTR1)

6
7

6
7

set-up of Bit Timing
Parameters

Output Control (OCR) 8 8 selection of Output Driver
properties

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

16

Table 2: Classification of the internal registers of the SJA1000

Register Address:

 Type of Usage Register Name (Symbol) PeliCAN
mode

BasicCAN
mode

Functionality

Command (CMR) 1 1 commands for
Self Reception, Clear Data
Overrun, Release Receive
Buffer, Abort Transmission
and Transmission Request

basic elements for the
CAN communication

Status (SR) 2 2 status of message buffers,
status of CAN Core Block

Interrupt (IR) 3 3 CAN Interrupt flags

Interrupt Enable (IER) 4 — enable/disable of interrupt
events in PeliCAN mode

Control (CR) — 0 enable/disable of interrupt
events in BasicCAN mode

Arbitration Lost Capture (ALC) 11 — shows bit position, where
arbitration was lost

Error Code Capture (ECC) 12 — shows last error type and
location

elements for a
comprehensive error
detection and analysing

Error Warning Limit (EWLR) 13 — selection of threshold for
generating an
Error Warning Interrupt

RX Error Counter (RXERR) 14 — reflects the current value of
the Receive Error Counter

TX Error Counter (TXERR) 14, 15 — reflects the current value of
the Transmit Error Counter

Rx Message Counter (RMC) 29 — number of messages in the
Receive FIFO

Rx Buffer Start Addr. (RBSA) 30 — shows the current internal
RAM address of the
message available in the
Receive Buffer

message buffers Transmit Buffer (TXBUF) 16-28 10-19

Receive Buffer (RXBUF) 16-28 20-29

(continued)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

17

4.1.1 Transmit Buffer / Receive Buffer

The data to be transmitted on the CAN bus is loaded into the memory area of the SJA1000, called “Transmit
Buffer”. The data received from the CAN bus is stored in the memory area of the SJA1000, called “Receive
Buffer”. These buffers contains 2, 3 or 5 bytes for the identifier and frame information (dependent on mode and
frame type) and up to 8 data bytes. For further information about the definition and composition of the bits in the
message buffers see the data sheet [1].

• BasicCAN mode: The buffers are 10-bytes long (see Table 3).
– 2 identifier bytes
– up to 8 data bytes.

• PeliCAN mode: The buffers are 13 bytes long (see Table 4).
– 1 byte for Frame Information
– 2 or 4 identifier bytes (Standard Frame or Extended Frame)
– up to 8 data bytes.

Table 3: Layout of Rx- and Tx-Buffer in BasicCAN mode

CAN Addr. (dec.) Name Composition and Remarks

Tx-Buffer: 10
Rx-Buffer: 20

Identifier Byte 1 8 Identifier bits

Tx-Buffer: 11
Rx-Buffer: 21

Identifier Byte 2 3 Identifier bits, 1 Remote Transmission Request bit,
4 bits for the Data Length Code, indicating the amount of data bytes

Tx-Buffer: 12-19
Rx-Buffer: 22-29

Data Byte 1 - 8 up to 8 data bytes as indicated by the Data Length Code

Table 4: Layout of Rx- 1. (read access) and Tx-Buffer (write access 2.) in PeliCAN mode

CAN Addr. (dec.) Name Composition and Remarks

16 Frame
Information

1 bit indicating, if the message contains a Standard or Extended frame
1 Remote Transmission Request bit
4 bits for the Data Length Code, indicating the amount of data bytes

17, 18 Identifier Byte 1, 2 Standard Frame: 11 Identifier bits
Extended Frame: 16 Identifier bits

19, 20 Identifier Byte 3, 4 Extended Frame only: 13 Identifier bits

Frame type
Standard: 19 - 26
Extended: 21 - 28

Data Byte 1 - 8 up to 8 data bytes as indicated by the Data Length Code

1. The whole Receive FIFO (64 bytes) can be accessed using the CAN addresses 32 to 95
(see also chapter 5.1).

2. A read access of the Tx-Buffer can be done using the CAN addresses 96 to 108 (see also chapter 5.1)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

18

4.1.2 Acceptance Filter

The stand-alone CAN controller SJA1000 is equipped with a versatile acceptance filter, which allows an
automatic check of the identifier and data bytes. Using these effective filtering methods, messages or a group of
messages not valid for a certain node can be prevented from being stored in the Receive Buffer. Thus it is
possible to reduce the processing load of the host controller.

The filter is controlled by the acceptance code and mask registers according to the algorithms given in the data
sheet [1]. The received data is compared bitwise with the value contained in the Acceptance Code register. The
Acceptance Mask Register defines the bit positions, which are relevant for the comparison (0 = relevant, 1 = not
relevant). For accepting a message all relevant received bits have to match the respective bits in the
Acceptance Code Register.

Acceptance Filtering in BasicCAN Mode
This mode is implemented in the SJA1000 as a plug-and-play replacement (hardware and software) for the
PCA82C200. Thus the acceptance filtering corresponds to the possibilities, which were found in the PCA82C200
[7]. The filter is controlled by two 8-bit wide registers – Acceptance Code Register (ACR) and Acceptance Mask
Register (AMR). The 8 most significant bits of the identifier of the CAN message are compared to the values
contained in these registers, see also Figure 8. Thus always groups of eight identifiers can be defined to be
accepted for any node.

Example: MSB LSB

The Acceptance Code register (ACR) contains: 0 1 1 1 0 0 1 0

The Acceptance Mask register (AMR) contains: 0 0 1 1 1 0 0 0

Messages with the following 11-bit identifiers are accepted 0 1 x x x 0 1 0 x x x

(x = don’t care) ID.10 ID.0

At the bit positions containing a “1” in the Acceptance Mask register, any value is allowed in the composition of
the identifier. The same is valid for the three least significant bits. Thus 64 different identifiers are accepted in
this example. The other bit positions must be equal to the values in the Acceptance Code register.

Acceptance Filtering CAN Message

Receive
 FIFO

JK710011.GWM (1)

Standard Frame

Data 211bit Identifier Data 1

8 bits of the identifier are
used for acceptance filtering

RTR bit

Filter

AMR

ACR

Figure 8: Acceptance Filtering in BasicCAN Mode

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

19

Acceptance Filtering in PeliCAN Mode
The acceptance filtering has been expanded for the PeliCAN mode: Four 8-bit wide Acceptance Code registers
(ACR0, ACR1, ACR2 and ACR3) and Acceptance Mask registers (AMR0, AMR1, AMR2 and AMR3) are
available for a versatile filtering of messages. These registers can be used for controlling a single long filter or
two shorter filters, as shown in Figure 9 and Figure 10. Which bits of the message are used for the acceptance
filtering, depend on the received frame (Standard or Extended) and on the selected filter mode (single or dual
filter). Table 5 gives more information about which bits of the message are compared with the Acceptance Code
and Mask bits. As it is seen from the figures and the table, it is possible to include the RTR bit and even data
bytes in the acceptance filtering for Standard Frames. In any case for all message bits, which shall not be
included in the acceptance filtering (e.g. if groups of messages are defined for acceptance), the Acceptance
Mask Register must contain a “1” at the corresponding bit position.

If a message doesn’t contain data bytes (e.g. in a Remote Frame or if the Data Length Code is zero) but data
bytes are included in the acceptance filtering, such messages are accepted, if the identifier up to the RTR bit is
valid.

Example 1:

Let us assume, that the same 64 Standard Frame messages as described in the example on page 18 have to be
filtered in PeliCAN mode.

This can be done using one long filter (Single Filter Mode).

The Acceptance Code Registers (ACRn) and Acceptance Mask Registers (AMRn) contain:

n 0 1 (upper 4 bits) 2 3

ACRn 0 1 X X X 0 1 0 X

AMRn 0 0 1 1 1 0 0 0 1

accepted messages
(ID.28..ID.18, RTR) 0 1 x x x 0 1 0 x x x x

(“X” = irrelevant, “x” = don’t care, only the upper 4 bits of ACR1 and AMR1 are used)

At the bit positions containing a “1” in the Acceptance Mask registers, any value is allowed in the composition of
the identifier, for the Remote Transmission Request bit and for the bits of data byte 1 and 2.

CAN MessageAcceptance Filtering

JK710011.GWM (2)

Receive
 FIFO Filter

AMR3AMR2AMR1AMR0

ACR0 ACR1 ACR3ACR2

or

Extended Frame

11bit Identifier 18bit Identifier

RTR bit

bits used for acceptance filtering

bits used for acceptance filtering

Standard Frame

RTR bit

11bit Identifier Data 1 Data 2

Figure 9: Acceptance Filtering in PeliCAN Mode (Single Filter Mode)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

20

Example 2:

Suppose the following 2 messages with a Standard Frame Identifier have to be accepted without any further
decoding of the identifier bits. Data and Remote Frames have to be received correctly. Data bytes are not
involved in the acceptance filtering.

message 1: (ID.28) 1011 1100 101 (ID.18)
message 2: (ID.28) 1111 0100 101 (ID.18)

Using the Single Filter Mode results in accepting four messages and not only the requested two:

n 0 1 (upper 4 bits) 2 3

ACRn 1 X 1 1 X 1 0 0 1 0 1 X X X X X X X X X X X X X X X X X

AMRn 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

accepted messages
(ID.28..ID.18, RTR)

1 0 1 1 0 1 0 0
1 1 1 1 0 1 0 0
1 0 1 1 1 1 0 0
1 1 1 1 1 1 0 0

1 0 1 x
1 0 1 x
1 0 1 x
1 0 1 x

(message 2)
(message 1)

(“X” = irrelevant, “x” = don’t care, only the upper 4 bits of ACR1 and AMR1 are used)

This result does not meet the request for receiving 2 messages without any further decoding.

Using the Dual Filter mode gives the correct result:

Filter 1 Filter 2

n 0 1 3
lower 4 bits

2 3
upper 4 bits

ACRn 1 0 1 1 1 1 0 0 1 0 1 X X X X X ... X X X X 1 1 1 1 0 1 0 0 1 0 1 X ...

AMRn 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ... 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 ...

accepted messages
(ID.28..ID.18, RTR) 1 0 1 1 1 1 0 0 1 0 1 x 1 1 1 1 0 1 0 0 1 0 1 x

(message 1) (message 2)

(“X” = irrelevant, “x” = don’t care)

Message 1 is accepted by Filter 1 and message 2 by Filter 2. As messages are accepted and stored into the
Receive FIFO if they are accepted at least by one of the two filters, this solution meets the request.

Example 3:

In this example a group of messages with an Extended Frame Identifier are filtered using a long single
acceptance filter.

n 0 1 2 3 (upper 6 bits)

ACRn 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 X 1 1 0 0 X X X X 0 0 1 1 0 X X X

AMRn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1

accepted messages
(ID.28..ID.0, RTR) 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 x 1 1 0 0 x x x x 0 0 1 1 0 x

(“X” = irrelevant, “x” = don’t care, only the upper 6 bits of ACR3 and AMR3 are used)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

21

Example 4:

There are systems, which use Standard Frames only and identify messages by the 11-bit identifier and the first
two data bytes. Such a protocol is used, e.g., in the DeviceNet, where the first two data bytes define a message
header and the fragmentation protocol, if messages contain more than 8 data bytes. For this system type the
SJA1000 can filter two data bytes in single filter mode and one data byte in dual filter mode in addition to the
11-bit identifier and the RTR-bit.

Using the Dual Filter mode, the following example shows effective filtering of messages in such a system:

Filter 1 Filter 2

n 0 1 3
lower 4bits

2 3
upper 4 bits

ACRn 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 ... 1 0 0 1 1 1 1 1 0 1 0 0 X X X 0 ...

AMRn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 ...

accepted messages 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 ... 1 0 0 1 1 1 1 1 0 1 0 0 x x x 0

ID + RTR first data byte ID RTR

(“X” = irrelevant, “x” = don’t care)

or

JK710011.GWM (3)

for Standard Frames only

CAN MessageAcceptance Filtering

or

Receive
 FIFO

Receive
 FIFO

or

Filter 1

AMR3AMR1AMR0

ACR0 ACR1 ACR3

Filter 2

AMR3AMR2

ACR2 ACR3

Extended Frame

11bit Identifier

16 bits used for acceptance filtering

18bit Identifier

12 bits used for acceptance filtering

Standard Frame

RTR bit

11bit Identifier

Extended Frame

11bit Identifier

16 bits used for acceptance filtering

18bit Identifier

20 bits used for acceptance filtering

Standard Frame

RTR bit

11bit Identifier Data 1

Figure 10: Acceptance Filtering in PeliCAN Mode (Dual Filter Mode)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

22

Filter 1 is used for filtering messages with
- the identifier “1 1 1 0 1 0 1 1 0 0 1”
- RTR = “0” i.e. Data Frames only and
- the data byte “1 1 1 1 1 0 0 1” (this means e.g. for the DeviceNet: all fragments for one message are filtered).

Filter 2 is used for filtering a group of 8 messages with

- the identifiers “1 1 1 1 0 1 0 0 0 0 0” through “1 1 1 1 0 1 0 0 1 1 1” and
- RTR = “0”, i.e. Data Frames only.

Table 5: Summary of Acceptance Filter in PeliCAN mode

Frame Type Single Filter mode (Figure 9) Dual Filter mode (Figure 10)

Standard message bits used for acceptance:
- 11 bit identifier
- RTR Bit
- 1st data byte (8 bit)
- 2nd data byte (8 bit)

Acceptance Code & Mask registers used:
- ACR0/upper 4 bits of ACR1/ACR2/ACR3
- AMR0/upper 4 bits of AMR1/AMR2/AMR3
 (unused bits of the Acceptance Mask
 Register should be set to “1”)

Filter 1
message bits used for acceptance:
- 11 bit identifier
- RTR Bit
- 1st data byte (8 bit)

Acceptance Code & Mask registers used:
- ACR0/ACR1/lower 4 bits of ACR3
- AMR0/AMR1/lower 4 bits of AMR3

Filter 2
message bits tested for acceptance:
- 11 bit identifier
- RTR Bit

Acceptance Code & Mask registers used:
- ACR2/upper 4 bits of ACR3
- AMR2/upper 4 bits of AMR3

Extended message bits used for acceptance:
- 11 bit basic identifier
- 18 bit extended identifier
- RTR Bit

Acceptance Code & Mask registers used:
- ACR0/ACR1/ACR2/upper 6 bits of ACR3
- AMR0/ AMR1/ AMR2/ upper 6 bits of AMR3
 (unused bits of the Acceptance Mask
 Register should be set to “1”)

Filter 1
message bits used for acceptance:
- 11 bit basic identifier
- 5 most significant bits of extended identifier

Acceptance Code & Mask registers used:
- ACR0/ACR1 and AMR0/AMR1

Filter 2
message bits tested for acceptance:
- 11 bit basic identifier
- 5 most significant bits of extended
 identifier

Acceptance Code & Mask registers used:
- ACR2/ACR3 and AMR2/AMR3

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

23

4.2 Functions for CAN Communications
The steps to be taken for establishing communication via the CAN bus are:

• after power-on of the system

– setting up the host controller with respect to hardware and software links to the SJA1000

– setting up the CAN controller for the communication with respect to the selection of mode, acceptance
filtering, bit timing etc. – to be done also after a hardware reset of the SJA1000

• during the main process of the application

– prepare messages to be transmitted and activate the SJA1000 to transmit them

– react on messages received by the CAN controller

– react on errors occurred during communication

Figure 11 shows the general flow of a program. In the following paragraphs the flows, which refer directly to
controlling the SJA1000, are described in more detail.

4.2.1 Initialization

As mentioned before, the stand-alone CAN controller SJA1000 has to be set up for CAN communication after
power-on or after a hardware reset. Furthermore the SJA1000 may be re-configured (re-initialized) during
operation by the host controller, which may send a (software) reset request. The flow is given in Figure 12. A
programming example using an 80C51 microcontroller derivative is given in this chapter.

After power-on the host controller runs through its own special reset routine and then it enters the set-up routine
for the SJA1000. As the part “configure control lines...” of Figure 11 is specific to the used microcontroller, it can
not be discussed in general in this place. However, the example in this chapter shows, how to configure an
80C51 derivative.

For the following description of the initialization processing see Figure 12. It is assumed, that after power-on also
the stand-alone CAN controller gets a reset pulse (LOW level) at the pin 17, enabling it to enter the reset mode.
Before setting up registers of the SJA1000, the host controller should check by reading the reset mode/request
flag, if the SJA1000 has reached the reset mode, because the registers, which get the configuration information,
can be written only during reset mode.

The host controller has to configure the following registers of the control segment of the SJA1000 in reset mode:

• Mode Register (in PeliCAN mode only), selecting the following modes of operation for this application

– Acceptance Filter mode

– Self Test mode

– Listen Only mode

• Clock Divider Register, defining

– if the BasicCAN or the PeliCAN mode is used

– if the CLKOUT pin is enabled

– if the CAN input comparator is bypassed

– if the TX1 output is used as a dedicated receive interrupt output

• Acceptance Code and Acceptance Mask Registers

– defining the acceptance code for messages to be received

– defining the acceptance mask for relevant bits of the message to be compared with corresponding bits
of the acceptance code

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

24

• Bus Timing Registers, see also [6]

– defining the bit-rate on the bus

– defining the sample point in a bit period (bit sample point)

– defining the number of samples taken in a bit period

• Output Control Register

– defining the used output mode of the CAN bus output pins TX0 and TX1
Normal Output Mode, Clock Output Mode, Bi-Phase Output Mode or Test Output Mode

– defining the output pin configuration for TX0 and TX1
Float, Pull-down, Pull-up or Push/Pull and polarity

configure control lines
(interrupt, reset, chip select
etc.) for the communication
between microcontroller and

SJA1000

power on reset of
microcontroller

wait untill SJA1000 is powered
up properly

application specific reset
process

main and interrupt processes
 of the application incl. the

communication with SJA1000

initialize the SJA1000 for the
communication on the CAN

bus

end of program

depends on type of
micro controller

see flow
"Initialization of SJA1000"

see flows
"Transmission of a message",

 "Reception of a message"
etc.

Figure 11: General program flow

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

25

start of initialization or
reconfiguration

enter reset mode/request

configure clock divider register:
1. PeliCAN or BasicCAN
2. CAN input comparator bypass
3. CLK OUT control and frequency
4. usage of TX1

reset mode/request =
reset/present?

configure acceptance code and
mask registers

disable CAN interrupt source in the
host controller

configure bus timing registers

configure output control register

enter operating/normal mode

reset mode/request
= normal/absent?

if used: enable CAN interrupts,
enable CAN interrupt source in the

host controller

end of configuration

NO

YES

NO

YES

Figure 12: Flow Diagram “Initialization of SJA1000”

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

26

After having transferred this information to the control segment of the SJA1000, it is switched into operation
mode by clearing the reset mode/request flag. It has to be checked, if the flag is really cleared and the operation
mode is entered before going on further. This is done by reading the flag in a loop.

The reset mode/request flag cannot be cleared as long as a hardware reset still is pending (LOW-level at pin
17), because this will force the reset mode/request flag to “reset/present” (see the data sheet for further
information [1]). Thus this loop is used to continuously trying to clear the flag and checking if the reset mode
was left successfully.

After having entered the operation mode, the interrupts from the CAN controller may be enabled, if appropriate.

Example: Configuration and Initialization of SJA1000
This example is based on the application example given in Figure 3 on page 11. In the following programming
examples a micro controller S87C654 is assumed as host controller. It is clocked by the clock output from the
SJA1000. During power-on a reset circuit delivers the hardware reset for both the micro controller and the CAN
controller. The Clock Divider Register of the SJA1000 is cleared during reset [1]. Thus the CAN controller comes
up in BasicCAN mode with the clock output enabled, being able to deliver the clock for the S87C654 as soon as
the crystal oscillator is running. The frequency of this clock is fCLK/2 as pin 11 is connected to support controllers
of the 80C51-family. Upon receiving the clock the micro controller starts its own reset process as shown in
Figure 11.

Definitions for the different constants and variables, etc., are given in the Appendix. Variables may be interpreted
different in BasicCAN and PeliCAN mode, e.g., “InterruptEnReg” points to the Control Register in BasicCAN
mode but to the Interrupt Enable Register in PeliCAN mode. The language “C” is used for programming.

In this example it is assumed, that the CAN controller has to be initialized for being used in PeliCAN mode. It
should be easy to derive the corresponding initialization for the BasicCAN mode.

The first step must be to set up a communication link (chip select, interrupts, etc.) between the host controller
and the SJA1000 (“configure Control lines...” in Figure 11).

/* define interrupt priority & control (level-activated, see chapter 4.2.5) */
 PX0 = PRIORITY_HIGH; /* CAN HAS A HIGH PRIORITY INTERRUPT */
 IT0 = INTLEVELACT; /* set interrupt0 to level activated */

/* enable the communication interface of the SJA1000 */
 CS = ENABLE_N; /* Enable the SJA1000 interface */

/*- end of the definition of the communication link -------------------------*/

The second step is to initialize all internal registers of the SJA1000. As some registers can be written to during
reset mode only, this has to be checked before writing. After power-on the SJA1000 is set into reset mode, but in
a loop it can be checked, if the reset mode has been set.

/* disable interrupts, if used (not necessary after power-on) */
 EA = DISABLE; /* disable all interrupts */
 SJAIntEn = DISABLE; /* disable external interrupt from SJA1000 */

/* set reset mode/request (Note: after power-on SJA1000 is in BasicCAN mode)
 leave loop after a time out and signal an error */
 while((ModeControlReg & RM_RR_Bit) == ClrByte)
 {
 /* other bits than the reset mode/request bit are unchanged */
 ModeControlReg = ModeControlReg | RM_RR_Bit ;
 }
/* set the Clock Divider Register according to the given hardware of Figure 3
 select PeliCAN mode
 bypass CAN input comparator as external transceiver is used
 select the clock for the controller S87C654 */
 ClockDivideReg = CANMode_Bit | CBP_Bit | DivBy2;

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

27

/* disable CAN interrupts, if required (always necessary after power-on)
 (write to SJA1000 Interrupt Enable / Control Register) */
InterruptEnReg = ClrIntEnSJA;

/* define acceptance code and mask */
 AcceptCode0Reg = ClrByte;
 AcceptCode1Reg = ClrByte;
 AcceptCode2Reg = ClrByte;
 AcceptCode3Reg = ClrByte;
 AcceptMask0Reg = DontCare; /* every identifier is accepted */
 AcceptMask1Reg = DontCare; /* every identifier is accepted */
 AcceptMask2Reg = DontCare; /* every identifier is accepted */
 AcceptMask3Reg = DontCare; /* every identifier is accepted */

/* configure bus timing */
/* bit-rate = 1 Mbit/s @ 24 MHz, the bus is sampled once */
 BusTiming0Reg = SJW_MB_24 | Presc_MB_24;
 BusTiming1Reg = TSEG2_MB_24 | TSEG1_MB_24;

/* configure CAN outputs: float on TX1, Push/Pull on TX0,
 normal output mode */
 OutControlReg = Tx1Float | Tx0PshPull | NormalMode;

/* leave the reset mode/request i.e. switch to operating mode,
 the interrupts of the S87C654 are enabled
 but not the CAN interrupts of the SJA1000, which can be done separately
 for the different tasks in a system */

/* clear Reset Mode bit, select dual Acceptance Filter Mode,
 switch off Self Test Mode and Listen Only Mode,
 clear Sleep Mode (wake up) */
 do /* wait until RM_RR_Bit is cleared */
/* break loop after a time out and signal an error */
 {
 ModeControlReg = ClrByte;
 } while((ModeControlReg & RM_RR_Bit) != ClrByte);

 SJAIntEn = ENABLE; /* enable external interrupt from SJA1000 */
 EA = ENABLE; /* enable all interrupts */

/*----- end of Initialization Example of the SJA1000 ------------------------*/

4.2.2 Transmission

A transmission of a message is done autonomously by the CAN controller SJA1000 according to the CAN
protocol specification [8]. The host controller has to transfer the message to be transmitted into the Transmit
Buffer of the SJA1000 and set the flag “Transmit Request” in the command register. The transmission process
can be controlled either by an interrupt request from the SJA1000 or by polling status flags in the control
segment of the SJA1000.

Interrupt Controlled Transmission
According to the main processing of the controller as given in Figure 13, the transmit interrupt of the CAN
controller and the external interrupt used by the host controller for the communication with the SJA1000 are
enabled prior to the start of a transmission, which is controlled by interrupt. The interrupt enable flags are located
in the Control Register for the BasicCAN mode and in the Interrupt Enable Register for the PeliCAN mode (see
Table 2 and [1]).

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

28

As long as the SJA1000 is transmitting a message, the Transmit Buffer is locked for writing. Thus the host
controller has to check the “Transmit Buffer Status” flag (TBS) of the Status Register (see [1]), if a new message
can be placed into the Transmit Buffer.

• The Transmit Buffer is locked:

The host controller stores the new message temporarily in its own memory and sets a flag, indicating that a
message is waiting for being transmitted. It is up to the software designer how to handle this temporary
storage, which may be designed to store several messages to be transmitted. The start of a transmission of
the message will then be handled during the interrupt service routine, which is initiated at the end of the
current running transmission.

Upon reception of an interrupt from the CAN controller (see the interrupt processing of Figure 13), the host
controller checks the type of interrupt. If it was a Transmit Interrupt, it checks, whether further messages
have to be transmitted or not. A waiting message is copied from the temporary store into the Transmit
Buffer and the flag indicating further messages to be transmitted is cleared. The flag “Transmission
Request” (TR) of the Command Register (see [1]) is set, which will cause the SJA1000 to start the
transmission.

• The Transmit Buffer is released:

The host controller writes the new message into the Transmit Buffer and sets the flag “Transmission
Request” (TR) of the Command Register (see [1]), which will cause the SJA1000 to start the transmission.
At the end of a successful transmission, a Transmit Interrupt is generated by the CAN controller.

claear flag "further message"

Transmit Buffer
Status released?

write message into the
Transmit Buffer

set flag "further message"

copy message from temporary store
into the Transmit Buffer

set Transmission Request bit set Transmission Request bit

preparation:
enable CAN Transmit Interrupt

main processing:
transmit a message

"further
message" to be

transmitted?

interrupt
processing:

transmit a message

CAN Transmit
Interrupt?

request:
transmit a message

temporary storage of
message to be transmitted

YES

NO

NO

YES

YES

NO

Figure 13: Flow Diagram “Transmission of a message” (interrupt controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

29

Polling Controlled Transmission
The flow is shown in Figure 14. The transmission interrupt of the CAN controller is disabled for this type of
transmission control.

As long as the SJA1000 is transmitting a message, the Transmit Buffer is locked for writing. Thus the host
controller has to check the “Transmit Buffer Status” flag (TBS) of the Status Register (see [1]), if a new message
can be placed into the Transmit Buffer.

• The Transmit Buffer is locked:

Polling the Status Register periodically, the host controller waits, until the Transmit Buffer is released.

• The Transmit Buffer is released:

The host controller writes the new message into the Transmit Buffer and sets the flag “Transmission
Request” (TR) of the Command Register (see [1]), which will cause the SJA1000 to start the transmission.

Example for the PeliCAN mode:
Definitions for the different constants and variables, etc., are given in the Appendix. Variables may be interpreted
different in BasicCAN and PeliCAN mode, e.g., “InterruptEnReg” points to the Control Register in BasicCAN
mode but to the Interrupt Enable Register in PeliCAN mode. The language “C” is used for programming.

After having initialized the CAN controller according to the example given in chapter 4.2.1, normal
communication can be started.

.

.
/* wait until the Transmit Buffer is released */
 do
 {
 /* start a polling timer and run some tasks while waiting
 break the loop and signal an error if time too long */
 } while((StatusReg & TBS_Bit) != TBS_Bit);

/* Transmit Buffer is released, a message may be written into the buffer */
/* in this example a Standard Frame message shall be transmitted */
 TxFrameInfo = 0x08; /* SFF (data), DLC=8 */
 TxBuffer1 = 0xA5; /* ID1 = A5, (1010 0101) */
 TxBuffer2 = 0x20; /* ID2 = 20, (0010 0000) */
 TxBuffer3 = 0x51; /* data1 = 51 */
 .
 .
 TxBuffer10 = 0x58; /* data8 = 58 */

/* Start the transmission */
 CommandReg = TR_Bit ; /* Set Transmission Request bit */
.
.
The TS and RS flags in the Status Register can be used for detecting, that the CAN controller has reached the
idle-state. The TBS- and TCS-flags can be checked for a successful transmission.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

30

Example for the BasicCAN mode:
Definitions for the different constants and variables, etc., are given in the Appendix. Variables may be interpreted
different in BasicCAN and PeliCAN mode, e.g., “InterruptEnReg” points to the Control Register in BasicCAN
mode but to the Interrupt Enable Register in PeliCAN mode. The language “C” is used for programming.

After having initialized the CAN controller according to the example given in chapter 4.2.1, normal
communication can be started.

.
/* wait until the Transmit Buffer is released */
 do
 {
 /* start a polling timer and run some tasks while waiting
 break the loop and signal an error if time too long */
 } while((StatusReg & TBS_Bit) != TBS_Bit);

/* Transmit Buffer is released, a message may be written into the buffer */
/* only Standard Frame messages are possible in BasicCAN mode */
 TxBuffer1 = 0xA5; /* ID1 = A5, (1010 0101) */
 TxBuffer2 = 0x28; /* ID2 = 28, (0010 1000) (DLC=8) */
 TxBuffer3 = 0x51; /* data1 = 51 */
.
 TxBuffer10 = 0x58; /* data8 = 58 */

/* Start the transmission */
 CommandReg = TR_Bit ; /* Set Transmission Request bit */
.
The TBS- and TCS-flags can be checked for a successful transmission.

Transmit Buffer
Status released?

load message to be transmitted
 into the Transmit Buffer

run other tasks or
simply loop back

set Transmission Request bit

request:
transmit a message

YES

NO

Figure 14: Flow Diagram “Transmission of a message” (polling controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

31

4.2.3 Abort Transmission

The transmission of a message, which was requested, may be aborted using the “Abort Transmission”
command by setting the corresponding bit in the Command Register [1]. This feature may be used e.g. for
transmitting an urgent message prior to the message, which has been written into the transmit buffer previously,
but which was not transmitted successfully until now.

Figure 15 shows a flow using the transmit interrupt. The flow illustrates the situation, where a message has to be
aborted in order to transmit a message with a higher priority. Other reasons for aborting a message may require
a different interrupt flow.

A corresponding flow can be derived for the polling controlled transmission handling.

In case a message is still waiting for being served due to different reasons, the Transmit Buffer is locked (see the
main flow part in Figure 15). If a transmission of an urgent message is requested, the Abort Transmission bit is
set in the Command Register. When the message waiting to be served has either been transmitted successfully
or aborted, the Transmit Buffer is released and a Transmit Interrupt is generated. During the interrupt flow the
Transmission Complete flag of the Status Register has to be checked, if the previous transmission has been
successful or not. The status “incomplete” indicates, that the transmission was aborted. In this case the host
controller can run through a special routine dealing with a strategy for aborted transmissions, e.g., repeat the
transmission of the aborted message after having checked, if it is still valid.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

32

4.2.4 Reception

The reception of messages is done autonomously by the CAN controller SJA1000 according to the CAN protocol
specification [8]. Received messages are placed into the Receive Buffer (see chapter 4.1.1 and 5.1). A
message, ready to be transferred to the host controller, is signalled by the Receive Buffer Status flag “RBS” (see
[1]) of the Status Register and by a Receive Interrupt flag “RI” (see [1]), if enabled. The host controller has to

set Abort Transmission bit

Transmit Buffer
Status released?

Message has
high priority?

write message into the
Transmit Buffer

set flag "further message"

copy message from temporary
store into the Transmit Buffer,

clear flag "further message"

set Transmission Request bit

set
Transmission
Request bit

preparation:
enable CAN Transmit Interrupt

main flow:
transmit a message

"further message"
to be transmitted?

interrupt flow:
transmit a message

CAN Transmit
Interrupt?

Transmission
Complete Status =

incomplete?

request:
transmit a message

set
Transmission
Request bit

temporary storage of
message to be transmitted

application specific processing:
react according to a defined

 "Abort Transmission" strategy
e.g. retransmission of aborted

message

YES

NO

NO

YES

YES

NO

YES

NO

YES

NO

Figure 15: Flow Diagram “Abort Transmission of a message” (interrupt controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

33

transfer the message to its local message memory, release the Receive Buffer and react on the content of the
message. The transfer process can be controlled either by an interrupt request from the SJA1000 or by polling
status flags in the control segment of the SJA1000.

Polling Controlled Reception
The flow is shown in Figure 16. The Receive Interrupt of the CAN controller is disabled for this type of reception
control.

The host controller reads the Status Register of the SJA1000 on a regular basis, checking if the Receive Buffer
Status flag (RBS) indicates, that at least one message has been received. For the definition of the flags located
in the registers of the control segment see [1].

• The Receive Buffer Status flag indicates “empty”, i.e., no message has been received:

The host controller continues with the current task until a new request for checking the Receive Buffer
Status is generated.

Receive Buffer
Status = full?

continue with other tasks

read new message from
Receive Buffer and save it

release Receive Buffer
(set command bit RRB = released)

application specific processing:
e.g. process received message

request:
check for received messages

YES

NO

Figure 16: Flow Diagram “Reception of a message” (polling controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

34

• The Receive Buffer Status flag indicates “full”, i.e., one or more messages have been received:

The host controller gets the first message from the SJA1000 and sends a Release Receive Buffer
command afterwards by setting the corresponding flag in the Command Register. The host controller can
process each received message before checking for further messages, as indicated in Figure 16. But it is
also possible to check at once for further messages by polling the Receive Buffer Status bit again and
process the received messages all together later. In this case the local message memory of the host
controller has to be large enough to store more than one message before they are processed. After having
transferred and processed one or all messages, the host controller can continue with other tasks.

Interrupt Controlled Reception
According to the main processing of the controller as given in Figure 17, the receive interrupt of the CAN
controller and the external interrupt used by the host controller for the communication with the SJA1000 are
enabled prior to an interrupt controlled reception of messages. The interrupt enable flags are located in the
Control Register (for the BasicCAN mode) or in the Interrupt Enable Register (for the PeliCAN mode) - see Table
2 and [1].

If the SJA1000 has received a message, which has passed the acceptance filter and has been placed into the
Receive FIFO, a receive interrupt is generated. Thus the host controller can react immediately, transferring the
received message into its message memory and send a Release Receive Buffer command afterwards by setting
the corresponding flag “RRB” (see [1]) in the Command Register. Further messages in the Receive FIFO will

application specific processing
e.g. process received message

preparation:
enable CAN Receive Interrupt

main flow:
reception of messages

read new message from Receive
Buffer and save it

release Receive Buffer
(set command bit RRB = released)

interrupt flow:
reception of messages

CAN Receive
Interrupt?

NO

YES

Figure 17: Flow Diagram “Reception of a message” (interrupt controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

35

generate a new receive interrupt, so it is not necessary to read all messages available in the Receive FIFO
during one interrupt. Contrary to this solution the procedure for reading all available messages at once is used in
Figure 18. After having released the Receive Buffer, the Receive Buffer Status (RBS) in the Status Register is
checked for further messages and all available are read in a loop.

As given in Figure 17, the whole reception process may be done during the interrupt routine, without interaction
with the main program. If feasible, even the reaction on messages can be done in the interrupt too.

Example:

Definitions for the different constants and variables, etc., are given in the Appendix. Variables may be interpreted
different in BasicCAN and PeliCAN mode, e.g., “InterruptEnReg” points to the Control Register in BasicCAN
mode but to the Interrupt Enable Register in PeliCAN mode. The language “C” is used for programming.

After having initialized the CAN controller according to the example given in chapter 4.2.1, normal
communication can be started.

1. part of the main processing

.

.
/* enable the receive interrupt */
 InterruptEnReg = RIE_Bit;
.
.

2. part of the interrupt 0 service routine

.
/* read the Interrupt Register content from SJA1000 and save temporarily
 all interrupt flags are cleared (in PeliCAN mode the Receive
 Interrupt (RI) is cleared first, when giving the Release Buffer command)
*/
CANInterrupt = InterruptReg;
.
.
/* check for the Receive Interrupt and read one or all received messages */
 if (RI_VarBit == YES) /* Receive Interrupt detected */
 {
 /* get the content of the Receive Buffer from SJA1000 and store the
 message into internal memory of the controller,
 it is possible at once to decode the FrameInfo and Data Length Code
 and adapt the fetch appropriately */
 .
 .
 /* release the Receive Buffer, now the Receive Interrupt flag is cleared,
 further messages will generate a new interrupt */
 CommandReg = RRB_Bit; /* Release Receive Buffer */
 }
.
.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

36

Data Overrun Handling
In case the Receive FIFO is full but another message is being received, a Data Overrun is signalled to the host
controller by setting the Data Overrun Status in the Status Register and, if enabled, a Data Overrun Interrupt is
generated by the SJA1000.

Running into a Data Overrun situation states, that the host controller is extremely overloaded, as it did not have
enough time to fetch received messages from the Receive Buffer in time. A Data Overrun signals, that data are
lost, possibly causing inconsistencies in the system. Normally a system should be designed in such a way, that
the received messages are transferred and processed fast enough to avoid a Data Overrun condition. An
exception handler dealing with an application specific processing should be implemented in the host controller, if
Data Overrun situations cannot be avoided.

Figure 18 illustrates the program flow, in case a Data Overrun Interrupt has to be handled.

After having transferred the message, which caused the receive interrupt, and released the Receive Buffer, it is
checked, if further messages are available in the Receive FIFO by reading the Receive Buffer Status. Thus all
messages can be fetched from the Receive FIFO before going on further. Of course reading a message and
perhaps processing it already during the interrupt, should be done faster, than it takes the SJA1000 to receive a
new message. Otherwise it could happen, that the host controller stays in the interrupt forever reading
messages.

Detecting a Data Overrun starts an exception handling according to a “Data Overrun” strategy. This strategy can
decide between two situations:

– A Data Overrun occurred together with a Receive Interrupt:
Messages may have been lost.

– A Data Overrun occurred, but no Receive Interrupt was detected:
Messages may have been lost. The Receive Interrupt may have been disabled.

It is up to the system designer how the host controller should react on these situations.

An equivalent handling can also be done during a polling controlled reception of messages.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

37

application specific processing:
e.g. process received message

Data Overrun Interrupt?

preparation:
enable CAN Receive Interrupt
and Data Overrun Interrupt

main flow:
reception of messages

application specific processing:
react according to a defined

 "Data Overrun" strategy

clear Data Overrun
(set command bit CDO = clear)

read new message from Receive
Buffer and save it

release Receive Buffer
(set command bit RRB = released)

interrupt flow:
reception of messages

CAN Receive
Interrupt?

Receive Buffer Status
 = empty?

YES

YES

NO

YES

NO

NO

Figure 18: Flow Diagram “Data Overrun and reception of messages” (interrupt controlled)

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

38

4.2.5 Interrupts

In PeliCAN mode the SJA1000 has 8 different interrupts (in BasicCAN mode there are only 5), which may be
used for causing immediate actions by the host controller on certain states of the CAN controller.

In case a CAN interrupt is present, the SJA1000 sets the interrupt output (pin 16) to LOW-level. The output stays
at LOW-level, until the host controller reacts on the interrupt by reading the Interrupt Register of the SJA1000; –
in case of a receive interrupt in PeliCAN mode upon releasing the Receive Buffer. After this reaction from the
host controller the SJA1000 switches the interrupt output back to HIGH-level. In case further interrupts did arrive
in the meantime, or further messages are available in the Receive FIFO, the SJA1000 at once sets the interrupt
output to LOW-level again. Thus the output may stay HIGH for a very short time only. Both the handshaking
during serving the interrupt request and the possible short HIGH-level pulse during two interrupts require, that
the interrupt of the host controller must be level-activated.

The flow in Figure 19 gives an overview of all possible interrupts and references to more detailed descriptions in
this Application Note. The order, in which the different interrupts are handled in this flow, is one possible solution
only. It depends very much on the system and the requested behaviour of it, in which order the interrupts have to
be served. This has to be decided by the designer of the overall system.

The reactions on the Transmission, Receive and Data Overrun Interrupts are already discussed in the previous
paragraphs.

The flows after a Wake Up Interrupt, Arbitration Lost Interrupt and three different error interrupts are given in
more detail in Figure 20, Figure 21 and Figure 22. All error interrupts may be used for implementing a versatile
error strategy in the system. This strategy should deal with system optimization in the development phase and
automatic system optimization and system maintenance in the operational phase. Also the Arbitration Lost
Interrupt may be used for system optimization and maintenance. See also the following chapters and the data
sheet [1] for more details on the different error signals, arbitration lost handling and related information.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

39

External Interrupt received
from the SJA1000

interrupt processing:
CAN error warning handling

read Interrupt Register of SJA1000,
store value temporarily

upon reading this register,
all bits are cleared

(except "RI" in PeliCAN mode)

interrupt processing:
bus error handling

interrupt processing:
reception of messages and

data overrun detected

interrupt processing:
error passive handling

interrupt processing:
arbitration lost handling

interrupt processing:
transmission of messages

interrupt processing:
CAN controller wakes up

preparation:

if appropriate, enable

Wake Up Interrupt
Data Overrun Interrupt

Error (Warning) Interrupt
Transmit Interrupt
Receive Interrupt

and for PeliCAN mode only:
Bus Error Interrupt

Arbitration Lost Interrupt
Error Passive Interrupt

main flow:
used interrupts are enabled

PeliCAN mode only

end of interrupt processing

Figure 19: General interrupt flow

see Figure 20

see Figure 13 and Figure 15

see Figure 17 and Figure 16

see Figure 21

see Figure 22

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

40

Wake-Up
Interrupt?

preparation:
enable CAN Wake Up Interrupt

main flow:
CAN controller wakes up

application specific processing
 reaction on
 either CAN controller wakes up
 or Entering sleep mode was not successfull

interrupt flow:
CAN controller wakes up

NO

YES

Figure 20: Flow Diagram "CAN controller wakes up"

preparation:
enable CAN Error Warning Interrupt

 (BasicCAN: Error Interrupt)

main flow:
CAN error warning

application specific processing:
react according to a defined

 "Bus-Off"-strategy

interrupt flow:
CAN error warning

in BasicCAN mode:
Error Interrupt

Error Warning
Interrupt?

Bus Status =
"Bus-Off"?

Error Status =
"error"?

Check flags of Status Register

processing:
e.g. reconfigure SJA1000

(reset mode/request bit is set)

application specific processing:
react according to a defined

 "Error"-strategy

YES

NO

NO

YES YES

NO

Figure 21: Flow Diagram "Error Warning Interrupt"

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

41

preparation:
enable CAN Bus Error Interrupt
 and/or Arbitration Lost Interrupt
and/or Error Passive Interrupt

main flow:
handling of special interrupts

in PeliCAN mode

application specific processing:
reaction on bus errors

e.g for system maintenance and diagnostics

Bus Error
Interrupt?

interrupt flow:
bus error handling

(PeliCAN mode only)

application specific processing:
e.g. for system optimization

interrupt flow:
arbitration lost handling
(PeliCAN mode only)

Arbitration Lost
Interrupt?

read Error Code Capture Register read Arbitration Lost Capture Register

interrupt flow:
passive error handling
(PeliCAN mode only)

 application specific processing:
reaction on bus errors

e.g for system maintenance and optimization

Error Passive
Interrupt?

YES

NO NO

YES

YES

NO

Figure 22: Flow Diagram “Processing of special PeliCAN interrupts”

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

42

5. PELICAN MODE FUNCTIONS

5.1 Receive FIFO / Message Counter / Direct RAM Access
The SJA1000 registers and message buffers appear to the host controller as peripheral registers which can be
addressed via the multiplexed address/data bus. Depending on the selected mode (Operating or Reset)
different registers are accessible. The address range for normal operation is: Address 0 .. 31. It contains
registers for initialization, status and control purposes. Furthermore the CAN message buffers are allocated
between address 16 and 28. With a host controller write access the user can address the CAN controller’s
Transmit Buffer and with a read access the Receive Buffer contents is read.

Additionally to the range described above the whole Receive FIFO is mapped between CAN address 32 and 95,
see also Figure 23. Furthermore the Transmit Buffer of the SJA1000 which is also part of the internal 80 byte
RAM is available between CAN address 96 and 108.

With the described direct RAM access it is possible to read the Transmit Buffer and the complete Receive FIFO.

TX Buffer

Multi Purpose Memory

Registers

96

108

95

32

28

16

Registers

15

00

CAN Address

0

63

64

112
79

unused

127

RAM Address

Rx Buffer Start Address
(RBSA)

28
31

109

111

76

Receive
FIFO

77

x

RX
Buffer

RX Buffer (read)
TX Buffer (write)

x + 12RAM

Figure 23: Register and RAM Address Allocations

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

43

In PeliCAN mode the Receive FIFO is able to store up to n = 21 messages. With the help of the following
equation it is possible to calculate the maximum number of messages:

n
data length code

=
+

64

3 _ _

The Receive Buffer is defined as a 13 byte window always containing the current receive message of the
Receive FIFO. As shown in Figure 24 it could happen that parts or the complete following message is already
available in the Receive Buffer window.

However, upon command ´Release Receive Buffer´ the next receive message in the Receive FIFO will become
completely visible in the Receive Buffer window starting at CAN address 16.

Mainly for analysis purposes the SJA1000 provides two additional registers supporting receive message
handling:

• Rx Buffer Start Address Register (RBSA) allows identification of single CAN messages in the Receive FIFO
range.

• RX Message Counter Register which contains the current number of stored messages in the Receive
FIFO.

Figure 23 shows the relation between the physical RAM address and the CAN address.

64 byte
Receive

FIFO

Incoming
Messages

28

27

26

25

24

23

22

21

20

19

18

17

16

Receive
Buffer

Window

message 3

message 2

message 1

Figure 24: Receive FIFO

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

44

5.2 Error Analysis Functions
Depending on the value of the error counters each CAN controller can operate in one of three possible error
states: error active, error passive or bus-off. The CAN controller is error active if both error counters are between
0... 127 . In case of an error condition an active error flag (6 dominant bits) is generated. The SJA1000 is error
passive if one of the error counters is between 128 and 255. A passive error flag (6 recessive bits) is generated
upon detection of an error condition in this case. If the Transmit Error Counter is greater than 255 the bus-off
status is reached. In this state the reset request bit is set automatically and the SJA1000 can not influence the
bus. As shown in Figure 25 bus-off can only be terminated with the host controller command ´Reset Request =
0´. This will start the bus-off recovery time where the Transmit Error Counter is used to count 128 occurrences of
a bus free signal. At the end of this time both error counters are 0 and the device is error active again.

Furthermore the figure shows the value for both Error and Bus status at different error states.

Receive or Transmit
Error Counter

0

Error Warning Limit
(default 96)

127

255

Bus Error
Interrupt

Error Active

Error Passive

Bus-Off

Bus Error
Interrupt

Error Warning
Interrupt

Error Warning
Interrupt

Error Passive
Interrupt

Error Warning
Interrupt

Reset Request bit = 1
Tx Error Counter = 127
Rx Error Counter = 0

wait 128 occurences of bus-free
Tx Error Counter is decremented

Reset Request = 0 ?

Yes

No CPU command

Reset Request = 0

External Reset

Error
Status

Bus
Status

0

1

0

1

Figure 25: SJA1000 Error Interrupts

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

45

5.2.1 Error Counters

As described above the error states of the CAN controller are directly related to the values of the Transmit and
Receive Error Counters.
To allow a deep look inside into the error confinement and to support an enhanced error analysis with the
SJA1000 the CAN controller provides readable error counters. Additionally, in Reset Mode a write access to both
error counters is allowed.

5.2.2 Error Interrupts

Three interrupt sources have been implemented to signal error conditions to the host controller, see Figure 25.
Each interrupt can be enabled separately in the Interrupt Enable Register.

Bus Error Interrupt:

This interrupt is generated upon any error condition on the CAN bus.

Error Warning Interrupt:

The Error Warning Interrupt is generated if the error warning limit is passed. Furthermore it is generated if the
CAN controller enters the bus-off state and upon re-entry into error active state. The error warning limit of the
SJA1000 is programmable in reset mode. The default value upon reset Is 96.

Error Passive Interrupt:

If the error status changes from error active to error passive or vice versa an error passive interrupt is signalled.

5.2.3 Error Code Capture

As described in the previous section the SJA1000 performs the full error confinement specified in the CAN2.0B
specification [8]. As in every CAN controller the whole process of handling errors is executed fully automatically.
However, to provide the user with additional details about a certain error condition the SJA1000 contains the
Error Code Capture function. Whenever a CAN bus error occurs, the corresponding bus error interrupt is forced.
At the same time, the current bit position is captured into the Error Code Capture Register. The captured data is
fixed until the host controller has read it. From now on the capture mechanism is activated again. The register
contents distinguishes four different types of errors: form,-stuff,- bit and other errors. As shown in Figure 26 the
register additionally indicates whether the error occurred during reception or transmission of a message. Five

ACK
Field

Error in ACK Delimiter
detected

CAN bus

Bus Error
Interrupt

0

1

Error Code
Capture
Register 0

1

1

0

1

1

x

x

x

x

x

x

x

x

read interrupt register

MSB

Form Error
during

Transmission

in Acknowledge
Delimiter

Type of Error

Position of an Error
in the CAN bit stream

Figure 26: Example for the Error Code Capture Function

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

46

bits in this register indicate the erroneous bit position in the CAN frame, see also the following tables and the
data sheet for more details.
As defined in the CAN specification, every single bit on the CAN bus can only have special types of errors. The
next two tables show all possible errors during transmission and reception of CAN messages. The left part
contains the position and the type of an error, captured by the Error Code Capture Register. The right part of
each table is a translation into an upper level error description and can be derived directly from the register
contents. With the help of these tables further information concerning error counter change and the erroneous
state at the transmit and receive pins of the device can be derived. While using this table, e.g., in the error
analysis software it is possible to analyze every single error situation in detail. The information about type and
position of CAN errors can be used for error statistics and system maintenance or for corrective actions during
system optimization.

Table 6: Possible errors during reception

Error Code Capture

Position of an Error
in the CAN bit stream

Type of
Error

RX Error
Count

Description

Identifier
SRR, IDE and RTR bit
Reserved Bits
Data Length Code
Data Field
CRC Sequence

Stuff + 1 more than 5 consecutive bits with
same level received

- -

CRC Delimiter Form
Stuff

+ 1
+ 1

Rx = dominant
more than 5 consecutive bits with
same level received

bit has to be recessive

Acknowledge Slot Bit + 1 Tx = dominant but Rx = recessive can’t write dominant bit

Acknowledge
Delimiter1

Form + 1 Rx = dominant or

CRC error detected1

critical bus timing or
bus length
CRC sequence not correct

End of Frame Form
Other

+ 1
+ 0

Rx = dominant in first 6 bits
Rx = dominant in last bit

- -
reaction: overload flag will be
sent, data duplication is
possible if transmitter starts
re-transmission

Intermission Other + 0 Rx = dominant reaction: overload flag will be
sent by receiver

Active Error Flag Bit + 8 Tx = dominant but Rx = recessive can’t write dominant bit

Tolerate
Dominant Bits

Other + 8 Rx = dominant in first bit upon error flag
Rx = dominant for more than 7 bits upon error or overload flag

Error Delimiter Form
Other

+ 1
+ 0

Rx = dominant within first 7 bits
Rx = dominant in last bit of delimiter

- -
overload flag will be sent

Overload Flag Bit + 8 Tx = dominant but Rx = recessive can’t write dominant bit

1 if the CRC is not o.k., then the error is processed in the Acknowledge Delimiter resulting in a ´Form Error´.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

47

Table 7: Possible errors during transmission

Error Code Capture

Position of an Error
in the CAN bit stream

Type of
Error

TX Error
Count

Description

Start Of Frame Bit + 8 Tx = dominant but Rx = recessive can’t write dominant bit

Identifier Bit
Stuff

+ 8
+ 0

Tx = dominant but Rx = recessive
Tx = recessive but Rx = dominant

can’t write dominant bit
- -

SRR Bit Bit
Stuff

+ 8
+ 0

Tx = dominant but Rx = recessive

Tx = recessive but Rx = dominant

can’t write dominant bit
- -

IDE and RTR Bit Bit
Stuff

+ 8
+ 8

Tx = dominant but Rx = recessive
Tx = recessive but Rx = dominant

can’t write dominant bit
- -

Reserved Bits,
Data Length Code,
Data Field,
CRC Sequence,

Bit + 8 Tx = dominant but Rx = recessive can’t write dominant bit

CRC Delimiter Form + 8 Rx = dominant bit has to be recessive

Acknowledge
Slot

Other

Other

+ 8

+ 0

Rx = recessive (error active)

Rx = recessive (error passive)

no acknowledge

no acknowledge, node is
probably alone on the bus

Acknowledge
Delimiter

Form + 8 Rx = dominant critical bus timing or
bus length

End of Frame Form
Other

+ 8
+ 8

Rx = dominant within first 6 bits
Rx = dominant in last bit

- -
frame has already been
received by some nodes, re-
transmission may result in
data duplication in receivers

Intermission Other + 0 Rx = dominant overload flag from ´old´ CAN
controllers

Active Error Flag
Overload Flag

Bit + 8 Tx = dominant but Rx = recessive can’t write dominant bit

Tolerate
Dominant Bits

Form + 8 Rx = dominant for more than 7 bit
times after active error flag or
overload flag

- -

Error Delimiter Form
Other

+ 8
+ 0

Rx = dominant within first 7 bits
Rx = dominant in last bit of delimiter

- -
overload flag from ´old´ CAN
controller

Passive Error Flag Other + 8 Rx = dominant (error passive) no acknowledge received,
node is not alone on the bus

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

48

5.3 Arbitration Lost Capture
The SJA1000 is able to identify the exact CAN bit stream position where the arbitration has been lost.
Immediately upon this an ´Arbitration Lost Interrupt´ is generated. Furthermore the bit number is captured in the
Arbitration Lost Capture Register. As soon as the host controller has read the contents of this register, the
capture function is activated for the next arbitration lost situation.

With the help of this feature the SJA1000 is able to monitor each CAN bus access. For diagnostics or during
system configuration it is possible to identify every situation where the arbitration was not successful.

The next example shows how the arbitration lost function can be used.

First the Arbitration Lost Interrupt is enabled in the Interrupt Enable Register. Upon interrupt the contents of the
Interrupt Register is saved. If the arbitration lost interrupt flag is set, the contents of the Arbitration Lost Capture
Register is analyzed.

Example: Arbitration Lost

....
InterruptEnReg = ALIE_Bit; /* Enable Arbitration Lost Interrupt */
....

/* ----- Interrupt Service Routine --- */
....
int_reg_copy = InterruptReg; /* save interrupt register contents */
....
if (int_reg_copy & ALIE_Bit)
 candat = ArbLostCapReg; /* read arbitration lost capture register */
...
...

Node A looses
arbitration

Node B

Arbitration
Lost
Interrupt

-

-

Arbitration
Lost Capture
Register
of node A

-

0

0

1

0

0

x

x

x

x

x

x

x

x

read interrupt
register

MSB MSB

arbitration lost in
bit number 04 ==> ID 24

Node A

00 01 02 03 04

bit number

05SOF

Figure 27: Arbitration Lost Capture Function

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

49

5.4 Single Shot Transmission
In some applications the automatic re-transmission of CAN messages does not make sense: it could happen
that a CAN node looses arbitration several times and the data have become obsolete.

In order to request a ´Single Shot Transmission´ previous CAN controllers have to perform the following steps:

1. Transmission Request

2. Wait for transmission status

3. Abort Transmission

The software necessary to process this can be minimized to a single command with the ´Single Shot
Transmission´ option, which is initiated by setting the command bits CMR.0 and CMR.1 simultaneously.

In this case no status bit polling is needed and the host controller can concentrate on other tasks. The described
`Single Shot Transmission´ function can be combined perfectly with the arbitration lost and the error code
capture functions of the SJA1000.
In case of arbitration lost or if an error condition occurs the message is not re-transmitted by the SJA1000. As
soon as the Transmit Status bit is set within the Status Register, the internal Transmission Request Bit is cleared
automatically.
With the additional information from both capture registers it is under the control of the user whether a message
is re-transmitted or not.

As described in chapter 5.7 the Single Shot Transmission can also be used together with the Self Test Mode.

5.5 Listen Only Mode
In Listen Only Mode the SJA1000 is not able to write dominant bits onto the CAN bus. Neither active error flags
or overload flags are written nor a positive acknowledge is given upon successful reception.

Errors are treated like in error passive mode. The error analysis functions, e.g., error code capture and error
interrupts are working as known from normal operating mode.

However, the status of the error counters is frozen.

Reception of messages is possible, transmission is not possible. Therefore, this mode can be used for automatic
bit-rate detection, see also chapter 5.6, and other applications with monitor characteristics.

Note, before entering the Listen Only Mode the Reset Mode has to be entered.

Example: Listen Only Mode

....
ModeControlReg = RM_RR_Bit; /* Enter Reset Mode */
ClockDivideReg = CANMode_Bit; /* PeliCAN Mode */
....
ModeControlReg = LOM_Bit; /* Enter Listen Only Mode */

/* and leave Reset Mode */
...

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

50

5.6 Automatic Bit-Rate Detection
The major drawback of existing trial and error concepts for automatic bit-rate detection is the generation of CAN
error frames which is not acceptable. The SJA1000 supports the requirements for an automatic bit-rate detection
with new features of the PeliCAN mode. This section briefly describes an application example without influencing
running operations on the network.
In Listen Only Mode, the SJA1000 is neither able to transmit messages nor to generate error frames. Only
message reception is feasible in this mode. A pre-defined table within the software contains all possible bit-rates
including their bit-timing parameters. Before starting message reception with the highest possible bit-rate, the
SJA1000 enables both receive and error interrupts.
In case of one or more errors on the CAN bus, the software switches to the next lower bit-rate.
Upon successful reception of a message, the SJA1000 has detected the right bit-rate and can switch to normal
operating mode. From now on this node is able to operate as any other active CAN node in the system.

unknown
bit-rate

Switch to next
lower bit-rate

Receive
Interrupt ?

Bus Error
Interrupt ?

Enter
Listen Only Mode

Set highest
bit-rate

Enable Receive and
Error Interrupt

bit-rate found

NO

YES

YES

NO

Figure 28: Algorithm of Bit-Rate Detection

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

51

5.7 CAN Self Tests
The SJA1000 supports two different options for self tests:

• Local Self Test

• Global Self Test

A Local Self Test, e.g., can be used perfectly for single node tests because an acknowledge from other nodes is
not needed. In this case the SJA1000 has to be put into ´Self Test Mode´ (Mode register) and the command
´Self Reception Request´ is given.

For a Global Self Test the SJA1000 performs the same command in Operating Mode. However, for a Global Self
Test in a running system a CAN acknowledge is needed.

Note that in both cases a physical layer interface must be available including CAN bus lines with a termination. A
transmission or self reception is initiated by setting the appropriate bits in the Command Register.

The SJA1000 provides three command bits for the initiation of CAN transmissions and self receptions . Table 8
shows all possible combinations depending on the selected mode of operation.

Table 8: CAN Transmission Request Commands

Command CMR = Interrupt(s) upon
successful operation

Self Test Mode Operating Mode

Self Reception Request 0x10 RX and TX local self test global self test

Transmission Request 0x01 TX normal transmission1 normal transmission

Single Shot 0x03 TX transmission without
re-transmission1

transmission without
re-transmission

Single Shot and
Self Reception Request

0x12 RX and TX local self test
without
re-transmission

global self test
without
re-transmission

The following example presents basic programming elements for the initiation of a local self test.

Example: Local Self Test

....
ModeControlReg = RM_RR_Bit; /* Enter Reset Mode */
ClockDivideReg = CANMode_Bit; /* PeliCAN Mode */
ModeControlReg = STM_Bit; /* Enter Self Test Mode */

/* and leave Reset Mode */
TxFrameInfo = 0x03; /* Fill Transmit Buffer */
TxBuffer1 = 0x53; /* */
...
TxBuffer5 = 0xAA; /* Last Transmit Byte */

CommandReg = SRR_Bit; /* Self Reception Request */
.........................
if (RxBuffer1 != TxBufferRd1) comparison = false;
if (RxBuffer2 != TxBufferRd2) comparison = false;

1 A normal transmission with or without re-transmission is usually performed in Operating Mode

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

52

5.8 Receive Sync Pulse Generation
The SJA1000 allows the generation of a pulse on the TX1 pin upon successful reception of a message. It is
generated if the message is completely stored within the Receive FIFO. The pulse can be enabled in the Clock
Divider Register and is active for the duration of the 6th bit in ´End Of Frame´.
Therefore, it can be used for versatile event triggered tasks, e.g., as a dedicated receive interrupt source or for a
global clock synchronization in a distributed system which is briefly described in the following section.

In distributed systems it is difficult to implement a system wide clock without having an extra synchronization line
[9]. All nodes connected onto the bus have local clocks with clock drifts. Lets assume that one CAN node in the
network is assumed to operate as a ´master´ clock and the remaining clocks in the network are synchronized to
the value of the master clock.

The Self Reception Request feature together with the fact that each SJA1000 is able to generate a pulse at a
definite time upon message reception, can be used to support clock synchronization in distributed systems.

In Figure 29 a system master transmits a ´Self Reception Message´ onto the CAN bus. After message reception,
each node, including the master, generates a Receive Sync Pulse. In every slave node it is used, i.e., to reset
the timers. Simultaneously the master node uses this pulse to capture the master clock value tM.

In a next step the tM value is sent as a ´Reference Time Message´ to all slaves by the master. A simple adder
function in every slave, followed by reloading all timers with tS synchronizes the system wide clock.

The major advantage of this concept is the simplicity of implementation without complicated time stamp handling.
No software cycle count is necessary because critical paths are hardware controlled and therefore deterministic.
Furthermore it is independent of network parameters. Interrupt events may happen during the complete period
without influencing the synchronization process.

Master transmits
a

Self Reception Message

Master captures
current

timer value tM

Master transmits
timer value tM

`Reference Time Message`

All Slaves
reset their timers

(tS = 0)

Slaves calculate
new timer value

tS = tM + ∆t

tΜΜ

∆t

Receive
Sync Pulse

t

Message 2Message 1

Figure 29: Timing Diagram during System Synchronization

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

53

6. REFERENCES
[1] Data Sheet SJA1000, Philips Semiconductors

[2] Eisele, H. and Jöhnk, E.: PCA82C250/251 CAN Transceiver, Application Note AN96116, Philips
Semiconductors, 1996

[3] Data Sheet PCA82C250, Philips Semiconductors, September 1994

[4] Data Sheet PCA82C251, Philips Semiconductors, October 1996

[5] Data Sheet TJA1053, Philips Semiconductors,

[6] Jöhnk, E. and Dietmayer, K.: Determination of Bit Timing Parameters for the CAN Controller SJA1000,
Application Note AN97046, Philips Semiconductors, 1997

[7] Data Sheet PCx82C200, Philips Semiconductors, November 1992

[8] CAN Specification Version 2.0, Parts A and B, Philips Semiconductors, 1992

[9] Hank, P.: PeliCAN: A New CAN Controller Supporting Diagnosis and System Optimization, 4th
International CAN Conference, Berlin, Germany, October 1997

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

54

7. APPENDIX
For the examples in the Application Note the C-language (C-compiler from Keil) is used to describe possible
flows for the programming of the SJA1000. The target controller in these examples is the S87C654 from Philips
Semiconductors, but any other derivative of the 80C51 family can be used. Be sure to include the correct
register declaration for the targeted derivative in the main program.

Register and bit definitions for the SJA1000

/* definition for direct access to 8051 memory areas */

#define XBYTE ((unsigned char volatile xdata *) 0)

/* address and bit definitions for the Mode & Control Register */

#define ModeControlReg XBYTE[0]

#define RM_RR_Bit 0x01 /* reset mode (request) bit */
#if defined (PeliCANMode)
#define LOM_Bit 0x02 /* listen only mode bit */
#define STM_Bit 0x04 /* self test mode bit */
#define AFM_Bit 0x08 /* acceptance filter mode bit */
#define SM_Bit 0x10 /* enter sleep mode bit */
#endif

/* address and bit definitions for the
 Interrupt Enable & Control Register */

#if defined (PeliCANMode)
#define InterruptEnReg XBYTE[4] /* PeliCAN mode */

#define RIE_Bit 0x01 /* receive interrupt enable bit */
#define TIE_Bit 0x02 /* transmit interrupt enable bit */
#define EIE_Bit 0x04 /* error warning interrupt enable bit */
#define DOIE_Bit 0x08 /* data overrun interrupt enable bit */
#define WUIE_Bit 0x10 /* wake-up interrupt enable bit */
#define EPIE_Bit 0x20 /* error passive interrupt enable bit */
#define ALIE_Bit 0x40 /* arbitration lost interr. enable bit*/
#define BEIE_Bit 0x80 /* bus error interrupt enable bit */
#else /* BasicCAN mode */
#define InterruptEnReg XBYTE[0] /* Control Register */

#define RIE_Bit 0x02 /* Receive Interrupt enable bit */
#define TIE_Bit 0x04 /* Transmit Interrupt enable bit */
#define EIE_Bit 0x08 /* Error Interrupt enable bit */
#define DOIE_Bit 0x10 /* Overrun Interrupt enable bit */
#endif

/* address and bit definitions for the Command Register */

#define CommandReg XBYTE[1]

#define TR_Bit 0x01 /* transmission request bit */
#define AT_Bit 0x02 /* abort transmission bit */
#define RRB_Bit 0x04 /* release receive buffer bit */
#define CDO_Bit 0x08 /* clear data overrun bit */
#if defined (PeliCANMode)
#define SRR_Bit 0x10 /* self reception request bit */

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

55

#else /* BasicCAN mode */
#define GTS_Bit 0x10 /* goto sleep bit (BasicCAN mode) */
#endif

/* address and bit definitions for the Status Register */

#define StatusReg XBYTE[2]

#define RBS_Bit 0x01 /* receive buffer status bit */
#define DOS_Bit 0x02 /* data overrun status bit */
#define TBS_Bit 0x04 /* transmit buffer status bit */
#define TCS_Bit 0x08 /* transmission complete status bit */
#define RS_Bit 0x10 /* receive status bit */
#define TS_Bit 0x20 /* transmit status bit */
#define ES_Bit 0x40 /* error status bit */
#define BS_Bit 0x80 /* bus status bit */

/* address and bit definitions for the Interrupt Register */

#define InterruptReg XBYTE[3]

#define RI_Bit 0x01 /* receive interrupt bit */
#define TI_Bit 0x02 /* transmit interrupt bit */
#define EI_Bit 0x04 /* error warning interrupt bit */
#define DOI_Bit 0x08 /* data overrun interrupt bit */
#define WUI_Bit 0x10 /* wake-up interrupt bit */
#if defined (PeliCANMode)
#define EPI_Bit 0x20 /* error passive interrupt bit */
#define ALI_Bit 0x40 /* arbitration lost interrupt bit */
#define BEI_Bit 0x80 /* bus error interrupt bit */
#endif

/* address and bit definitions for the Bus Timing Registers */

#define BusTiming0Reg XBYTE[6]
#define BusTiming1Reg XBYTE[7]

#define SAM_Bit 0x80 /* sample mode bit
 1 == the bus is sampled 3 times
 0 == the bus is sampled once */

/* address and bit definitions for the Output Control Register */

#define OutControlReg XBYTE[8]

 /* OCMODE1, OCMODE0 */
#define BiPhaseMode 0x00 /* bi-phase output mode */
#define NormalMode 0x02 /* normal output mode */
#define ClkOutMode 0x03 /* clock output mode */

 /* output pin configuration for TX1 */
#define OCPOL1_Bit 0x20 /* output polarity control bit */
#define Tx1Float 0x00 /* configured as float */
#define Tx1PullDn 0x40 /* configured as pull-down */
#define Tx1PullUp 0x80 /* configured as pull-up */
#define Tx1PshPull 0xC0 /* configured as push/pull */

 /* output pin configuration for TX0 */
#define OCPOL0_Bit 0x04 /* output polarity control bit */
#define Tx0Float 0x00 /* configured as float */
#define Tx0PullDn 0x08 /* configured as pull-down */

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

56

#define Tx0PullUp 0x10 /* configured as pull-up */
#define Tx0PshPull 0x18 /* configured as push/pull */

/* address definitions of Acceptance Code & Mask Registers */

#if defined (PeliCANMode)
#define AcceptCode0Reg XBYTE[16]
#define AcceptCode1Reg XBYTE[17]
#define AcceptCode2Reg XBYTE[18]
#define AcceptCode3Reg XBYTE[19]
#define AcceptMask0Reg XBYTE[20]
#define AcceptMask1Reg XBYTE[21]
#define AcceptMask2Reg XBYTE[22]
#define AcceptMask3Reg XBYTE[23]
#else /* BasicCAN mode */
#define AcceptCodeReg XBYTE[4]
#define AcceptMaskReg XBYTE[5]
#endif

/* address definitions of the Rx-Buffer */

#if defined (PeliCANMode)
#define RxFrameInfo XBYTE[16]
#define RxBuffer1 XBYTE[17]
#define RxBuffer2 XBYTE[18]
#define RxBuffer3 XBYTE[19]
#define RxBuffer4 XBYTE[20]
#define RxBuffer5 XBYTE[21]
#define RxBuffer6 XBYTE[22]
#define RxBuffer7 XBYTE[23]
#define RxBuffer8 XBYTE[24]
#define RxBuffer9 XBYTE[25]
#define RxBuffer10 XBYTE[26]
#define RxBuffer11 XBYTE[27]
#define RxBuffer12 XBYTE[28]
#else /* BasicCAN mode */
#define RxBuffer1 XBYTE[20]
#define RxBuffer2 XBYTE[21]
#define RxBuffer3 XBYTE[22]
#define RxBuffer4 XBYTE[23]
#define RxBuffer5 XBYTE[24]
#define RxBuffer6 XBYTE[25]
#define RxBuffer7 XBYTE[26]
#define RxBuffer8 XBYTE[27]
#define RxBuffer9 XBYTE[28]
#define RxBuffer10 XBYTE[29]
#endif

/* address definitions of the Tx-Buffer */

#if defined (PeliCANMode)
/* write only addresses */
#define TxFrameInfo XBYTE[16]
#define TxBuffer1 XBYTE[17]
#define TxBuffer2 XBYTE[18]
#define TxBuffer3 XBYTE[19]
#define TxBuffer4 XBYTE[20]
#define TxBuffer5 XBYTE[21]
#define TxBuffer6 XBYTE[22]
#define TxBuffer7 XBYTE[23]
#define TxBuffer8 XBYTE[24]
#define TxBuffer9 XBYTE[25]

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

57

#define TxBuffer10 XBYTE[26]
#define TxBuffer11 XBYTE[27]
#define TxBuffer12 XBYTE[28]
/* read only addresses */
#define TxFrameInfoRd XBYTE[96]
#define TxBufferRd1 XBYTE[97]
#define TxBufferRd2 XBYTE[98]
#define TxBufferRd3 XBYTE[99]
#define TxBufferRd4 XBYTE[100]
#define TxBufferRd5 XBYTE[101]
#define TxBufferRd6 XBYTE[102]
#define TxBufferRd7 XBYTE[103]
#define TxBufferRd8 XBYTE[104]
#define TxBufferRd9 XBYTE[105]
#define TxBufferRd10 XBYTE[106]
#define TxBufferRd11 XBYTE[107]
#define TxBufferRd12 XBYTE[108]
#else /* BasicCAN mode */
#define TxBuffer1 XBYTE[10]
#define TxBuffer2 XBYTE[11]
#define TxBuffer3 XBYTE[12]
#define TxBuffer4 XBYTE[13]
#define TxBuffer5 XBYTE[14]
#define TxBuffer6 XBYTE[15]
#define TxBuffer7 XBYTE[16]
#define TxBuffer8 XBYTE[17]
#define TxBuffer9 XBYTE[18]
#define TxBuffer10 XBYTE[19]
#endif

/* address definitions of Other Registers */

#if defined (PeliCANMode)
#define ArbLostCapReg XBYTE[11]
#define ErrCodeCapReg XBYTE[12]
#define ErrWarnLimitReg XBYTE[13]
#define RxErrCountReg XBYTE[14]
#define TxErrCountReg XBYTE[15]
#define RxMsgCountReg XBYTE[29]
#define RxBufStartAdr XBYTE[30]
#endif

/* address and bit definitions for the Clock Divider Register */

#define ClockDivideReg XBYTE[31]

#define DivBy1 0x07 /* CLKOUT = oscillator frequency */
#define DivBy2 0x00 /* CLKOUT = 1/2 oscillator frequency */

#define ClkOff_Bit 0x08 /* clock off bit,
 control of the CLK OUT pin */
#define RXINTEN_Bit 0x20 /* pin TX1 used for receive interrupt */
#define CBP_Bit 0x40 /* CAN comparator bypass control bit */
#define CANMode_Bit 0x80 /* CAN mode definition bit */

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

58

Register and bit definitions for the Micro Controller S87C654

/* Port 2 Register “P2” */
sfr P2 = 0xA0;

sbit P2_7 = 0xA7; /* MSB of port 2, used for chip select for SJA1000 */
.

/* alternate functions of port 3 “P3” */
sfr P3 = 0xB0;
.
sbit int0 = 0xB2;
.

/* Timer Control Register “TCON” */
sfr TCON = 0x88;

.
sbit IE0 = 0x89; /* external interrupt 0 edge flag */
sbit IT0 = 0x88; /* interrupt 0 type control bit
 (edge or low-level triggered */
.

/* Interrupt Enable Register “IE” */
sfr IE = 0xA8;

sbit EA = 0xAF; /* overall interrupt enable/disable flag */
.
sbit EX0 = 0xA8; /* enable or disable external interrupt 0 */
.

/* Interrupt Priority Register “IP” */
sfr IP = 0xB8;

.
sbit PX0 = 0xB8; /* external interrupt 0 priority level control */
.

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

59

Definitions of Variables and Constants for the Examples

/*- definition of hardware / software connections ----------------------*/

/* controller: S87C654; CAN controller: SJA1000(see Figure 3 on page 11)*/

#define CS P2_7 /* ChipSelect for the SJA1000 */

#define SJAIntInp int0 /* external interrupt 0 (from SJA1000) */

#define SJAIntEn EX0 /* external interrupt 0 enable flag */

/*- definition of used constants ---------------------------------------*/

#define YES 1
#define NO 0

#define ENABLE 1
#define DISABLE 0
#define ENABLE_N 0
#define DISABLE_N 1

#define INTLEVELACT 0
#define INTEDGEACT 1

#define PRIORITY_LOW 0
#define PRIORITY_HIGH 1

/* default (reset) value for register content, clear register */
#define ClrByte 0x00

/* constant: clear Interrupt Enable Register */
#if defined (PeliCANMode)
#define ClrIntEnSJA ClrByte
#else
#define ClrIntEnSJA ClrByte | RM_RR_Bit /* preserve reset request */
#endif

/* definitions for the acceptance code and mask register */
#define DontCare 0xFF

/*- definition of bus timing values for different examples -------*/

/* bus timing values for the example given in (AN97046)
 - bit-rate : 250 kBit/s
 - oscillator frequency : 24 MHz, 1,0%
 - maximum propagation delay : 1630 ns
 - minimum requested propagation delay : 120 ns */
#define PrescExample 0x02 /* baud rate prescaler : 3 */
#define SJWExample 0xC0 /* SJW : 4 */
#define TSEG1Example 0x0A /* TSEG1 : 11 */
#define TSEG2Example 0x30 /* TSEG2 : 4 */

/* bus timing values for
 - bit-rate : 1 MBit/s
 - oscillator frequency : 24 MHz, 0,1%
 - maximum tolerated propagation delay : 747 ns
 - minimum requested propagation delay : 45 ns */
#define Presc_MB_24 0x00 /* baud rate prescaler : 1 */
#define SJW_MB_24 0x00 /* SJW : 1 */

Philips Semiconductors

SJA1000
Stand-alone CAN controller

Application Note
AN97076

60

#define TSEG1_MB_24 0x08 /* TSEG1 : 9 */
#define TSEG2_MB_24 0x10 /* TSEG2 : 2 */

/* bus timing values for
 - bit-rate : 100 kBit/s
 - oscillator frequency : 24 MHz, 1,0%
 - maximum tolerated propagation delay : 4250 ns
 - minimum requested propagation delay : 100 ns */
#define Presc_kB_24 0x07 /* baud rate prescaler : 8 */
#define SJW_kB_24 0xC0 /* SJW : 4 */
#define TSEG1_kB_24 0x09 /* TSEG1 : 10 */
#define TSEG2_kB_24 0x30 /* TSEG2 : 4 */

/* bus timing values for
 - bit-rate : 1 MBit/s
 - oscillator frequency : 16 MHz, 0,1%
 - maximum tolerated propagation delay : 623 ns
 - minimum requested propagation delay : 23 ns */
#define Presc_MB_16 0x00 /* baud rate prescaler : 1 */
#define SJW_MB_16 0x00 /* SJW : 1 */
#define TSEG1_MB_16 0x04 /* TSEG1 : 5 */
#define TSEG2_MB_16 0x10 /* TSEG2 : 2 */

/* bus timing values for
 - bit-rate : 100 kBit/s
 - oscillator frequency : 16 MHz, 1,0%
 - maximum tolerated propagation delay : 4450 ns
 - minimum requested propagation delay : 500 ns */
#define Presc_kB_16 0x04 /* baud rate prescaler : 5 */
#define SJW_kB_16 0xC0 /* SJW : 4 */
#define TSEG1_kB_16 0x0A /* TSEG1 : 11 */
#define TSEG2_kB_16 0x30 /* TSEG2 : 4 */

/*- end of definitions of bus timing values ----------------------*/

/*- definition of used variables ---------------------------------*/

/* intermediate storage of the content of the Interrupt Register */
BYTE bdata CANInterrupt; /* bit addressable byte */
sbit RI_BitVar = CANInterrupt ^ 0;
sbit TI_BitVar = CANInterrupt ^ 1;
sbit EI_BitVar = CANInterrupt ^ 2;
sbit DOI_BitVar = CANInterrupt ^ 3;
sbit WUI_BitVar = CANInterrupt ^ 4;
sbit EPI_BitVar = CANInterrupt ^ 5;
sbit ALI_BitVar = CANInterrupt ^ 6;
sbit BEI_BitVar = CANInterrupt ^ 7;

	Abstract
	APPLICATION NOTE
	Summary
	CONTENTS
	1. INTRODUCTION
	2. OVERVIEW
	2.1 SJA1000 Features
	2.2 CAN Node Architecture
	2.3 Block Diagram

	3. SYSTEM
	3.1 SJA1000 Application
	3.2 Power Supply
	3.3 Reset
	3.4 Oscillator and Clocking Strategy
	3.5 CPU Interface
	3.6 Physical Layer Interface

	4. CONTROL OF CAN COMMUNICATION
	4.1 Basic Functions and Registers for Controlling the SJA1000
	4.2 Functions for CAN Communications

	5. PELICAN MODE FUNCTIONS
	5.1 Receive FIFO / Message Counter / Direct RAM Access
	5.2 Error Analysis Functions
	5.3 Arbitration Lost Capture
	5.4 Single Shot Transmission
	5.5 Listen Only Mode
	5.6 Automatic Bit-Rate Detection
	5.7 CAN Self Tests
	5.8 Receive Sync Pulse Generation

	6. REFERENCES
	7. APPENDIX

